

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme / specialisation:
Computational Engineering

The spring semester, 2023

Open

Author: René König, 268127

Supervisor at UiS: Professor Aksel Hiorth

Co-supervisor: Professor Jasna Bogunovic Jakobsen

External supervisor(s): Bernardo Morais da Costa, Statens vegvesen

Thesis title:
Analysis of wind and response measurement data from a suspension bridge

Credits (ECTS): 30

Keywords: Python, Data Science,
Software Development, Suspension
Bridge, Wind Engineering, Wind
Response, Full-Scale Monitoring,
Anemometers, Accelerometers

Pages: 116
+ appendix: 169

Stavanger, 14.06.2023

II

Abstract
The Lysefjord Bridge is a suspension bridge at the entrance to the Lysefjord in

south-western Norway at which full-scale measurements on wind conditions and

bridge response are collected using anemometers and accelerometers. In this work

Python is used to develop a toolset for analysing the wind and response

measurement data from the Lysefjord Bridge. The functionality is provided through

different methods compiled in a class. This includes methods for importing and

combining data from multiple days, re-arranging and interpreting the data, feature

engineering, data cleaning, filtering and various types of visualisations. The code is

demonstrated in an analysis of 30 days of data. The analysis focuses on the wind

conditions for south-westerly and north-easterly winds in terms of wind speeds,

primary directions, turbulence intensity and angle of attack as well as the bridges

lateral, vertical and torsional wind response. The analysis shows on average slightly

higher wind speeds, lower turbulence intensities and higher angles of attack for

south-westerly winds, compared to north-easterly winds. Towards the southern end

of the bridge the wind direction has a south tendency for south-westerly winds and

north tendency for north-easterly winds. Turbulence intensity is measured slightly

higher on the downwind side of the bridge. The angle of attack is straightened

towards 0° on the downwind side. Furthermore, the analysis shows that the

assumption of a linear correlation between drag coefficient and angle of attack used

in the so-called quasi-steady theory of wind loading and the corresponding numerical

simulations underestimates most of the larger lateral bridge responses at angles of

attack above 0°. The lift and moment coefficients estimated using similar linearity

assumptions overestimate some of the larger vertical and torsional bridge responses

at angles of attack above +5°.

III

Acknowledgements

I want to thank the Department of Mechanical and Structural Engineering and

Material Science at Univeritetet i Stavanger for giving me the chance and freedom to

examine the data of the Lysefjord Bridge from a different perspective. The well

documented previous work on the full-scale monitoring system and data analysis at

the Lysefjord Bridge have been very helpful in approaching this new domain.

A special thanks goes to my co-supervisor from this department, Professor Jasna

Bogunovic Jakobsen, who helped me get up to speed with the complex topic,

providing me with detailed information and insights. She enthusiastically supported

my ideas, discussed different approaches with me and provided me guidance along

the way during our regular supervision meetings.

I would also like to thank my supervisor Professor Aksel Hiorth who quickly got me

and my fellow students up to speed with Python in our first semester in the

Computational Engineering program at the Department of Energy Resources. He

taught us the importance of proper code documentation in the various projects we

did. In my third semester he gave me the opportunity to experience this importance

from the perspective of a teaching assistant, helping the new students to get up to

speed with Python and correcting their projects.

Finally, I want to thank Statens vegvesen and Bernardo Morais da Costa for

supporting my work on this project. I hope future works on this topic will find my work

helpful.

IV

Table of Contents

List of Figures ... VII

List of Tables ... XIII

List of Abbreviations .. XIV

List of Symbols ... XV

List of Indices ... XVI

1 Introduction .. 1

1.1 The Lysefjord Bridge ... 2

1.1.1 Wind conditions in the surrounding area ... 7

1.1.2 Wind definitions ... 14

1.2 The data .. 16

1.2.1 Anemometers .. 16

1.2.2 Accelerometers ... 18

1.2.3 Instrumentation Layout .. 19

1.2.4 Data compilation ... 21

1.2.5 Data structure.. 22

1.3 Background information .. 24

1.3.1 Eigenfrequencies and eigenmodes ... 24

1.3.2 Wind load coefficients ... 26

1.3.3 Vortex shedding .. 28

1.4 Motivation .. 30

2 Method and design .. 31

2.1 Programming environment .. 31

2.2 Programming paradigms: Functional and object-oriented programming 32

2.3 Data structures: NumPy array VS pandas dataframe 33

V

2.4 Coding style and documentation ... 33

2.5 Main class structure .. 34

2.5.1 Pre-processing ... 35

2.5.2 Processing.. 35

2.5.3 Post-processing .. 43

3 Implementation .. 45

3.1 Class methods ... 45

3.1.1 convert_MATLAB .. 45

3.1.2 load_data .. 50

3.2 Quick start guide ... 52

3.2.1 Data import ... 52

3.2.2 Data processing .. 52

3.2.3 Saving and loading the state of a class instance 53

3.2.4 Data analysis .. 53

4 Analysis using this works code .. 55

4.1 Local wind conditions .. 55

4.1.1 Wind speeds and primary direction ... 55

4.1.2 Turbulence intensity .. 64

4.1.3 Angle of attack .. 71

4.2 Bridge response .. 86

4.2.1 Traffic response .. 86

4.2.2 Lateral wind response ... 87

4.2.3 Vertical wind response .. 94

4.2.4 Torsional wind response ... 102

5. Discussion .. 111

5.1 Conclusion .. 111

5.2 Comparison to relevant works ... 113

VI

5.3 Limitations of this work .. 115

5.4 Future work ... 116

5.5 Authors experience ... 116

References ... 117

Appendix... XVII

VII

List of Figures

Figure 1: Tacoma Narrows Bridge as the wind induced destruction is imminent [1] ... 1

Figure 2: Lysefjord Bridge North view at H11. Adapted from [4] 2

Figure 3: Lysefjord Bridge viewed from the West. Adapted from [5] 2

Figure 4: Map of the Stavanger and Lysefjord area. Adapted from [6] 3

Figure 5: Aerial footage of the Lysefjord Bridge. ... 3

Figure 6: Heavy industry route to Stavanger via Lysefjord Bridge and Ryfylke Tunnel.

Adapted from [8] ... 4

Figure 7: Heavy industry route to Stavanger via Lysefjord Bridge and Lauvvika-

Oanes Ferry. Adapted from [9] ... 5

Figure 8: Schematic of the Lysefjord Bridge (sideview from the West) [3, p. 3] 6

Figure 9: Girder cross section [7, p. 11] .. 6

Figure 10: Wind map of the area around the Lysefjord Bridge. Adapted from [11],

[12], [13], [14], [15], [16], [17] .. 8

Figure 11: Wind directions and monthly strength distribution at Forsand/Lysefjorden

(05/2012 - 02/2017) [11] ... 9

Figure 12: Wind directions and monthly strength distribution at Sola Airport (01/2002

- 04/2023) [14] .. 10

Figure 13: Wind directions and monthly strength distribution at Meling/Forsand

(04/2014 - 02/2017) [16] ... 10

Figure 14: Wind directions and monthly strength distribution at Stokkavika/Idse

(04/2014 - 05/2020) [15] ... 11

Figure 15: Wind directions and monthly strength distribution at Liarvatnet (04/2014 -

04/2023) [12] .. 11

Figure 16: Normalized mean horizontal wind velocity 60m above the surface

simulated with a direction of 168° (left) and 210° (right) at the inlet boundary [18, p.

10] .. 12

Figure 17: Normalized mean horizontal wind velocity 60m above the surface

simulated with a direction of 335° (left) and 355° (right) at the inlet boundary [18, p.

12] .. 13

VIII

Figure 18: Horizontal wind definitions in this work for a SSW (left) and NNE wind

condition (right) ... 14

Figure 19: Vertical wind definitions in this work for a positive (bottom) and negative

AOA (top). Adapted from [7, p. 11] .. 15

Figure 20: Anemometer mounting positions on a hanger (left) and on a pole on top of

the main cable (right) [7, p. 5] .. 17

Figure 21: Accelerometer mounting position inside the bridge girder [7, p. 6] 18

Figure 22: Girder cross section with accelerometers. Adapted from [7, p. 11].......... 18

Figure 23: Sensor naming convention. ... 19

Figure 24: Overview of the instrumentation of the Lysefjord Bridge in July 2017.

Adapted from [24, p. 3] ... 19

Figure 25: Location of anemometers H08Wb, H08Wt, H08E, H10W and H10E.

Adapted from [4] ... 20

Figure 26: Location of anemometers H18W and H18W. Adapted from [25] 20

Figure 27: Location of anemometers H20W and H24W. Adapted from [26] 21

Figure 28: Location of anemometer H24W. Adapted from [27] 21

Figure 29: Data structure of MATLAB files. .. 22

Figure 30: Identified eigenmode shapes from data (red dots) and models (lines).

Adapted from [20, p. 126] ... 25

Figure 31: Wind load coefficients of the Lysefjord Bridge girder. Adapted from [30, p.

11] .. 27

Figure 32: Illustration of vortex shedding at the bridge girder. Adapted from [7, p. 11]

 ... 28

Figure 33: Popularity of different programming languages [33] 30

Figure 34: Structure of a Jupyter Notebook in VSCode with markdown-, code- and

output-cells ... 31

Figure 35: BridgeData class overview showing the different methods defined in the

class. .. 34

Figure 36: One day of full detail horizontal wind speed data 36

Figure 37: Full detail max_by_std criteria study (600min - 610min) 37

Figure 38: Full detail horizontal wind speed (600min - 610min) 38

Figure 39: Full detail max_by_std criteria study (850min - 860min) 39

IX

Figure 40: Full detail horizontal wind speed (850min - 860min) 40

Figure 41: Full detail max_by_std criteria study (1050min - 1060min) 41

Figure 42: Full detail horizontal wind speed (1050min - 1060min) 42

Figure 43: Full detail studies of central vertical acceleration with random samples of

the max_by_std criteria .. 42

Figure 44: Lysefjord Bridge instrumentation layout from bridge_layout (top view) 43

Figure 45: Lysefjord Bridge instrumentation layout from bridge_layout (side view) .. 43

Figure 46: Code snippet of method convert_MATLAB, replace_invalid 45

Figure 47: Code snippet of method convert_MATLAB, ignore_nans 46

Figure 48: Code snippet of method convert_MATLAB, vector-decomposition.......... 46

Figure 49: Code snippet of method convert_MATLAB, Vx and Vy statistics 47

Figure 50: Code snippet of method convert_MATLAB, Dir_mean 47

Figure 51: Code snippet of method convert_MATLAB, AOA 48

Figure 52: Code snippet of method convert_MATLAB, turbulence intensity 48

Figure 53: Code snippet of method convert_MATLAB, central acceleration 49

Figure 54: Code snippet of method convert_MATLAB, theta.................................... 49

Figure 55: Code snippet of method convert_MATLAB, Upwind 50

Figure 56: Code snippet of method load_data, for-loop .. 50

Figure 57: Memory usage during batch import ... 51

Figure 58: Code snippet of method load_data, horizontal stacking 51

Figure 59: Maximum wind speeds at Sola observation station in 2018 [46] 55

Figure 60: Maximum wind speeds per anemometer at Lysefjord Bridge during 30

days in autumn 2018 .. 55

Figure 61: Combined wind rose on maximum wind speeds from all anemometers at

Lysefjord Bridge during 30 days in autumn 2018 .. 56

Figure 62: Combined wind rose on mean wind speeds from all anemometers at the

Lysefjord Bridge during 30 days in autumn 2018 .. 57

Figure 63: Histogram on mean wind direction .. 58

Figure 64: Wind roses on average wind speeds per anemometer, arranged by

position on the bridge ... 60

Figure 65: Histogram on average wind speeds for south-westerly wind 61

Figure 66: Histogram on average wind speeds for north-easterly wind 62

X

Figure 67: Histogram on horizontal turbulence intensity for south-westerly wind 64

Figure 68: Histogram on horizontal turbulence intensity for north-westerly wind 65

Figure 69: Wind rose on horizontal turbulence intensity, combined data from all

anemometers .. 67

Figure 70: Wind roses on horizontal turbulence intensity per anemometer, arranged

by position on the bridge... 68

Figure 71: Horizontal and vertical turbulence intensity at different horizontal wind

speeds .. 69

Figure 72: Correlation matrix between horizontal mean wind speed and turbulence

intensity per anemometer ... 70

Figure 73: Mean angle of attack wind rose combined from all anemometers 71

Figure 74: Histogram on mean angle of attack for south-westerly wind 72

Figure 75: Histogram on mean angle of attack for north-easterly wind 73

Figure 76: Mean angle of attack and vertical turbulence intensity at different wind

speeds .. 75

Figure 77: Mean angle of attack wind roses per anemometer, arranged by position on

the bridge.. 77

Figure 78: Polar scatterplots on mean angle of attack and horizontal wind speed per

anemometer, arranged by position on the bridge ... 79

Figure 79: Scatterplots on mean angle of attack and vertical turbulence intensity from

different directions per anemometer, arranged by position on the bridge 81

Figure 80: Hypothesis on wind flow causing high angles of attack at H18E from east

direction, top view. Adapted from [49] .. 82

Figure 81: Hypothesis on windflow causing high angles of attack at H18E from east

direction, view from the West. Adapted from [50] ... 83

Figure 82: Correlation matrix between mean horizontal wind speed and absolute

mean angle of attack per anemometer ... 84

Figure 83: Correlation matrix between absolute mean angle of attack and horizontal

turbulence intensity per anemometer ... 85

Figure 84: Maximum central vertical accelerations measured at the Lysefjord bridge

during 30-day period showing periodic response to traffic .. 86

XI

Figure 85: Lateral bridge response and turbulence intensity at different mean wind

speeds .. 87

Figure 86: Lateral bridge response normalized by turbulence intensity and turbulence

intensity at different mean wind speeds for south-westerly winds per accelerometer

pair ... 88

Figure 87: Lateral bridge response normalized by turbulence intensity and turbulence

intensity at different mean wind speeds for north-easterly winds per accelerometer

pair ... 88

Figure 88: Lateral bridge response and mean wind speed at different angles of attack

 ... 89

Figure 89: Lateral bridge response normalized by turbulence intensity and turbulence

intensity at different angles of attack .. 90

Figure 90: Correlation between mean wind speed and lateral bridge response per

anemometer and accelerometer ... 91

Figure 91: Correlation turbulence intensity and lateral bridge response per

anemometer and accelerometer ... 92

Figure 92: Correlation between absolute mean angle of attack and lateral bridge

response per anemometer and accelerometer ... 93

Figure 93: Vertical bridge response and turbulence intensity at different mean wind

speeds .. 94

Figure 94: Vertical bridge response normalized by turbulence intensity and

turbulence intensity at different mean wind speeds for south-westerly winds per

accelerometer pair .. 95

Figure 95: Vertical bridge response normalized by turbulence intensity and

turbulence intensity at different mean wind speeds for north-easterly winds per

accelerometer pair .. 95

Figure 96: Vertical bridge response and mean wind speed at different angles of

attack .. 96

Figure 97: Vertical bridge response normalized by turbulence intensity and

turbulence intensity at different angles of attack ... 97

Figure 98: Correlation between mean wind speed and vertical bridge response per

anemometer and accelerometer ... 98

XII

Figure 99: Correlation between turbulence intensity and vertical bridge response per

anemometer and accelerometer ... 99

Figure 100: Correlation between absolute mean angle of attack and vertical bridge

response per anemometer and accelerometer ... 100

Figure 101: Correlation between lateral and vertical wind response per accelerometer

 ... 101

Figure 102: Torsional bridge response and turbulence intensity at different mean

wind speeds .. 102

Figure 103: Torsional bridge response normalized by turbulence intensity and

turbulence intensity at different mean wind speeds for south-westerly winds per

accelerometer pair .. 103

Figure 104: Torsional bridge response normalized by turbulence intensity and

turbulence intensity at different mean wind speeds for north-easterly winds per

accelerometer pair .. 103

Figure 105: Torsional bridge response and mean wind speed at different angles of

attack .. 104

Figure 106: Torsional bridge response normalized by turbulence intensity and

turbulence intensity at different angles of attack ... 105

Figure 107: Correlation between mean wind speed and torsional bridge response per

anemometer and accelerometer ... 106

Figure 108: Correlation between turbulence intensity and torsional bridge response

per anemometer and accelerometer ... 107

Figure 109: Correlation between absolute mean angle of attack and torsional bridge

response per anemometer and accelerometer ... 108

Figure 110: Correlation between lateral and torsional wind response 109

Figure 111: Correlation between vertical and torsional wind response 110

Figure 112: Comparison of turbulence intensity at different wind speeds to E.

Cheynet’s work in 2016. Adapted from [20, p. 18] .. 113

Figure 113: Turbulence visualisation from this work (left) and E. Cheynet’s work in

2016 (right) [20, p. 136] .. 114

XIII

List of Tables

Table 1: Eigenfrequencies identified from the data by E. Cheynet. Adapted from [20,

p. 118] .. 25

Table 2: Critical resonance wind velocities for vortex shedding. Adapted from [20, p.

118] .. 29

Table 3: Comparison of statistics on mean wind speeds for south-westerly wind and

north-easterly wind ... 63

Table 4: Comparison of statistics on horizontal turbulence intensity for south-westerly

wind and north-easterly wind .. 65

Table 5: Statistical comparison of turbulence intensity between upwind and

downwind anemometers for south-westerly and north-easterly winds 66

Table 6: Comparison of statistics on mean angle of attack for south-westerly wind

and north-easterly wind .. 73

Table 7: Statistical comparison of mean angle of attack between upwind and

downwind anemometers for south-westerly and north-easterly winds 76

XIV

List of Abbreviations

The following abbreviations and acronyms are used in the data, code and

documentation of this work:

acc .. Accelerometer

anemo Anemometer

CFD Computational fluid dynamics

id ... Identification

IDE Integrated development environment

ind ... Index

key .. Key of a key-value pair in a dictionary

LFB Lysefjord Bridge

MATLAB Matrix laboratory

N/E/S/W North, East, South or West. Combinations possible.

NaN Not a number

NumPy Numerical Python

pandas Python Data Analysis Library, derived from panel data

PEP Python Enhancement Proposal

SSV Statens vegvesen

UiS .. Universitetet i Stavanger

VSCode Visual Studio Code

XV

List of Symbols

The following symbols are used in the data, code and documentation of this work:

 �ÿ/ÿ/Ā Wind load coefficient for drag, lift or moment ýÿ/ÿ/Ā Drag, lift or moment �ā Strouhal number �ÿ Resonance wind velocity Ā�...................... Vortex shedding frequency Āă Eigenfrequency

AOA_ Angle of attack, commonly incidence angle α

AOI_ Horizontal angle of incidence, commonly yaw angle β

Aox_ Lateral acceleration

Aoy_ Longitudinal acceleration

Aoz_ Vertical acceleration

Dir_ Wind direction, direction from which the wind is blowing, commonly Θ ℎ Height of the bridge girder

H/V/T|S/A|# Horizontal, vertical or torsional | (a)symmetric | eigenmode number #

H_ Horizontal wind component, commonly �

H|##|E/W|t/b Hanger | number ## | East or West | top or bottom

Hum_ Humidity

P_ Pressure

T_ Temperature

theta_ Torsional acceleration along the longitudinal axis (calculated), com. θ

Vx_ Lateral across-bridge wind component in x-direction

Vy_ Longitudinal along-bridge wind component in y-direction

W_ Vertical wind component � Mean wind speed Ā Width of the bridge girder � Air density

XVI

List of Indices

The following indices are used in the data, code and documentation of this work in

combination with some of the symbols from List of Symbols:

C Central acceleration (calculated)

E East side accelerometer

_max Maximum of 10-minute data package

_max_by_std Quotient of _max and _std

_mean Mean of 10-minute data package, commonly overlined, e.g. U

_min Minimum of 10-minute data package

_std Standard deviation of 10-minute data package, commonly σ

_turb Turbulence intensity of 10-minute data package, commonly Ā�
W West side accelerometer

1

1 Introduction

The collapse of the Tacoma Narrows Bridge in 1940 is a famous example for the

response of a mechanical structure to wind leading to its destruction. The still-frame

from Barney Elliott´s film-recording of the Tacoma Narrows Bridge in Figure 1 shows

the suspension bridge twisting in a torsional vibration mode in a dynamic response to

wind with speeds of up to 65 km/h.

Figure 1: Tacoma Narrows Bridge as the wind induced destruction is imminent [1]

While the bridge has been designed and built for a static wind force of 160 km/h, this

extreme dynamic response was unforeseen, as no dynamic analysis has been

carried out. [2, p. 4]

This shows the importance of analysing the wind response of a structure to prevent

over-stressing the structure.

<The Norwegian Public Road Administration is considering building

long-span floating suspension bridges in Western Norway to cross

deep fjords that are up to around 5 km wide. […] They are therefore

extremely wind sensitive structures which require a dedicated

investigation of wind-induced effects.= [3]

2

Understanding the wind field characteristics in the complex terrain of the fjords and

the wind response of a bridge is essential for those construction projects. Full-scale

monitoring of wind and wind response at existing bridges is carried out to help

understand these effects.

1.1 The Lysefjord Bridge

Figure 2: Lysefjord Bridge North view at H11. Adapted from [4]

Figure 3: Lysefjord Bridge viewed from the West. Adapted from [5]

The Lysefjord Bridge displayed in Figure 2 and Figure 3 is a suspension bridge

located at the entrance of the Lysefjord in South-Western Norway, as shown in

Figure 4 and Figure 5.

3

Figure 4: Map of the Stavanger and Lysefjord area. Adapted from [6]

Figure 5: Aerial footage of the Lysefjord Bridge.

Figure 5 shows an aerial photograph of the Lysefjord Bridge at the entrance to the

Lysefjord taken by the author.

4

The bridge is a critical transportation link in the region. It facilitates the transport of

goods and people from Stavanger to the municipality of Forsand and other

communities south of the Lysefjord and back. This includes heavy industry such as

the Norsk Spennbetong AS concrete plant and NCC Helle sandtak sand pit, as

depicted in Figure 6. [7, p. 3], [8]

Figure 6: Heavy industry route to Stavanger via Lysefjord Bridge and Ryfylke Tunnel. Adapted from [8]

Note that the Ryfylke Tunnel connecting Stavanger to Ryfylke first opened at the end

of 2019. Before the opening of the tunnel, the traffic across the bridge had to take the

Lauvvik-Oanes Ferry, as depicted in Figure 7.

5

Figure 7: Heavy industry route to Stavanger via Lysefjord Bridge and Lauvvika-Oanes Ferry. Adapted from [9]

While there is also a ferry quay directly in Forsand, enabling traffic to take other ferry

routes and by-passing the Lysefjord Bridge, it should be noted that ferry connections

have a limited capacity, run at a schedule and are less reliable, compared to a road

connection. The Lauvvika-Oanes ferry for example is currently discontinued. [10]

6

The bridge was built from 1995 to 1997 at a cost of 150 million Norwegian kroner. It

has a total length of 639 m with a main span of 446 m. The towers stand at a height

of 102.26 m. The main cables have a sag of 45 m, as depicted in Figure 8. [7, p. 3],

[3, p. 2]

Figure 8: Schematic of the Lysefjord Bridge (sideview from the West) [3, p. 3]

The bridge is asymmetric with the bridge deck support at a height of 52.36 m at the

north tower and 44.9 m at the south tower. The bridge girder is suspended from the

two main cables by 35 hanger pairs with a longitudinal distance of 12 m between

hanger pairs and 19 m between the outmost hangers and the towers. At mid-span,

hanger 18 (H18), the deck is suspended 53.37 m above the sea surface with the

main cables at their lowest point 3 m above the deck. The girder has a closed steel

cross section with a height of 2.76 m and width of 12.3 m, as depicted in Figure 9.

 [7, pp. 3,5], [3, p. 2]

Figure 9: Girder cross section [7, p. 11]

7

1.1.1 Wind conditions in the surrounding area

The wind in the area around the Lysefjord Bridge is highly influenced by the rough

terrain created by the mountains, valleys and fjords. Figure 11 - Figure 15 show the

wind directions and monthly strength distributions at different locations around the

Stavanger and Lysefjord area. Note that not all weatherstations have been actively

reporting data in the same time periods and are therefore not directly compareable.

Figure 10 shows a compilation of wind roses overlayed on an overview map of the

area. Note that there are currently no weather stations further to the East of the

bridge published on windfinder.com.

8

Figure 10: Wind map of the area around the Lysefjord Bridge. Adapted from [11], [12], [13], [14], [15], [16], [17]

9

The Forsand weather station depicted in Figure 11 has been the closest weather

station to the Lysefjord Bridge, about 2 km to the South of the bridge, at the entrance

to the Fjord.

Figure 11: Wind directions and monthly strength distribution at Forsand/Lysefjorden (05/2012 - 02/2017) [11]

Note that the high number of data showing winds of up to 1 m/s from direct North

visible in the wind rose might be outliers due to errors in the measurements or

averaging method and can be disregarded, as they are for very low windspeeds. The

primary wind directions at this weather station are therefore most likely NW and SE,

following the orientation of the foot of the mountain to the east. Figure 11 shows

relatively high windspeeds at Forsand, especially in the spring and autumn period

where more than 40% or even 60% of the wind respectively is recorded at over

4 m/s. This is relatively high, compared to the other weather stations. An exception to

this is the weather station at Sola Airport, which is depicted in Figure 12.

10

The weather station at Sola Airport depicted in Figure 12 is located about 20 km to

the West of the Lysefjord Bridge, directly at the Atlantic coast.

Figure 12: Wind directions and monthly strength distribution at Sola Airport (01/2002 - 04/2023) [14]

The primary wind directions at Sola Airport are NW and SSE. The wind strength

distribution is relatively consistent throughout the year with about 40% of the wind

recorded at over 4 m/s.

The Meling weather station depicted in Figure 13 has been the second closest

weather station to the Lysefjord Bridge, located on the NE-shore of the Høgsfjord,

about 5 km NW of the bridge.

Figure 13: Wind directions and monthly strength distribution at Meling/Forsand (04/2014 - 02/2017) [16]

Note that similarly to the weather station in Forsand there are possibly outliers

displaying a lot of wind from the North. This data can again be ignored. The primary

wind directions are therefore most likely SE and NW, following the orientation of the

shoreline. The wind speeds are below 4 m/s about 90% of the time from February to

October. In December about 20% of the wind speeds recorded are above 4 m/s.

11

The weather station in Stokkavika depicted in Figure 14 is located on the island of

Idse in the Høgsfjord, about 12.5 km NW of the Bridge.

Figure 14: Wind directions and monthly strength distribution at Stokkavika/Idse (04/2014 - 05/2020) [15]

The windspeeds are below 4 m/s about 95% of the time throughout the year and the

wind directions are variable with a slight tendency to a broad range of south-westerly

winds and a narrow band of NNW winds.

The weather station at Liarvatnet depicted in Figure 15 is about 14 km to the North of

the Lysefjord Bridge, in the valley of the Liarvatnet lake.

Figure 15: Wind directions and monthly strength distribution at Liarvatnet (04/2014 - 04/2023) [12]

The primary wind directions at Liarvatnet are SW and NE, which follows the

orientation of the valley. About 90% of the wind is below 4 m/s throughout the whole

year.

12

Computational fluid dynamics (CFD) simulations have been used in [18] to better

understand the influence of the terrain on the wind flow characteristics at the

entrance to the Lysefjord. Results from the CFD simulations with different wind

directions are displayed in Figure 16 and Figure 17.

Figure 16: Normalized mean horizontal wind velocity 60m above the surface simulated with a direction of 168°
(left) and 210° (right) at the inlet boundary [18, p. 10]

Figure 16 shows how a flow from south-easterly directions through the Høgsfjord can

turn to a flow from SSW when entering the Lysefjord. It should be noted that a CFD

simulation, such as any simulation or model, is only a model of reality that has its

limitations and cannot replicate reality in all its complexity. However, they can still be

useful.

<All models are wrong but some are useful= [19]

13

Figure 17: Normalized mean horizontal wind velocity 60m above the surface simulated with a direction of 335°
(left) and 355° (right) at the inlet boundary [18, p. 12]

Figure 17 shows how small changes in the wind direction at the inlet boundary can

create a recirculation zone in the Lysefjord north-east of the bridge. A detailed

description of the simulation and the results can be found in [18].

14

1.1.2 Wind definitions

Figure 18 illustrates the wind definitions in the horizontal plane used in this work for

SSW (left) and NNE wind conditions (right).

Figure 18: Horizontal wind definitions in this work for a SSW (left) and NNE wind condition (right)

The direction from the south tower (right) towards the north tower (left) is defined as

bridge north. Bridge north is offset from geographic north by about -42°. The direction

from which the horizontal wind component H is blowing from, measured from bridge

north, is defined as Dir from 0° to 360° in clockwise direction. The lateral component

of H along the x-axis of the bridge coordinate system is defined as Vx. The

longitudinal component along the y-axis is defined as Vy. Vx and Vy are defined

positive in the direction they are blowing to in reference to the bridge coordinate

system. This means that a wind from SSW has positive Vx and Vy and wind from

NNE has negative Vx and Vy.

Some wind engineering models assume a wind field that is coming in perpendicular

to the bridge’s primary axis. The deviation of the horizontal wind vector H from this

perpendicular direction is defined as the angle of incidence (AOI), in wind

engineering commonly referred to as the yaw angle. The AOI has no sign.

15

The vertical wind definitions used in this work for positive (bottom) and negative (top)

angle of attack (AOA) are depicted in Figure 19.

Figure 19: Vertical wind definitions in this work for a positive (bottom) and negative AOA (top). Adapted from
 [7, p. 11]

The wind vector is a combination of the horizontal component H and vertical

component W. W is defined as positive in positive z-direction (bottom) and negative

in negative z-direction (top). The angle between the horizontal x-y-plane of the bridge

coordinate system and the combined wind vector is the angle of attack (AOA). The

AOA is defined as positive for positive W and negative for negative W.

16

1.2 The data

A field measurement campaign on wind conditions and bridge response at the

Lysefjord Bridge by the research group from University of Stavanger started in 2013.

[3, p. 2]

The composition of the instrumentation on the bridge has developed over time. It

primarily consists of sonic anemometers mounted above the bridge deck and pairs of

accelerometers mounted inside the bridge girder.

1.2.1 Anemometers

The sonic anemometers used are 3D WindMaster Pro sonic anemometers from

Gill Instrument Ltd. The anemometers can measure wind speeds of up to 65 m/s in

all three directions, converted into horizontal and vertical wind components and wind

direction. On hanger 10 the anemometer is part of the Vaisala weather transmitter

WXT520 and measures horizontal wind speeds of up to 60 m/s and wind direction.

[7, pp. 3-6], [20, pp. 35-38], [21, p. 1], [22, pp. 25-27,140]

17

Figure 20: Anemometer mounting positions on a hanger (left) and on a pole on top of the main cable (right)
 [7, p. 5]

The anemometers are usually mounted on the hangers, as depicted in Figure 20

(left). Where this method would not position them high enough above the deck, the

anemometers are mounted on a pole above the main cable, as depicted in Figure 20

(right). Note that the anemometers are aligned with the bridge axis in a way that the

reported wind direction from the North is wind blowing from the north tower parallel

along the bridge towards the south tower. This direction is offset by -42° from

geographic North due to the bridge’s orientation.

18

1.2.2 Accelerometers

The accelerometers used are triaxial microelectromechanical silicon accelerometers

with a range of ±5g by Canterbury Seismic Instruments Ltd. [23]

The accelerometers are mounted inside the bridge girder as depicted in Figure 21.

Figure 21: Accelerometer mounting position inside the bridge girder [7, p. 6]

Figure 22 shows the position of the accelerometers in the girder cross section.

Figure 22: Girder cross section with accelerometers. Adapted from [7, p. 11]

The pairwise installation of the accelerometers allows the monitoring of torsional

accelerations (theta) along the bridge’s longitudinal axis (y-axis) in addition to the

central translational accelerations in lateral, longitudinal and vertical direction (Aox,

Aoy and Aoz). The lateral distance of the accelerometers is 7.15 m. [20, pp. 35-38]

19

1.2.3 Instrumentation Layout

The sensors’ positions are denoted as shown in the naming convention depicted in

Figure 23. Note that accelerometer pairs are denoted only by the hanger number.

Figure 23: Sensor naming convention.

Bottom row anemometers are mounted 6 m above the bridge deck while top row

anemometers are mounted 10 m above the bridge deck.

Figure 24 shows an overview of the instrumentation of the Lysefjord Bridge in July

2017.

Figure 24: Overview of the instrumentation of the Lysefjord Bridge in July 2017. Adapted from [24, p. 3]

Initially six anemometers have been fitted to the west side of the bridge at hangers

08, 16, 18, 20 and 24, denoted H08Wb, H16W, H18W, H20W and H24W, with the

weather station at H10W.

Four pairs of accelerometers have been installed at H09, H18, H24 and H30. Note

that in the MATLAB files the position of the accelerometer pair at H24 is mistakenly

denoted as H20. This mistake might have carried over in parts of this work during the

import of the MATLAB files. Any mentioning of H20 in reference to an accelerometer

is therefore to be interpreted as H24.

20

At hanger 08 an additional anemometer has been installed 10 m above the deck in

June 2014, denoted H08Wt. [7, pp. 3-6], [20, pp. 35-38]

In 2014 an additional anemometer has been installed on top of the north tower,

denoted N_Tower, which has been rendered un-operational in the same year.

In June 2017 additional anemometers have been installed on the east side of the

bridge at H08E, H10E and H18E. [7, pp. 3-6]

Figure 25, Figure 26, Figure 27 and Figure 28 show the anemometers mounted to

the bridge as of June 2022.

Figure 25: Location of anemometers H08Wb, H08Wt, H08E, H10W and H10E. Adapted from [4]

Figure 26: Location of anemometers H18W and H18W. Adapted from [25]

21

Figure 27: Location of anemometers H20W and H24W. Adapted from [26]

Figure 28: Location of anemometer H24W. Adapted from [27]

1.2.4 Data compilation

The sensors are connected to data acquisition units, which are connected to GPS

receivers, providing an accurate timestamp to the data. The data, which is collected

at a sample rate of 4 Hz, 32 Hz and 200 Hz by the weather station, anemometers

and accelerometers respectively, is then resampled by a central data acquisition unit

to 50 Hz. The central data acquisition unit outputs a single, synchronized, time-

aligned dataset for every 10 minutes. This dataset is stored locally and

simultaneously transferred to a server at University of Stavanger. [7, p. 7]

The 10-minute data packages of each day are compiled into a single MATLAB file. A

MATLAB file for one day has an average file size of about 1.2 GB.

22

1.2.5 Data structure

Figure 29 illustrates the data structure of the compiled MATLAB files.

Figure 29: Data structure of MATLAB files.

The first level of the data structure can be grouped into meta data, data from

anemometers, data from the weather station, data from accelerometers and data

from other sources, which are not discussed in this thesis. The meta data includes

information about the collected data such as timestamps as well as names of

anemometers and accelerometers according to the naming convention illustrated in

Figure 23. Measurements from anemometers include the horizontal wind component

(H), the vertical wind component (W) and the direction from which the wind is blowing

(Dir), as defined in 1.1.2 Wind definitions. Note that all wind measurements are in

23

reference to the bridge coordinate system, as the sensors are mounted on the

bridge. The bridge coordinate system can move translationally and rotationally

relative to the world coordinate system. The measurements from the weather station

include the temperature (T), pressure (P) and humidity (Hum). The measurements

from each accelerometer pair are split into measurements from the west side

accelerometer (_W) and east side accelerometer (_E) and into acceleration data in

x-, y- and z-direction (Aox, Aoy, Aoz) respectively. For measurements from

anemometers and accelerometers the measurements are stored in an array, or

matrix, in which the first axis, or dimension, splits the data into the measurements

from the different anemometers or accelrometers. The name of each anemometer or

accelerometer can be obtained from AnemoName or AnemoAcc respectively using

the index of this first axis. Note that this is not applicable to the weather station, as

there is only one sensor of that type installed on the bridge. The second axis splits

the data from that sensor into the 10-minute data packages. The final axis represents

a 10-minute-long time-series of measurements from the respective sensor, sampled

at 50 Hz.

24

1.3 Background information

Some background information from the wind engineering theory and previous works

on the Lysefjord Bridge is presented below. This background information is referred

to in 4 Analysis using this works code.

1.3.1 Eigenfrequencies and eigenmodes

Eigenfrequencies are also known as the natural frequencies of a structure, at which it

resonates with an external loading and, if undamped, starts to vibrate with steadily

increasing amplitude until the deformation of the structure surpasses its stress limits

leading to material failure. The shape of the deformation along a structure, at each

eigenfrequency, is characterised in terms of the associated. A structure can have

multiple symmetric and asymmetric eigenmode shapes. The true deformation might

be a combination of multiple modes. [28], [29]

The eigenfrequencies and eigenmodes of the Lysefjord Bridge have been identified

from the ambient vibration data and compared to those estimated using different

computational models by E. Cheynet in [20, pp. 116-127]

25

The eigenfrequencies identified from the data are depicted in Table 1.

Table 1: Eigenfrequencies identified from the data by E. Cheynet. Adapted from [20, p. 118]

Mode HS1 HA1 HS2 HA2 HS3 HA3 VA1 VS1 VS2 VA2 VS3 VA3 TS1 TA1

Hz 0.136 0.444 0.577 0.626 0.742 1.011 0.223 0.294 0.408 0.587 0.853 1.163 1.237 2.184

The first two symmetric and asymmetric eigenmode shapes for horizontal and vertical

for horizontal and vertical vibrations, as well as the first symmetric and asymmetric

eigenmode shape for torsional vibrations are depicted in Figure 30.

Figure 30: Identified eigenmode shapes from data (red dots) and models (lines). Adapted from [20, p. 126]

26

1.3.2 Wind load coefficients

The wind load coefficients for the drag (�ÿ), lift (�ÿ) and moment (�Ā) of the girder

cross section have been determined at different AOAs in wind tunnel testing.

The load coefficients are calculated from the respective measured forces ýÿ, ýÿ and ýĀ on the bridge girder cross section using the equations below: �ÿ = ýÿ12 ��2ℎ

�ÿ = ýÿ12 ��2Ā

�Ā = ýĀ12 ��2Ā2

in which � is the air density, � is the mean wind speed, ℎ is the height of the bridge

girder and Ā is the width of the bridge girder. [30, pp. 4-10]

27

Figure 31 displays the results from the wind tunnel testing as the measured

datapoints for the drag coefficient (blue circles), lift coefficient (orange stars) and

moment coefficient (yellow square).

Figure 31: Wind load coefficients of the Lysefjord Bridge girder. Adapted from [30, p. 11]

In the so-called quasi-steady theory of wind loading and the corresponding numerical

simulations a linear relation between AOA and the wind load coefficients, as

illustrated in Figure 31, is assumed. The model assumption is illustrated by dashed

lines, which are superimposed tangents at 0° AOA for the moment coefficient and lift

coefficient and a horizontal line for the drag coefficient. Note that these are for

illustrative purposes, the actual models might differ. While this linearity assumption is

accurate enough at small AOAs, close to 0°, it leads to over- or underestimations in

the wind response at higher positive or negative AOAs. From Figure 31 we see that

the linearity assumption is accurate enough from about -15° to +5° for the lift

coefficient, from about -12° to +5° for the moment coefficient and from about -8° to 0°

for the drag coefficient.

28

1.3.3 Vortex shedding

Vortex shedding is a phenomenon in which the airflow detaches from both sides of a

structure, with oppositely rotating vortices alternatingly shed from each side of the body,

creating what is known as a Kármán vortex street, as depicted in Figure 32.

Figure 32: Illustration of vortex shedding at the bridge girder. Adapted from [7, p. 11]

These vortices create a harmonically varying force on the structure, primarily

perpendicular to the wind direction with a distinct frequency of the vortex shedding.

The shedding frequency Ā� is Ā� = �ā �ℎ

Where � is the mean wind speed, ℎ is the height of the bridge girder and �ā is the

Strouhal number, which depends on the geometry of the structure and the Reynolds

number. [2, pp. 59-60], [31, p. 5]

The Reynolds number, which captures the ratio between the inertia and the viscosity

forces in the flow, has a smaller effect on the vortex shedding process for bodies with

sharp edges, such as the girder of the Lysefjord Bridge. At a girder width to height

ratio close to 4.5, which is the case at the Lysefjord Bridge, the Strouhal number can

be assumed as 0.11. [2, p. 60], [32]

If the shedding frequency is close to one of the eigenfrequencies of the structure Āă this creates resonance, activating an eigenmode of the structure. The resonance

wind velocity �ÿ is therefore �ÿ = Āă ℎ�ā
[31, pp. 3, 5]

29

J. Tveiten has calculated critical wind velocities for vortex induced vibrations at

5.4 m/s, 7.6 m/s and 10.2 m/s, depending on the eigenmode, in [2, p. 61]

Using the eigenfrequencies for vertical modes identified by E. Cheynet from

Table 1 and the equation from above we can calculate the respective resonance

wind velocities depicted in Table 2.

Table 2: Critical resonance wind velocities for vortex shedding. Adapted from [20, p. 118]

Mode VA1 VS1 VS2 VA2 VS3 VA3

Eigenfrequency [Hz] 0.223 0.294 0.408 0.587 0.853 1.163

Resonance wind velocity [m/s] 5.6 7.38 10.24 14.73 21.4 29.18

30

1.4 Motivation

The continues measurements since 2013 are now, almost 10 years later, equivalent

to multiple terabytes of data. The data from the daily MATLAB files can be analysed

directly in MATLAB, which has successfully been demonstrated in previous works in

the department of Department of Mechanical and Structural Engineering and

Materials Science at UiS in [20], [7] and [3]. However, the open-source programming

language Python has become one of the most popular programming languages in

recent years, as depicted in Figure 33.

Figure 33: Popularity of different programming languages [33]

The open-source nature of Python and easy syntax provides opportunities to

examine the data from a different perspective.

Research questions are related to the complex wind flow in the terrain surrounding

the Lysefjord Bridge and the response of the bridge to the wind. Analysing datasets

of multiple days in a consistent manner could help to answer these questions.

31

2 Method and design

The first goal of this work is to create a tool for detailed, consistent data analysis of

multiple days of data from the Lysefjord Bridge using Python. The second goal is to

demonstrate the code by using it to perform analysis on a dataset of a selected

period, focusing on the local wind conditions at the Lysefjord Bridge and the bridge’s

response to different wind conditions.

2.1 Programming environment

Python has been chosen as the programming language for this work for its great

readability and easy syntax allowing fast development of the code as well as

open-source nature and extendibility, which are just a few reasons for its recent

popularity. [34]

The code is written in a Jupyter Notebook, which allows to split the code into multiple

code cells, have the output appear in an output cell right after each code cell and add

markdown cells, as depicted in Figure 34.

Figure 34: Structure of a Jupyter Notebook in VSCode with markdown-, code- and output-cells

32

The markdown cells can be used as explanatory text with formatting and as headings

with different levels to group code cells together and give the notebook a structure.

[35]

The integrated development environment (IDE) used is Visual Studio Code

(VSCode).

2.2 Programming paradigms: Functional and object-oriented programming

A combination of functional and class-based object-oriented programming is used.

<Functional programming decomposes a problem into a set of

functions.< [36]

Functions are defined to solve a type of problem, taking inputs, processing them and

returning outputs. They can later be called to solve a specific problem, by giving them

specific inputs so they return specific outputs.

<Object-oriented programs manipulate collections of objects. Objects

have internal state and support methods that query or modify this

internal state in some way.< [36]

An object can be an instance of a class, giving it the internal structure of that class.

<Classes provide a means of bundling data and functionality

together. Creating a new class creates a new type of object, allowing

new instances of that type to be made. Each class instance can have

attributes attached to it for maintaining its state. Class instances can

also have methods (defined by its class) for modifying its state.= [37]

A function inside a class is called a method of that class. Two different instances of a

class have the same internal structure and methods of that class available but can

have a different internal state.

33

In this work a class is defined to handle data from the Lysefjord Bridge of multiple

dates. The functionality is contained in the methods of that class. An instance of that

class is created with data from a given set of dates. The methods of the class are

used to manipulate the internal state of that class instance, processing the data. This

ensures that two different instances of the class, handling two different periods of

data, have the same internal structure and the data can be processed in a consistent

manner.

2.3 Data structures: NumPy array VS pandas dataframe

There is a powerful dedicated data analysis library for Python called pandas, which

stores data in dataseries and dataframes. While pandas has a lot of inbuilt

functionality for data analysis, it was deliberately decided to not use this library for

this project. This is because this added functionality, such as explicit indexing,

considerably slows down the data processing, compared to implicitly indexed NumPy

arrays. It should be noted that this increased performance for NumPy arrays only

holds up to datasets with about 50k columns, after which pandas performs better for

some operations. On datasets of more than about 500k columns pandas outperforms

Python on most operations. However, the bridge data in this work is by default down-

sampled to 144 samples per day by taking statistical metrics of each 10-minute data

package. Therefore, analysing up to 1 year of data, equating roughly 50k rows, still

benefits from the higher performance of NumPy arrays. Additionally, NumPy arrays

consume less than half the memory of an equally sized pandas dataframe. [38], [39],

[40]

This however means that special care had to be taken to keep the data in the

different arrays aligned.

2.4 Coding style and documentation

The coding style and the documentation of the code is based on the Python

Enhancement Proposal (PEP) <PEP 8 – Style Guide for Python Code= [41]. The

docstrings for the class and its methods are based on <PEP 257 – Docstring

Conventions= [42], the NumPy style guide [43] and the pandas docstring guide [44].

Some of the potential invalid inputs are directly handled by raising exceptions,

informing the user of the corrective measures necessary.

34

2.5 Main class structure

In this work a class called BridgeData, containing most of the functionality in its

methods, is defined. In the initialisation of an instance of that class parameters for the

data, the design of the bridge and sensor ranges are defined. While the code is

specifically tailored to the Lysefjord Bridge, this design allows it to be adapted to a

different bridge where similar data might be collected.

The class is engineered in a modular design to allow for expendability. The methods

for processing the data can be split into methods for pre-processing, processing and

post-processing, as depicted in Figure 35.

Figure 35: BridgeData class overview showing the different methods defined in the class.

The class-methods can be divided into secondary helper-methods and primary

methods. Primary methods can either stand on their own or act as a wrapper-method

that makes use of one or more helper-methods. Primary methods are designed to be

called directly by the user. Secondary methods can technically also be called by the

35

user but might be less relevant. The methods are designed to be flexible, giving the

user options in the analysis, while also providing a suitable default configuration.

In the following some of the methods for pre-processing, processing and

post-processing are roughly described to illustrate the class structure and general

workflow. Further details and explanations can be found in section 3 Implementation,

in the code documentation, the docstrings for each method and the code itself, which

can be found in the appendix.

2.5.1 Pre-processing

The pre-processing consists of the helper-methods convert_MATLAB and

define_units as well as the wrapper-method load_data.

convert_MATLAB converts MATLAB data of a single day into NumPy arrays and

dictionaries of NumPy arrays. By default, the data is down-sampled to 144 samples

per day by taking the mean (_mean), standard deviation (_std), maximum (_max)

and minimum (_min) of each 10-minute data package. Readings that are outside the

sensors’ ranges are by default replaced by Not a Number (NaN) and ignored in the

down-sampling. Additional features such as AOA, AOI, turbulence intensity (_turb) as

well as central acceleration (_C_) and torsional acceleration (theta_) are engineered

from the measurements.

define_units defines the units of each measurement and by default converts the

accelerometric data from µG to
ms2.

load_data loads and combines data from one or multiple days using the previous

helper-methods. This is the primary function that gets called by the user to

pre-process data from a specific set of dates.

2.5.2 Processing

The processing consists of the helper-methods find_invalid_sensors,

remove_invalid_sensors, idx_data and the wrapper-method clean_data. These

methods are used for data cleaning. The data cleaning process can be divided into

two steps. Firstly, sensors that have by default more than 50% invalid data are

marked as invalid and removed from the cleaned dataset using find_invalid_sensors

and remove_invalid_sensors. This threshold can be adjusted by the user. Invalid

data can be NaNs, zeros or values above or below a certain threshold, depending on

36

the measurement type. Secondly, invalid data from the remaining sensors is indexed

using idx_data and removed from the cleaned dataset. Note that if there is invalid

data for a single measurement type from a single sensor, all readings from all other

sensors are also marked as invalid and removed to keep the data aligned. Additional

methods that are useful for the preparation of visualisations are get_ok_sensor_ind,

find_common_ok_sensors, find_traffic, feature_time and filter_data.

get_ok_sensor_ind and find_common_ok_sensors are useful methods to select the

right sensors for visualisations. feature_time creates time arrays in days, hours,

minutes and seconds, starting at 0, for plotting of time-series data. filter_data allows

sophisticated filtering of the data returning indices of the filtered data. It also allows

combining the filter with indices of previously filtered data to apply multiple filters to

the data at once.

For some analysis it is important to be able to separate wind induced vibrations of the

bridge from traffic induced vibrations. Sophisticated methods for the identification of

traffic induced vibrations are discussed in [24].

For this work a simple approach has been chosen, where the maximum vertical

acceleration of each 10-minute data package is divided by the standard deviation of

the vertical acceleration, resulting in the new measurement statistic _max_by_std.

The vertical acceleration and wind speed data have been studied with full_detail set

to True, as depicted in Figure 36 - Figure 43.

Figure 36 shows the full detail horizontal wind speed data for one day of data.

Figure 36: One day of full detail horizontal wind speed data

37

The data shows a horizontal wind speed mostly below 11 m/s in the first half of the

day and reaching wind speeds above 17 m/s after about 13 hours or 780 minutes

and mostly subsiding below 17 m/s at about 22 hours or 1320 minutes.

Figure 37 shows the central vertical acceleration data between minutes 600 and 610.

Note that the naming error for accelerometer pair H24 mentioned in 1.2.3

Instrumentation Layout might be carried over in some of the illustrations below. Any

mentioning of H20 in reference to an accelerometer is to be interpreted as H24.

Figure 37: Full detail max_by_std criteria study (600min - 610min)

The respective calculation of maximum, standard deviation and the max_by_std

criteria for each sensor in the given time period are below the plots and marked on

each sensors plot according to the color code. The acceleration data shows four

sharp patterns of clearly traffic induced vibrations at about 602.5 minutes, 603.5

minutes, 605.5 minutes and 607 minutes across all sensors. The max_by_std criteria

is well above 8 across all sensors.

38

Figure 38 showcases that windspeeds were relatively low in the relevant period.

Figure 38: Full detail horizontal wind speed (600min - 610min)

39

Figure 39 shows the acceleration data between minutes 850 and 860.

Figure 39: Full detail max_by_std criteria study (850min - 860min)

The acceleration data shows vibrations with higher amplitudes throughout the period,

compared to the previous period, and a potential traffic induced vibration at about

855.5 minutes. The max_by_std criteria is below 6 at H09, between 6 and 8 at H18

and H24 and well above 8 at H30.

Figure 40 showcases that windspeeds are between 11 m/s and 17 m/s throughout

most of the period and even peaking above 17 m/s around the time of the potential

traffic induced vibration.

40

Figure 40: Full detail horizontal wind speed (850min - 860min)

This represents an edge case, where it is unclear if the vibrations in the period are

traffic dominated or wind dominated.

41

Figure 41 shows the acceleration data between minutes 1050 and 1060.

Figure 41: Full detail max_by_std criteria study (1050min - 1060min)

The acceleration data shows vibrations with even higher amplitudes throughout this

period, compared to the previous periods. There is no clear sign of traffic induced

vibrations. The max_by_std criteria is well below 6 across all sensors.

42

Figure 42 showcases that the wind speed is well above 17 m/s throughout most of

the period.

Figure 42: Full detail horizontal wind speed (1050min - 1060min)

This period is clearly a case of wind dominated vibrations.

Random 10-minute periods have been examined throughout the day in a similar way.

A compilation of the results is showcased in Figure 43.

Figure 43: Full detail studies of central vertical acceleration with random samples of the max_by_std criteria

The sampled 10-minute periods are color-coded according to the respective result for

the max_by_std criteria. These studies lead to the conclusion, that wind dominated

43

bridge responses have a vertical max_by_std value below 6 and traffic dominated

bridge responses have a vertical max_by_std value above 8. max_by_std values

between 6 and 8 are inconclusive edge cases, where the period can not be clearly

classified as traffic dominated or wind dominated. The method find_traffic therefore

uses a default lower threshold of 8 for the max_by_std criteria to find traffic

dominated periods in the data, using the idx_data method. This threshold can be

adjusted by the user.

2.5.3 Post-processing

bridge_layout creates an overview of the bridge illustrating the instrumentation layout

for the chosen dates, as depicted in Figure 44 and Figure 45.

Figure 44: Lysefjord Bridge instrumentation layout from bridge_layout (top view)

Figure 45: Lysefjord Bridge instrumentation layout from bridge_layout (side view)

Note that these layouts are for illustrative purposes only and not to be used as an

engineering model.

The methods plot_data, hist, scatterplot, polar_scatterplot, windrose, hist2d, boxplot

and correlation_matrix are designed similarly for a consistent visualisation of data

from the Lysefjord Bridge. They take raw or processed data and create time-series

44

plots, histograms, scatterplots, polar scatterplots, wind roses, 2-dimensional

histograms, boxplots or a heatmap of a correlation matrix respectively. In most of the

methods it is possible to either display data for a measurement type combined from

all sensors, or split it up, creating a visualisation per sensor. This allows comparisons

of behaviours along the bridge span and on the upwind versus the downwind side of

the bridge.

45

3 Implementation

The following Python libraries are used to implement the functionality of the class

methods: numpy for mathematical operations and handling, transforming and

shaping the data arrays, scipy to read MATLAB files and perform curve-fitting,

matplotlib for most visualisations, seaborn for heatmaps of correlation matrices,

windrose for wind roses and gc for garbage collection to free up memory.

3.1 Class methods

In this section the implementation of some of the class methods is explored and

explained. To examine the full implementation of all methods, refer to the full

documented code in the appendix.

3.1.1 convert_MATLAB

Data outside the sensor range for anemometers and accelerometers, specified by

anemo_range and acc_range, is by default considered invalid and replaced with NaN

in the method convert_MATLAB, as depicted in Figure 46.

Figure 46: Code snippet of method convert_MATLAB, replace_invalid

Note that the acc_range is given in G and therefore needs to be converted to µG by

multiplying with 1e6.

The data is by default then down sampled to 144 samples per day, unless full_detail

is set to True. This is achieved by calculating the statistics mean, std, min and max

for each 10-minute data package of each measurement. There are two methods

implemented to calculate the statistics. By default np.nanmean is used to calculate

the mean of a 10-minute data package, as depicted in Figure 47, which ignores

NaNs.

46

Figure 47: Code snippet of method convert_MATLAB, ignore_nans

Note that the calculations are performed along axis 2, meaning that they are

performed for all sensors and all 10-minute data packages simultaneously,

showcasing the strength of array operations using NumPy, compared to running a

double for-loop over all sensors and all data packages for example.

Also note how the calculations for a given measurement, H or W for example, are

only performed if the respective variable is set to True. While this is the default for all

measurements, it allows the user to de-select measurements that are not relevant for

their analysis to save memory and speed up the processing.

If ignore_nans is set to False, np.mean is used instead to calculate the mean of a 10-

minute data package, which sets the value for that mean to NaN if there is at least

one NaN value in the 10-minute data package. np.nanstd, np.nanmin and np.nanmax

or np.std, np.min and np.max are used similarly.

The statistics for the direction cannot be calculated directly in the same manner, as

for example taking the mean of 30° and 350° in that way would give a result of 190°,

although the correct mean is 10°. This is due to the 360° - 0° discontinuity. To avoid

this issue, the horizontal wind vector, defined by the horizontal wind component and

direction, is de-composed into wind in x-direction and y-direction according to bridge

coordinates, denoted vx and vy, using vx = 2sin(Dir ∙ H) and vy = 2cos(Dir ∙ H), as

depicted in Figure 48.

Figure 48: Code snippet of method convert_MATLAB, vector-decomposition

47

Note the minus sign at the front of the equation. This is to keep the orientation of vx

and vy consistent with the definition in Figure 18. Also note that the direction in

degrees has to be converted to radians for the trigonometric functions in NumPy

using np.deg2rad.

The mean of Vx and Vy is calculated separately, as depicted in Figure 49.

Figure 49: Code snippet of method convert_MATLAB, Vx and Vy statistics

Note that these calculations are also performed if Dir or Upwind are selected, even if

Vx or Vy are de-selected, as these measurements are dependent on the statistics of

Vx and Vy.

From these mean wind vectors in x- and y- direction the actual mean-direction is

calculated using the np.arctan2 function and modulo operator (%), as depicted in

Figure 50.

Figure 50: Code snippet of method convert_MATLAB, Dir_mean

Note that np.arctan2 returns the arctangent, < [&] choosing the quadrant correctly

[&] so that arctan2(x1, x2) is the signed angle in radians between the ray ending at

the origin and passing through the point (1,0), and the ray ending at the origin and

passing through the point (x2, x1).= [45] Note that this requires the first argument to

be the y-coordinate and the second argument to be the x-coordinate. [45] By

reversing the arguments, giving the x-coordinate to the first argument (x1) and the

y-coordinate to the second argument (x2), we get the angle between the ray passing

through the origin and the point (0,1) and the ray passing through the origin and the

48

point (y,x). Therefore 0° will be at the top of the wind rose, instead of at the East

position.

np.rad2deg converts the radians back to degrees, giving a result of -180° to +180°.

Adding 360° and applying the modulo operator, which returns the remainder of the

division by 360°, converts the result to a range of 0° to 360°. Adding another 180°

reverses the minus sign applied in the vector-decomposition and ensures the correct

direction, from which the wind is blowing, is preserved.

The AOA is calculated using AOA = tan21(��), as depicted in Figure 51.

Figure 51: Code snippet of method convert_MATLAB, AOA

The turbulence intensity (_turb) describing the relative wind variability for each wind

component is calculated in this work by dividing the standard deviation of each

component by the combined mean wind vector magnitude, as depicted in Figure 52.

Figure 52: Code snippet of method convert_MATLAB, turbulence intensity

The code for H_turb for example can be translated into the equation ÿāĂÿĀ = ÿĀāĂ√ÿþăÿÿ2 + �þăÿÿ2

Note that the commonly used definition of turbulence intensity slightly differs from the

way it is implemented in this work, considering the standard deviation along and

across a mean wind vector, as described in [20, pp. 12-14].

49

The central accelerations Aox_C, Aoy_C and Aoz_C are calculated from the

east- and west- accelerometer of each accelerometer pair using � = �+Ā2 , as

depicted in Figure 53.

Figure 53: Code snippet of method convert_MATLAB, central acceleration

Note that for accelerometer data an additional statistic _max_by_std is calculated.

This quotient of _max and _std is later used to find bridge responses to

traffic-dominated periods in the accelerometer data and separate it from responses to

wind-dominated periods, as described in 2.5.2 Processing.

The torsional accelerations are calculated using �ℎÿ�ÿ = �ÿ�21(�2Ā�_Ă�Āā_ĄÿĀþ_āăÿāăÿý�ÿă) ,

as depicted in Figure 54.

Figure 54: Code snippet of method convert_MATLAB, theta

Note that the original data is in µþ and needs to be converted to
þĀ2 by multiplying with

self.g and 1e-6 to obtain
ÿÿĂĀ2 , which is then converted to

°Ā2 using np.rad2deg.

50

The names of the anemometers, saved in the anemo_names meta data, is used to

determine if a sensor is up- or downwind for a given measurement, depending on the

wind direction, as depicted in Figure 55.

Figure 55: Code snippet of method convert_MATLAB, Upwind

Similarly, the hanger number, y-position and information if an anemometer is on the

West or East side of the bridge and if it is on the top or bottom row is determined

from the anemometer name and encoded for each datapoint.

3.1.2 load_data

Data for one or multiple days is loaded using the load_data method. This method first

uses the scipy.io.loadmat function to load the MATLAB file for one day and then the

convert_matlab method to pre-process it. This is repeated for further days in a

for-loop as a form of batch-processing, as depicted in Figure 56.

Figure 56: Code snippet of method load_data, for-loop

This is necessary because the MATLAB files loaded via scipy.io.loadmat take up a

lot of memory.

51

Through the use of batch-processing, temporary data can be cleaned up using del

and the garbage collector function gc.collect(), as depicted in Figure 57.

Figure 57: Memory usage during batch import

Figure 57 shows how the memory usage is reduced by using batch-processing to

import the data. Each day of MATLAB data is processed sequentially in a for-loop.

Temporary data variables are created for each day. These are deleted before moving

on to the next step in the import pipeline, to free up memory for processing of the

next day. This keeps the memory usage at a relatively constant level.

The temporary data arrays are stacked to the existing data arrays horizontally, as

depicted in Figure 58.

Figure 58: Code snippet of method load_data, horizontal stacking

If a measurement type was not available in previous days, the data from those days

is engineered as zeros to keep all data synchronized.

After the batch-processing the method define_units is called to define the units of the

loaded measurements and by default convert accelerations to
þĀ2.

52

3.2 Quick start guide

In the following a quick start guide is provided on how to use the BridgeData class

and its methods to import MATLAB bridge data, process it and visualize it. This only

covers the basics and aims to encourage the user to explore how to perform more

detailed analysis. It is encouraged to refer to the documentation for the class

methods by using the help(class.method) function and explore the documented

example code in the appendix as well as the example analysis performed in

4 Analysis using this works code.

3.2.1 Data import

Firstly, an instance of the BridgeData class needs to be initialized. In the example

below an instance called LFB is created:

file_path = '../Data/Bridge/dataExtracted/'

file_names = ['dataExtracted_2018_09_18.mat','dataExtracted_2018_09_19.mat']

LFB = BridgeData(file_names=file_names,file_path=file_path)

The BridgeData class requires a file path relative to the location of the notebook to

where the MATLAB data is stored and a list of names for the files to import. Once the

class instance is initialized as LFB, the MATLAB data can simply be loaded into the

class instance with the code below:

LFB.load_data()

Use the following line of code to access the documentation of load_data and find out

more about the import options:

help(BridgeData.load_data)

Once the data is loaded, it can be processed and analysed.

3.2.2 Data processing

Use the line of code below to clean the data:

LFB.clean_data()

Note that the cleaned data is stored in class variables with the suffix _cleaned, such

as anemo_cleaned and acc_cleaned.

The following line of code can be used to create time arrays for time series analysis:

LFB.feature_time(cleaned=False)

This creates the class variables LFB.days, LFB.hours, LFB.minutes, and

LFB.seconds. Note that the keyword cleaned needs to be set to True or False

accordingly, depending on which type of data is to be analysed with it.

53

The following line of code can be used to classify the data into data that is traffic- or

wind-dominated:

LFB.find_traffic(traffic_thresh=8)

The find_traffic method uses a threshold traffic_thresh for the max_by_std criteria

discussed in 2.5.2 Processing. The classification is stored in the class variable

LFB.traffic.

The filter_data method can be used to filter the data, as in the code below:

filter_idxs = LFB.filter_data(LFB.anemo['H_mean'], hp_cutoff=8, highpass=True)

Note that this only creates the indices filter_idxs of data applying to that filter, in this

case mean horizontal wind speed measurements above 8 m/s. These filter indices

need to be applied to the data in the visualisation to see the filter in effect. This can

be done as showcased in the code below:

filtered_data = LFB.anemo['H_mean'].T[filter_idxs].T

Note how the array of anemometer data needs to be transposed using the .T

operation before applying the filter indices and transposed back to its original shape

afterwards using another .T operation. This is also the case for accelerometer data,

but not for weather data or time arrays created by LFB.feature_time, as they are of

lower dimension.

3.2.3 Saving and loading the state of a class instance

A class instance with the name LFB can be saved in its current state, including

imported and processed data, using the dump function of the dill module, as in the

example below:

dill.dump(LFB,file=open('Your/File/Path/YourFileName','wb'))

Reversely, a previously saved class instance state can be loaded using load function

as in the code below:

LFB = dill.load(open('Your/File/Path/YourFileName','rb'))

This is especially useful when you want to come back to the analysis of a larger

dataset, where re-importing the data would take up considerable amounts of time.

3.2.4 Data analysis

As described in 2.5.3 Post-processing, there are multiple methods implemented for

the analysis of the data. The code below shows a simple example to plot the

time-series data on H_mean with days on the x-axis:

LFB.plot_data(LFB.days,LFB.anemo['H_mean'],ylabel='H_mean',

yunit=LFB.units['H_mean'],xlabel='days',labels=LFB.anemo_names)

54

The visualisation methods are designed with a similar structure, sharing some of their

functionality and the respective keywords to interact with them. To examine some

more complex implementations of visualisations study the documented example

code in the appendix. The visualisation methods of the BridgeData class are based

on the default visualisation methods from the matplotlib library. However, they are

optimized for a consistent visualisation of the bridge data. Nonetheless any of the

standard methods from the matplotlib library or any other library can be used to

visualise and analyse the data. This includes statistical analysis using the numpy and

scipy libraries.

Tip: Should your Jupyter Notebook display graphical bugs upon opening, click

Clear All Outputs, save it, close it and re-open it. Then run the code again from the

top.

55

4 Analysis using this works code

In the following section 30 days of data are analysed using the developed code. The

data is from 18th September 2018 until 18th October 2018. Further visualisations can

be found in the code in the appendix.

4.1 Local wind conditions

This specific period has been chosen for its high maximum wind speeds at Sola

observation station from data published for 2018 on Yr.no, as depcited in Figure 59.

Figure 59: Maximum wind speeds at Sola observation station in 2018 [46]

The strongest gust of that year has been recorded at about 29.4 m/s on

21st September. [46]

4.1.1 Wind speeds and primary direction

Maximum wind speeds H_max have been gusting up to 35 m/s at the Lysefjord

Bridge in this period, as depicted in Figure 60.

Figure 60: Maximum wind speeds per anemometer at Lysefjord Bridge during 30 days in autumn 2018

In the chosen period maximum wind speeds above 11 m/s have been recorded for

multiple days at a time. Note that there is missing data on the 21st day of this period.

56

The primary wind directions at the Lysefjord Bridge during this period are NNE and

SSW, as can be seen in the wind roses in Figure 61 and Figure 62.

Figure 61: Combined wind rose on maximum wind speeds from all anemometers at Lysefjord Bridge during 30
days in autumn 2018

The two primary wind directions are from here on referred to as north-easterly (NE)

wind for winds coming from anywhere NE of the bridge, meaning from -42° to 138° in

geographic coordinates or 0° to 180° in bridge coordinates, and south-westerly (SW)

wind for winds coming from anywhere SW of the bridge, the remaining half of the

wind rose.

57

Note that the wind rose in Figure 62 displays the mean wind speeds H_mean of each

10-minute data package instead of the maximum wind speeds H_max displayed in

Figure 60 and Figure 61. The mean wind speeds described the average wind

condition while the maximum wind speeds describe the gusts.

Figure 62: Combined wind rose on mean wind speeds from all anemometers at the Lysefjord Bridge during 30
days in autumn 2018

The wind roses in Figure 61 and Figure 62 show, that there are slightly stronger

average winds and gusts from SSW compared to average winds and gusts from

NNE. We see that there is a significant angle of incidence, or yaw angle, of up to

about 48° for most winds from south-westerly direction and up to about 25° for most

winds from north-easterly direction.

58

The histogram in Figure 63 is displaying the wind direction referring to bridge North,

which is offset by -42° from geographic North.

Figure 63: Histogram on mean wind direction

As expected, the histogram displays a bi-polar distribution. There is slightly more

data with wind from SSW than wind from NNE in the 30 days period. The bins in

Figure 63 have a width of 5°. When accounting for bins that make up more than 0.6%

of the data, the wind from SSW is in the range of about 205° to 295° while the wind

from NNE is in the range of about 45° to 120°. This gives the winds from SSW a

broader bandwidth of about 90°, compared to the bandwidth of winds from NNE,

which have a slightly narrower bandwidth of about 75°. This makes sense, as the

wind is more confined by the walls of the fjord when coming from NNE, compared to

the more open terrain when coming from the entrance to the fjord from SSW. Note

that the distribution of wind from SSW is prominently bi-polar itself with one peak at

about 225° to 230° and another at about 255° to 260°. There is also another small

59

peak at about 285° to 295°. This can be explained by the wind direction slightly

changing along the span of the bridge, as depicted in Figure 64, which shows the

wind rose for each anemometer, arranged by the anemometers position on the

bridge. Note that the illustration is rotated 90 degrees counterclockwise with

geographic North at the left of the page to increase readability. The bottom (right) row

of wind roses is from anemometers on the west side of the bridge, ordered by hanger

number with the windrose from H08Wt above (left to) the windrose from H08Wb and

the top (left) row of wind roses is from anemometers on the east side of the bridge.

60

Figure 64: Wind roses on average wind speeds per anemometer, arranged by position on the bridge

61

For winds from SSW the wind tends to come more from the South for anemometers

that are further down south on the bridge. Similarly, for winds from NNW the wind

tends to come more from the North for anemometers that are further down south on

the bridge.

The data can easily be split into south-westerly and north-easterly winds by applying

a filter on the wind direction, as discribed in 3.2.4 Data analysis. This allows the

comparison of wind conditions with south-westerly wind and north-easterly wind.

Figure 65 and Figure 66 show the respective histograms on average windspeeds for

south-westerly and north-easterly wind.

Figure 65: Histogram on average wind speeds for south-westerly wind

62

Figure 66: Histogram on average wind speeds for north-easterly wind

The histograms illustrate the different distributions of average wind speeds for

south-westerly and north-easterly winds, with generally lower windspeeds from

north-easterly directions. The distributions can be further examined using statistics

on the filtered data.

63

Table 3 Compares the statistics on H_mean for the primary wind directions.

Table 3: Comparison of statistics on mean wind speeds for south-westerly wind and north-easterly wind

Statistic on H_mean [m/s] south-westerly wind north-easterly wind

Mean 6.06 3.51

Median 5.72 3.28

Percentile [10, 25, 75, 90] [1.62 3.25 8.33 11.04] [1.26 2.22 4.61 5.9]

Minimum 0.18 0.22

Maximum 21.48 11.65

Variance 12.68 3.29

Standard deviation 3.56 1.81

Skewness 0.64 0.71

Kurtosis 0.21 0.54

The mean and median of mean wind speeds for south-westerly winds are about

2.5 m/s higher than for north-easterly winds. The highest mean windspeed for

south-westerly winds are almost double those for north-easterly winds. The

distribution for north-easterly mean wind is slightly more skewed towards lower wind

speeds. While it has a lower standard deviation, it has slightly heavier tails.

Note that the applied kurtosis uses Fisher´s definition, in which the normal

distribution has a kurtosis of 0, a distribution with lower kurtosis has thinner tails and

a distribution with higher kurtosis has heavier tails. [47]

64

4.1.2 Turbulence intensity

Similarly, the distribution of turbulence intensities can be examined and compared

from the histograms in Figure 67 and Figure 68 as well as Table 4.

Figure 67: Histogram on horizontal turbulence intensity for south-westerly wind

65

Figure 68: Histogram on horizontal turbulence intensity for north-westerly wind

Table 4: Comparison of statistics on horizontal turbulence intensity for south-westerly wind and north-easterly
wind

Statistic on H_turb south-westerly wind north-easterly wind

Mean 0.25 0.3

Median 0.21 0.29

Percentile [10, 25, 75, 90] [0.13 0.16 0.3 0.42] [0.11 0.19 0.41 0.49]

Minimum 0.06 0.0

Maximum 0.98 1.29

Variance 0.01 0.02

Standard deviation 0.12 0.15

Skewness 1.29 0.42

Kurtosis 1.68 0.07

66

From the histograms in Figure 67 and Figure 68 as well as Table 4 we see that winds

from north-easterly direction are slightly more turbulent. The distribution is less

skewed towards lower turbulence intensities. While it has a higher standard deviation

it has noticeably thinner tails.

When comparing the turbulence intensity measured by anemometers on the

downwind side of the bridge to those on the upwind side, as in Table 5, we see that

the turbulence intensity on the upwind side is on average slightly lower.

Table 5: Statistical comparison of turbulence intensity between upwind and downwind anemometers for
south-westerly and north-easterly winds

Statistic

on H_turb

south-westerly wind north-easterly wind

Anemometer H08Wb H08E H18W H18E H08Wb H08E H18W H18E

Up-/Downwind U D U D D U D U

Mean 0.24 0.25 0.25 0.25 0.31 0.3 0.31 0.3

Median 0.2 0.22 0.21 0.22 0.31 0.29 0.3 0.29

Percentile [10,

25,

75,

90]

[0.12

0.15

0.3

0.42]

[0.13

0.16

0.31

0.43]

[0.12

0.16

0.31

0.42]

[0.13

0.16

0.3

0.41]

[0.11

0.2

0.42

0.51]

[0.11

0.18

0.4

0.48]

[0.11

0.2

0.41

0.5]

[0.12

0.19

0.4

0.49]

Minimum 0.06 0.07 0.07 0.06 0.04 0.04 0.03 0.0

Maximum 0.89 0.95 0.84 0.98 1.03 0.98 1.0 1.02

Variance 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02

Standard

deviation

0.12 0.12 0.12 0.11 0.15 0.14 0.15 0.15

For south-westerly winds all statistics on the turbulence intensity at the upwind

anemometer H08Wb, except variance and standard deviation, are slightly lower than

at the downwind anemometer H08E. At H18 the median, 10th percentile and

maximum are slightly lower on the upwind anemometer H18W. The minimum and

percentiles 75 and 90 are slightly higher.

For north-easterly winds all statistics on the turbulence intensity at the upwind

anemometer H08E, except minimum, 10th percentile and variance, are slightly lower

than at the downwind anemometer H08W. At H18 the mean, median, minimum, 25th,

75th and 90th percentiles are slightly lower on the upwind anemometer H18E. The

10th percentile and maximum are slightly higher.

67

It is also possible to plot the horizontal turbulence intensity on a wind rose, as

depicted in Figure 69.

Figure 69: Wind rose on horizontal turbulence intensity, combined data from all anemometers

It is again also possible to split the wind rose into the different anemometers, as

depicted in Figure 70, which allows a more detailed analysis of the turbulence

distribution across the bridge.

68

Figure 70: Wind roses on horizontal turbulence intensity per anemometer, arranged by position on the bridge

69

Figure 70 illustrates, how the turbulence intensity measured on the downwind

anemometers is slightly higher for both winds from north-easterly and south-westerly

direction. From their perspective the wind flow is disrupted by the upwind structures

of the bridge, such as the cables, railings and bridge deck, as well as any traffic that

might be on the bridge. We can also see that the top anemometer on H08W

experiences slightly less turbulent winds compared to the bottom anemometer, as

there is less influence on the wind flow by the bridge deck.

Figure 71 illustrates the horizontal and vertical turbulence intensity on the y-axis and

color-axis respectively at different mean horizontal wind speeds on the x-axis.

Figure 71: Horizontal and vertical turbulence intensity at different horizontal wind speeds

As expected, turbulence intensity decreases with higher wind speeds and is below

0.3 for wind speeds above 15 m/s. Vertical turbulence intensity increases with

horizontal turbulence intensity up to about 0.5 after which the vertical component

decreases as the horizontal component increases.

70

Figure 72 shows the correlations between H_mean and H_turb across all sensors.

Figure 72: Correlation matrix between horizontal mean wind speed and turbulence intensity per anemometer

From Figure 72 we see that the measurements of mean horizontal wind speed are

very well correlated between the anemometers, displayed as a homogeneous dark

red coloring in the upper-left quadrant of the correlation matrix heatmap,

corresponding to a high positive correlation coefficient close to 1. In the lower right

quadrant, we see that the turbulence intensity is slightly less correlated across the

anemometers. However, note that there is a higher correlation between the

anemometers at hangers H08 to H10. There is also a slightly lower correlation

between the anemometers at hangers H18 to H24, however it is still slightly higher

compared to their correlation to the previous group of anemometers. The correlation

coefficient between H_mean and H_turb is negative across all anemometers at

71

about -0.4, colored in light blue in the top right and bottom left quadrants. This means

that with higher wind speeds turbulence intensity decreases, as expected.

4.1.3 Angle of attack

Figure 73 shows a wind rose on the mean angle of attack, created from the

combined data of all anemometers during the 30-day period. Warmer colors

represent positive angles of attack while colder colors represent negative angles of

attack, as previously illustrated in Figure 19.

Figure 73: Mean angle of attack wind rose combined from all anemometers

Note how while a good portion of the data displays relatively neutral AOAs there is a

tendency to more positive AOAs for winds from SSW and more negative AOAs from

NNE. This can also be seen when comparing the histograms on AOA from

72

north-easterly and south-westerly winds in Figure 74 and Figure 75 as well as

Table 6.

Figure 74: Histogram on mean angle of attack for south-westerly wind

 Figure 74 clearly shows the tendency to positive AOAs in the distribution for

south-westerly winds.

73

Figure 75: Histogram on mean angle of attack for north-easterly wind

Figure 75 shows a distribution centred around 0° for north-easterly winds.

Table 6: Comparison of statistics on mean angle of attack for south-westerly wind and north-easterly wind

Statistic on AOA_mean [°] south-westerly wind north-easterly wind

Mean 3.41 0.86

Median 2.76 0.53

Percentile [10, 25, 75, 90] [-2.05 0.44 5.46 9.73] [-4.85 -1.99 3.34 7.03]

Minimum -21.9 -33.11

Maximum 53.22 45.93

Variance 31.51 29.7

Standard deviation 5.61 5.45

Skewness 1.23 0.73

Kurtosis 5.24 4.86

74

As can be seen in Figure 74 and Figure 75 as well as Table 6, both distributions have

a similar standard deviation of about 5.5°. South-westerly winds have a slightly

positive mean and median angle of attack at about 3.4° and 2.8°, while AOAs of

north-easterly winds have a mean and median at about 0.9° and 0.5°. The

10th percentile is about -2° and -5° respectively. The 90th percentile is about

10° and 7° respectively. Therefore 80% of the data is inside a 12° bandwidth for both

south-westerly and north-easterly winds. We see that more than 80% of the data is

inside the range of -15° to +15°, the critical AOAs at which an aerofoil, such as the

wing of an aircraft, would typically experience stall conditions. [48]

However, the wind flow around a bridge girder, as illustrated in Figure 32, is not as

laminar and attached as the wind flow around a wing and subjected to vortex

shedding, as discussed in 1.3.3 Vortex shedding.

As we have seen in Figure 31, the lift coefficient has a local maximum at about

+10° AOA and minimum at about -18°. From Figure 31 we also see that the linearity

assumption is accurate enough from about -15° to +5° for the lift coefficient, from

about -12° to +5° for the moment coefficient and from about -8° to 0° for the drag

coefficient, as discussed in 1.3.2 Wind load coefficients.

From the histograms in Figure 74 and Figure 75 and statistics in Table 6 we see that

a considerable amount of data is outside these ranges, especially for positive AOAs

and wind from south-westerly direction, where about 25% of the data showcases

AOAs over +5° and about 75% of the data showcase AOAs over 0°. This suggests

that while the linearity assumption is accurate enough for negative AOAs most of the

time, it creates an overestimation of lift and moment coefficients 25% of the time and

underestimation of drag coefficients 75% of the time for winds from south-westerly

direction.

75

Figure 76 shows that the mean AOA gets closer to 0° at higher wind speeds, with

most of the data between 0° and +8° for wind speeds above 15 m/s.

Figure 76: Mean angle of attack and vertical turbulence intensity at different wind speeds

The vertical turbulence intensity, which also decreases with higher wind speeds, is

below 0.5 for wind speeds above 10 m/s.

76

When comparing the mean angle of attack measured by anemometers on the

downwind side of the bridge to those on the upwind side, as in Table 5, we see that

the mean AOA gets straightened towards 0° as the wind flow passes over the bridge.

Table 7: Statistical comparison of mean angle of attack between upwind and downwind anemometers for south-

westerly and north-easterly winds

Statistic on

AOA_mean

south-westerly wind north-easterly wind

Anemometer H08Wb H08E H18W H18E H08Wb H08E H18W H18E

Up-/Downwind U D U D D U D U

Mean 4.2 2.18 5.47 3.3 -0.42 2.41 0.39 2.41

Median 4.13 1.75 4.5 1.18 -0.09 2.36 0.22 2.3

Percentile [10,

25,

75,

90]

[-1.29

2.15

6.08

8.93]

[-3.35

-0.39

4.02

8.75]

 [0.51

2.27

7.21

12.02]

[-3.54

-0.73

5.37

15.46]

[-4.95

-2.32

1.73

3.62]

[-5.48

-2.15

6.54

10.84]

[-4.11

-1.63

2.04

4.6]

[-5.12

-0.84

5.62

9.67]

Minimum -17.55 -21.04 -17.74 -21.9 -17.86 -27.67 -25.3 -33.11

Maximum 35.22 30.51 39.49 53.22 26.1 40.72 36.82 45.93

Variance 23.56 26.74 30.28 64.0 13.94 47.37 22.95 45.89

Standard

deviation

4.85 5.17 5.5 8.0 3.73 6.88 4.79 6.77

For south-westerly winds all statistics on the mean AOA at the downwind

anemometer H08E, except 10th percentile, variance and standard deviation, are

lower than at the upwind anemometer H08Wb. At H18 all statistics except 90th

percentile, maximum, variance and standard deviation are lower on the downwind

anemometer H18E.

For north-easterly winds all statistics on the mean AOA at the downwind anemometer

H08Wb, except minimum and 25th percentile, are lower than at the upwind

anemometer H08E. At H18 all statistics are lower on the downwind anemometer

H18W. Note how the variance increases on the downwind side for south-westerly

winds but decreases for north-easterly winds.

Comparing the AOA wind roses for H08E and H08Wb in Figure 77 illustrates how

more extreme positive AOAs (orange-red) on the upwind side become more neutral

(grey-orange) on the downwind side, as the wind follows the shape of the bridge

girder. At H18E an anomaly to this occurs, showing a large population of high

positive AOAs (red) from direct south to east.

77

Figure 77: Mean angle of attack wind roses per anemometer, arranged by position on the bridge

78

This anomaly can be further examined using the polar scatterplots depicted in

Figure 78. Note that the datapoints with the highest values on the color-axis,

AOA_mean, are plotted on top of datapoints with lower mean angles of attack.

Therefore, datapoints with negative AOAs are not very visible in this kind of plot, as

they are hidden below datapoints with high AOAs. However, for a closer examination

of the before mentioned anomaly at H18E the datapoints with extreme high mean

AOAs of +15° or higher (dark red) are of interest. There is a large population of these

datapoints in the sector between 0° and 225° with wind speeds mostly below 5 m/s in

the sector between 0° and 90° and reaching 10 m/s in the sector between 90° and

225°. It should be noted that we can also observe a population of high AOA

datapoints in the sector between 180° and 225° with wind speeds reaching 10 m/s at

H08E, but not at H10E. There is also a smaller population of high AOA datapoints in

the sector between 0° and 90° with wind speeds below 5 m/s at both H08E and

H10E. However, there is no population of high AOA datapoints in the sector between

135° and 180° at both H08E and H10E.

79

Figure 78: Polar scatterplots on mean angle of attack and horizontal wind speed per anemometer, arranged by
position on the bridge

80

The reasons for this anomaly cannot be explained from this analysis. A

miss-alignment of the sensor has been ruled out by a recent examination of the

sensor. The scatterplot in Figure 79 does not suggest that the high AOAs in these

sectors are caused by un-organized turbulent flow, as the vertical turbulence intensity

is mostly below 0.4 in the region of interest at H18E.

81

Figure 79: Scatterplots on mean angle of attack and vertical turbulence intensity from different directions per
anemometer, arranged by position on the bridge

82

The author therefore hypothesizes, that the narrow cross-section of the fjord at the

point where the bridge crosses the fjord acts as a bottleneck for the wind flow into

and out of the fjord, which creates an updraft and re-circulation region just east of the

bridge, which gets captured by the anemometer at H18E, but not the other

anemometers. Figure 80 and Figure 81 illustrate how such a flow could look like for

north-easterly wind.

Figure 80: Hypothesis on wind flow causing high angles of attack at H18E from east direction, top view. Adapted

from [49]

83

Figure 81: Hypothesis on windflow causing high angles of attack at H18E from east direction, view from the West.
Adapted from [50]

Note that the high AOAs from the sector between 135° to 180° are not well explained

by this hypothesis, as the wind flow must cross the bridge or come from the direction

of the south tower. Another hypothesis is that a downdraft from the hills southeast of

the bridge hits the bridge deck and is reflected upwards through the anemometer at

H18E. Additional anemometers at H20E and H24E could help in examining this

anomaly. Another approach could be a CFD simulation similar to [18], to examine the

origin of this anomaly.

84

Figure 82 shows the correlations between H_mean and the absolute AOA_mean.

Figure 82: Correlation matrix between mean horizontal wind speed and absolute mean angle of attack per
anemometer

From Figure 82 we see that the absolute mean AOA is not correlated very much

across the anemometers. The absolute mean AOA at H08Wb and H08t are

correlated relatively well with a correlation coefficient of about 0.8. However, their

correlation to H08E across the bridge deck is relatively low at about 0.25, which is

not significantly higher than the correlation to the other anemometers along the span

of the bridge. Similar observations can be made for the other anemometers. The

correlation to anemometers on the same side of the bridge is slightly higher,

compared to the correlation to anemometers across the bridge deck. For

anemometers on the same side of the bridge deck the further away another

85

anemometer is, the lower their correlation. The correlation to H_mean is slightly

negative, mostly between -0.25 and 0, except for H10E, where it is about -0.5.

Figure 83 shows the correlation between absolute AOA_mean and H_turb.

Figure 83: Correlation matrix between absolute mean angle of attack and horizontal turbulence intensity per
anemometer

From Figure 83 we see that the correlation between absolute mean AOA and

horizontal turbulence intensity is relatively low, but slightly positive between 0 and

0.25 for most anemometers, except for H10E again, where the correlation is slightly

higher at about 0.35. Note that correlation does not imply causation and therefore it is

not possible to explain this anomaly from these correlation matrices.

86

4.2 Bridge response

In the following the code of this work is used to examine the response of the bridge to

traffic and wind.

4.2.1 Traffic response

Note that the naming error for accelerometer pair H24 mentioned in 1.2.3

Instrumentation Layout might be carried over in some of the illustrations below. Any

mentioning of H20 in reference to an accelerometer is to be interpreted as H24.

Figure 84 shows the maximum vertical acceleration for each 10-minute data package

at the centreline of the bridge over the month-long period of recorded data.

Figure 84: Maximum central vertical accelerations measured at the Lysefjord bridge during 30-day period showing

periodic response to traffic

A clear periodic behaviour is visible with a period of one day. This is because more

traffic is crossing the bridge during the day than at night. Another clear observation is

that after five days of higher maximum accelerations two days of lower maximum

accelerations follow. This can respectively be linked to workdays, during which heavy

trucks from the Norsk Spennbetong AS concrete plant or NCC Helle sandtak sand pit

cross the bridge, and weekend days, during which the traffic primarily consists of

lighter cars. As expected by this hypothesis, the first day of data, 18th September

2018, is a Tuesday while the last day, 18th October 2018, is a Thursday. Note that

there is an outlier at exactly 15 days at H09, caused by the east accelerometer,

which has not been recognised as invalid as it is still inside the operational limits of

the accelerometer of ±5g. [23]

87

4.2.2 Lateral wind response

In Figure 85 to Figure 92 the lateral wind response of the bridge, measured by the

standard deviation of acceleration in x-direction Aox_C_std is visualised and

analysed.

Figure 85 shows a scatterplot of Aox_C_std over the mean horizontal wind

component perpendicular to the primary bridge axis Vx_mean with the respective

turbulence intensity Vx_turb on the color-axis.

Figure 85: Lateral bridge response and turbulence intensity at different mean wind speeds

Note that positive Vx corresponds to wind from south-westerly direction and a

negative Vx to wind from north-easterly direction, matching the bridge coordinate

system in Figure 24. A red parabola through the origin is matched to datapoints with

Vx_turb > 0.6 and a green parabola through the origin is matched to datapoints with

Vx_turb < 0.1. These parabolas create an envelope into which most of the datapoints

fall. Note how higher standard deviations in the accelerations up to about 0.005 m/s²

can occur even at mean wind speeds below 10 m/s, especially under higher

turbulence intensity above 0.5.

88

By normalizing the standard deviation of acceleration by the turbulence intensity we

try to reduce the factor of turbulence intensity, expecting to fold the data in on itself.

Figure 86 and Figure 87 showcase this for south-westerly and north-easterly wind

conditions respectively, split across the accelerometer pairs at H09, H18, H24 and

H30. The wind measurements in these plots are taken from the respective downwind

anemometer at midspan H18.

Figure 86: Lateral bridge response normalized by turbulence intensity and turbulence intensity at different mean
wind speeds for south-westerly winds per accelerometer pair

As expected, the data is folded in on itself and bound by an upper and lower

parabola shape. However, there is still a spread occurring with higher wind speeds.

Figure 87: Lateral bridge response normalized by turbulence intensity and turbulence intensity at different mean
wind speeds for north-easterly winds per accelerometer pair

Similar observations are to be made for the north-easterly winds, although the

distribution of datapoints is more chaotic, especially at wind speeds between -2 m/s

and -5 m/s. We can assume that this is due to other effects the terrain has on the

wind flow from that direction, especially on the vertical wind component, like the

anomaly at H18E discussed in 4.1.3 Angle of attack.

89

Figure 88 shows the lateral bridge response at different mean AOAs with the mean

horizontal wind speed decoded on the color-axis.

Figure 88: Lateral bridge response and mean wind speed at different angles of attack

From Figure 88 we again see that larger lateral responses above 0.002 m/s² can be

observed even at wind speeds below 11 m/s at AOAs between -5° to +20°. Wind

speeds above 11 m/s occur only in a relatively narrow AOA band between -1° and

+10°. As discussed in 1.3.2 Wind load coefficients and showcased in Figure 31, the

linearity assumption for the drag coefficient is accurate at about -8° to 0°. We see

that most of the datapoints at wind speeds above 4 m/s causing large lateral

responses are above 0°. This suggests that the linearity assumption for the drag

coefficient is not suitable to predict large lateral responses, as they mostly occur at

higher AOAs, even at lower wind speeds, where the linearity assumption

underestimates the lateral wind response.

90

Normalizing the lateral bridge response by turbulence intensity again results in

Figure 89.

Figure 89: Lateral bridge response normalized by turbulence intensity and turbulence intensity at different angles

of attack

We see that some of the higher bridge responses at lower mean wind speeds and at

angles of attack further out from 0° are brought down in the normalized scatterplot,

as they were more correlated with higher turbulence intensity.

91

Figure 90 shows the correlation between H_mean and Aox_C_std.

Figure 90: Correlation between mean wind speed and lateral bridge response per anemometer and
accelerometer

From Figure 90 we see that the correlation coefficient between the accelerometers

on the lateral response is close to 1, displayed as homogeneous dark red color in the

lower right quadrant. The correlation between accelerometers H18 and H24 is slightly

higher compared to the correlations with and between the other accelerometers, as

they are located closer together. The correlation to the mean horizontal wind velocity

is also relatively high at about 0.5 to 0.75. Counterintuitively the correlation of lateral

response at midspan H18 and H24 to mean horizontal wind velocity is slightly lower

compared to the lateral response measured by accelerometers at H09 and H30

closer to the towers. This suggests that the lateral response at the midspan of the

bridge, where the main cables are at the lowest point and the hanger length is the

92

shortest, is less sensitive to higher wind speeds, compared to further out towards the

towers. However, this does not account for other factors on the lateral response,

explaining how an eigenmode shape like the first and second symmetric horizontal

eigenmode shapes HS1 and HS2 identified by E. Cheynet in [20, p. 126] which are

depicted in Figure 30, can occur. Also note that the data might be a combination of

symmetric and asymmetric eigenmode shapes. In the later the acceleration at

midspan is close to zero and higher at H09 and H30.

Figure 91 shows the correlation between H_turb and Aox_C_std.

Figure 91: Correlation turbulence intensity and lateral bridge response per anemometer and accelerometer

From Figure 91 we see that the correlation between the lateral response and

horizontal turbulence intensity is close to 0, slightly negative at H09 and H30. No

significant assumption can be drawn from these correlations.

93

Figure 92 shows the correlation between absolute AOA_mean and Aox_C_std.

Figure 92: Correlation between absolute mean angle of attack and lateral bridge response per anemometer and
accelerometer

From Figure 92 we see that the correlation between the lateral response and

absolute mean AOA is close to 0, or slightly negative for anemometers at H10E,

H18E and H20W, but below 0.25. This coincides with the anomaly detected in Figure

82 and discussed in 4.1.3 Angle of attack. No further significant assumptions can be

drawn from these correlations.

94

4.2.3 Vertical wind response

In Figure 93 to Figure 101 the vertical wind response of the bridge, measured by the

standard deviation of acceleration in z-direction Aoz_C_std is visualised, analysed

and compared to the lateral wind response discussed in 4.2.2 Lateral wind response.

Figure 85 shows a scatterplot of Aoz_C_std over the mean horizontal wind

component perpendicular to the primary bridge axis Vx_mean with the respective

turbulence intensity Vx_turb on the color-axis, similar to Figure 85.

Figure 93: Vertical bridge response and turbulence intensity at different mean wind speeds

The highest standard deviation of vertical acceleration is measured at about

0.02 m/s² at a perpendicular wind speed of about 18 m/s and low turbulence

intensity. This is about 3.5 to 4 times higher than the highest measured standard

deviation of lateral acceleration. At about 8 m/s Aoz_C_std is measured at about

0.015 m/s² at a turbulence intensity of about 0.6. At about 2 m/s Aoz_C_std is

measured at about 0.011 m/s² at a turbulence intensity of about 0.8.

95

Figure 94 and Figure 95 showcase Aoz_C_std / Vx_turb for south-westerly and

north-easterly wind conditions respectively, split across the accelerometer pairs at

H09, H18, H24 and H30, similar to Figure 86 and Figure 87.

Figure 94: Vertical bridge response normalized by turbulence intensity and turbulence intensity at different mean

wind speeds for south-westerly winds per accelerometer pair

As expected, the data is folded in on itself and bound by an upper and lower

parabola shape. The remaining spread occurring with higher wind speeds is less

than for the lateral response in Figure 86. The higher vertical response we are seeing

between about 7 m/s and 12 m/s could be explained by vortex shedding, as

described in 1.3.3 Vortex shedding.

Figure 95: Vertical bridge response normalized by turbulence intensity and turbulence intensity at different mean
wind speeds for north-easterly winds per accelerometer pair

As in the case for lateral response in Figure 87, similar observations are again to be

made for the north-easterly winds for the vertical response. The distribution of

datapoints is again more chaotic, at wind speeds between -2 m/s and -5 m/s,

especially towards the south of the bridge at H30.

96

Figure 96 shows the vertical bridge response at different mean AOAs with the mean

horizontal wind speed decoded on the color-axis, similar to Figure 88.

Figure 96: Vertical bridge response and mean wind speed at different angles of attack

From Figure 96 we see that larger vertical responses above 0.0125 m/s² and up to

about 0.02 m/s² can be observed primarily at wind speeds above 17 m/s at AOAs

between +1° to +8°. Wind speeds between 11 m/s and 17 m/s only result in a

response from 0.0025 m/s² up to 0.0125 m/s² at a wider AOA band between -2° and

+10°. This contrasts with the lateral wind response, where the wind speed had a

lesser impact on the observable wind response. As discussed in 1.3.2 Wind load

coefficients and showcased in Figure 31, the linearity assumption for the lift

coefficient is accurate at about -15° to +5°. We see that the datapoints at wind

speeds above 11 m/s causing large vertical responses are partially below +5° and

partially above +5°.This suggests that the linearity assumption for the lift coefficient is

suitable to predict some of the large vertical responses at lower AOAs correctly, but

overestimates some of the large vertical responses for AOAs above +5°.

97

Normalizing the lateral bridge response by turbulence intensity again results in Figure

97, similar to Figure 89.

Figure 97: Vertical bridge response normalized by turbulence intensity and turbulence intensity at different angles
of attack

Again we see that some of the higher bridge responses at lower mean wind speeds

and at angles of attack further out from 0° are brought down in the normalized

scatterplot, as they are more correlated with higher turbulence intensity.

98

Figure 98 shows the correlation between H_mean and Aoz_C_std, similar to Figure

90.

Figure 98: Correlation between mean wind speed and vertical bridge response per anemometer and

accelerometer

From Figure 98 we see that the correlation coefficients between all the accelerometer

pairs on the vertical response is close to 1, displayed as dark red color in the lower

right quadrant. The correlation between accelerometers H09, H24 and H30 is slightly

higher compared to the correlations with H18. This is most likely due to the vertical

eigenmode shapes depicted in Figure 30, in which the bridge oscillates less at

midspan H18, compared to further out towards the north or south, H09 or H24 and

H30 respectively. The correlation between H18 and H24 is still higher than the

correlation between H18 and H09 or H30, as the former are closer together. The

99

correlation to the mean horizontal wind velocity is also relatively high at about 0.75 to

0.85. This is higher than the correlation of the lateral response depicted in Figure 90.

It is also more homogenous, with a slightly higher correlation to H_mean towards the

south of the bridge.

Figure 99 shows the correlation between H_turb and Aoz_C_std, similar to Figure 91.

Figure 99: Correlation between turbulence intensity and vertical bridge response per anemometer and
accelerometer

From Figure 99 we see that the correlation between the vertical response and

horizontal turbulence intensity is homogenously slightly negative at about -0.2, which

is in contrast to the lateral response which was less correlated as depicted in Figure

91.

100

Figure 100 shows the correlation between absolute AOA_mean and Aoz_C_std,

similar to Figure 92.

Figure 100: Correlation between absolute mean angle of attack and vertical bridge response per anemometer and

accelerometer

From Figure 100 we see that the correlation between the vertical response and

absolute mean AOA is close to 0, or slightly negative for anemometers at H10E at

about -0.3 as well as H08Wt, H18E and H20W between 0 and -0.25. This, similar to

the observation on the lateral response from Figure 92, coincides with the anomaly

detected in Figure 82 and discussed in 4.1.3 Angle of attack. No further significant

assumptions can be drawn from these correlations.

101

 Figure 100 shows the correlation between Aox_C_std and Aoz_C_std.

Figure 101: Correlation between lateral and vertical wind response per accelerometer

From Figure 101 we see that the lateral and vertical wind response are well

correlated with correlation coefficients above 0.8. The lateral response measured at

the outer accelerometers at H09 and H30 is slightly more correlated with the vertical

response measured at all accelerometers than the lateral response measured at the

inner accelerometers H18 and H24 is.

102

4.2.4 Torsional wind response

In Figure 102 to Figure 111 the torsional wind response of the bridge, measured by

the standard deviation of torsional acceleration theta_std is visualised, analysed and

compared to the vertical wind response discussed in 4.2.3 Vertical wind response.

Figure 102 shows a scatterplot of theta_std over the mean horizontal wind

component perpendicular to the primary bridge axis Vx_mean with the respective

turbulence intensity Vx_turb on the color-axis, similar to Figure 93.

Figure 102: Torsional bridge response and turbulence intensity at different mean wind speeds

The highest standard deviation of torsional acceleration is measured at about

0.22 °/s² at a perpendicular wind speed of about 18 m/s and low turbulence intensity.

This is under the same conditions as the highest measured standard deviation of

vertical acceleration. At about 10 m/s theta_std is measured at about 0.08 °/s² at low

turbulence intensity. At about 7 m/s theta_std is measured at about 0.05 °/s² at a

turbulence intensity of up to about 0.6. We see that theta_std can increase by up to 3

times at about 18 m/s without a significant change in turbulence intensity.

103

Figure 103 and Figure 104 showcase theta_std / Vx_turb for south-westerly and

north-easterly wind conditions respectively, split across the accelerometer pairs at

H09, H18, H24 and H30, similar to Figure 94 and Figure 95.

Figure 103: Torsional bridge response normalized by turbulence intensity and turbulence intensity at different

mean wind speeds for south-westerly winds per accelerometer pair

As expected, the data is folded in on itself and bound by an upper and lower

parabola shape. The remaining spread occurring with higher wind speeds is low, up

to 7.5 m/s. Above 7.5 m/s the spread increases.

Figure 104: Torsional bridge response normalized by turbulence intensity and turbulence intensity at different
mean wind speeds for north-easterly winds per accelerometer pair

As in the case for vertical response in Figure 95, similar observations are again to be

made for the north-easterly winds for the torsional response. At wind speeds

between -2 m/s and -4 m/s there is a high spread. Between -4 m/s and -6 m/s the

spread is low again before increasing again.

104

Figure 105 shows the vertical bridge response at different mean AOAs with the mean

horizontal wind speed decoded on the color-axis, similar to Figure 96.

Figure 105: Torsional bridge response and mean wind speed at different angles of attack

From Figure 105 we see that larger torsional responses above 0.08 °/s² and up to

about 0.22 °/s² can be observed primarily at wind speeds above 11 m/s at AOAs

between +2° to +7°. This is similar to the vertical wind response, where the wind

speed has a significant impact on the observable wind response. As discussed in

1.3.2 Wind load coefficients and showcased in Figure 31, the linearity assumption for

the moment coefficient is accurate at about -12° to +5°. We see that the datapoints at

wind speeds above 11 m/s causing large torsional responses are mostly just below

+5° and only partially above +5°.This suggests that the linearity assumption for the lift

coefficient is suitable to predict most of the large torsional responses at lower AOAs

correctly, but overestimates some of the large torsional responses for AOAs above

5°.

105

Normalizing the lateral bridge response by turbulence intensity again results in Figure

106, similar to Figure 97.

Figure 106: Torsional bridge response normalized by turbulence intensity and turbulence intensity at different

angles of attack

In contrast to the lateral and vertical response we do not see as much of an effect

from the normalisation, suggesting that high turbulence intensity has a lesser

correlation with the torsional wind response.

106

Figure 107 shows the correlation between H_mean and theta_std, similar to Figure

98.

Figure 107: Correlation between mean wind speed and torsional bridge response per anemometer and

accelerometer

From Figure 107 we see that the correlation coefficients between all the

accelerometer pairs on the tortional response is close to 1, displayed as dark red

color in the lower right quadrant. The respective correlation between accelerometers

H09 and H18 as well as H24 and H30 is slightly higher compared to the correlations

across both groups. This is most likely due to the asymmetric torsional eigenmode

shape depicted in Figure 30, in which the north half of the bridge, H09 and H18,

oscillates in the opposite direction to the south half, H24 and H30.

There is a positive correlation to the mean horizontal wind velocity, which is slightly

higher at about 0.75 for H09 and H18, compared to H24 and H30, where it is about

107

0.55. The former is comparable to the correlation of the vertical response depicted in

Figure 98, while the later is slightly lower, more compareable to the lateral response

depicted in Figure 90. However, it is more homogenous across the anemometers.

Figure 108 shows the correlation between H_turb and theta_std, similar to Figure 99.

Figure 108: Correlation between turbulence intensity and torsional bridge response per anemometer and

accelerometer

From Figure 108 we see that the correlation between the tortional response and

horizontal turbulence intensity is homogenously slightly negative at about -0.25,

which is similar to the vertical response depicted in Figure 99.

108

Figure 109 shows the correlation between absolute AOA_mean and theta_std,

similar to Figure 100.

Figure 109: Correlation between absolute mean angle of attack and torsional bridge response per anemometer

and accelerometer

From Figure 109 we see that the correlation between the tortional response and

absolute mean AOA is close to 0, or slightly negative for anemometers at H10E at

about -0.3 as well as H08Wt and H18E between 0 and -0.2. This, similar to the

observation on the vertical response from Figure 100, coincides with the anomaly

detected in Figure 82 and discussed in 4.1.3 Angle of attack. No further significant

assumptions can be drawn from these correlations.

109

Figure 110 shows the correlation between Aox_C_std and theta_std.

Figure 110: Correlation between lateral and torsional wind response

From Figure 110 we see that the lateral and tortional wind response are somewhat

positively correlated with correlation coefficients from about 0.45 to about 0.65, which

is lower than the correlation between lateral and vertical wind response. The lateral

response measured at the outer accelerometers at H09 and H30 is slightly more

correlated with the tortional response measured at all accelerometers than the lateral

response measured at the inner accelerometers H18 and H24 is. This is similar to the

correlation between lateral and vertical response.

110

Figure 111 shows the correlation between Aoz_C_std and theta_std.

Figure 111: Correlation between vertical and torsional wind response

From Figure 111 we see that the vertical and tortional wind response are more

positively correlated with correlation coefficients between about 0.65 and 0.85. The

tortional response measured at the northern accelerometers at H09 and H18 is

slightly more correlated with the vertical response measured at all accelerometers

than the tortional response measured at the southern accelerometers H24 and H30

is.

111

5. Discussion

The results from this work are summarized and discussed in the sections below.

5.1 Conclusion

The results from analysis confirm the primary wind directions of NNE and SSW.

Mean wind speeds reached up to 21.5 m/s and gusts up to 35 m/s in the 30-day

period. The directional bandwidth for south-westerly winds is about 15° wider than

the one for north-easterly winds. Towards the south of the bridge there is a south

tendency for south-westerly winds and north tendency for north-easterly winds. The

wind from south-westerly direction is on average about 2.5 m/s higher than the wind

from north-easterly direction. The highest wind speeds from south-westerly direction

are almost double the highest wind speeds from north-easterly direction.

North-easterly winds are slightly more turbulent than south-westerly winds.

Anemometers on the downwind side of the bridge record slightly more turbulent wind

compared to their upwind counterparts. Turbulence intensity decrease with higher

wind speeds. They are negatively correlated across all anemometers.

Mean AOAs reach from -33° to +53°, but 80% of the data is in a 12° range with a

mean of about 3.4° and 0.9° for south-westerly and north-easterly winds respectively.

The mean AOA is straightened towards 0° on the downwind side. The linearity

assumption discussed in 1.3.2 Wind load coefficients is accurate enough for negative

AOAs most of the time. For positive AOAs it overestimates lift coefficient and moment

coefficient 25% of the time and underestimates drag coefficients 75% of the time for

winds from south-westerly direction. Downwind anemometers experience less

extreme AOAs compared to their upwind counterparts. An anomaly of high mean

AOAs occurs at H18E with winds from easterly directions. Absolute mean AOA is not

significantly correlated with mean horizontal wind speed or turbulence intensity,

across the anemometers, except for H10E where there is a negative correlation with

H_mean and positive correlation with H_turb.

The bridge displays a periodic response to the daily traffic with higher maximum

vertical accelerations on weekdays due to heavy industrial traffic.

The highest vertical wind response is about 3.5 to 4 times higher than the highest

lateral wind response. Most of the larger lateral wind responses are at AOAs above

112

the suitable range of the linearity assumption, where it underestimates the drag

coefficient. Note that some of these larger responses might be correlated with higher

turbulence intensity. The linearity assumption is partially suitable for the prediction of

vertical and torsional responses, but overestimates some of the larger responses

above +5° AOA.

Vertical wind response has the highest positive correlation to mean horizontal wind

speed. Torsional wind response has a slightly lower positive correlation to mean

horizontal wind speed, with slightly higher correlation at the northern accelerometers.

Lateral wind response has the lowest positive correlation to mean horizontal wind

speed with slightly higher correlation at the outer accelerometers.

Torsional wind response has the highest negative correlation to horizontal turbulence

intensity. Vertical wind response has a low negative correlation to horizontal

turbulence intensity. Lateral wind response has an insignificant negative correlation

to horizontal turbulence intensity at the outer accelerometers. Lateral, vertical and

torsional wind response have an insignificant negative correlation to absolute mean

AOA with an anomaly occurring at H10E, where the correlation is slightly more

negative.

Lateral and vertical wind response have a high positive correlation. Vertical and

tortional wind response have a slightly lower positive correlation, with slightly lower

correlations in the southern accelerometers. Lateral and torsional wind response

have the lowest positive correlation, with slightly lower correlations in the inner

accelerometers.

Note that correlation does not imply causation.

Creating a large amount of diverse but consistent visualisations for various

measurement type combinations is fast and relatively easy with the methods

provided by the BridgeData class created in this work. This allows to quickly get an

overview of the data and phenomena happening at the bridge. It allows to find

interesting phenomena and anomalies that might be overlooked in a more directed

approach. The flexible and modular design allows to focus observations on desired

phenomena, for example by using filters. Interpreting the visualisations to explain

some of the phenomena requires extensive background knowledge in the field of

wind engineering.

113

The ability to save the state of a class object is particularly useful, as it allows to

quickly come back to a previous analysis without having to re-import the data.

5.2 Comparison to relevant works

Some of the relevant works on data of the Lysefjord Bridge include [2], [3], [7], [20],

[24], and [18]. These works were regularly referenced in the creation of this work.

Figure 112 shows a direct comparison on the turbulence intensity for different

windspeeds to E. Chynet’s analysis in 2016 [20, p. 18]. The same period and same

sensors have been used for this visualisation. E. Cheynet’s scatterplot has been

layered on top of this works scatterplot, matching the scaling of the axis.

Figure 112: Comparison of turbulence intensity at different wind speeds to E. Cheynet’s work in 2016. Adapted
from [20, p. 18]

Figure 112 illustrates that a very similar visualisation of the data can be achieved

from the same data base. Note that some datapoints might be missing in either

scatterplot or have slight variations in their position due to different methods used in

114

importing and processing of the data, such as the slightly different calculation of the

turbulence intensity, as described in 3.1.1 convert_MATLAB. However, the general

structure of the scatterplot is very much comparable, showing the same decrease in

turbulence intensity with higher wind speeds.

Similarly, a polar scatterplot from E. Cheynet’s work in 2016 [20, p. 136] has been

replicated using data from 07/10/2014, as depicted in Figure 113.

Figure 113: Turbulence visualisation from this work (left) and E. Cheynet’s work in 2016 (right) [20, p. 136]

Note that the radial axis starts at 0 m/s in this work, while it starts at 6 m/s in

E. Cheynet’s work. Apart from slightly different scaling on the radial axis and color

axis the polar scatter plots match up very well.

Furthermore E. Cheynet calculates <a mean wind direction of 22° and a standard

deviation of almost 9°= [20, p. 135], referring to geographic north. In this work a mean

wind direction of about 21° and standard deviation of about 8° is calculated.

Some slight variations might again occur due to different methods in the importing

and processing of the data. Also note that differently colored dots on a scatterplot

might be plotted on top of each other in a different order. This can be misleading

when trying to interpret the color axis. Therefore, lowest color axis values are usually

plotted first and higher values afterwards in the colored scatter plots of this work.

115

However, this can be disabled by setting plot_in_order_of_color to False. This was

done in this comparison to better match E. Cheynet’s work.

In contrast to the previously mentioned relevant works, this work did not focus on

interpreting results of a particular analysis. However, the author created a toolset to

easily and quickly create large amounts of diverse but consistent visualisations for

various measurement type combinations, which can help to gain a different

perspective on the data. It is possible to perform extensive and detailed analysis on

the data using this works code, as demonstrated in 4 Analysis using this works code.

The results from this analysis are in line with the results expected from previous

relevant works. Useful insights into wind conditions and wind responses are

obtained. This includes statistical descriptions and comparisons of north-easterly and

south-westerly wind conditions, correlations of wind responses to wind conditions,

evaluation of the linearity assumption described in 1.3.2 Wind load coefficients and

the discovery of previously unknown anomalies at H10E and H18E.

5.3 Limitations of this work

The technical limitations of this work lie in memory-constraints and the disk-space

required to process a larger amount of the relatively large MATLAB files. The

computational load during the import stage and the creation of some of the plots,

especially scatter plots, is therefore quite high with larger datasets and suffer from a

lack of parallel processing. Some of the plots lack flexibility as not all the original

matplotlib functionality on which they are based on is passed along. The data filtering

is somewhat limited compared to some of the available tools used for database

manipulations. Some more in-depth tools for specific types of analysis, such as

spectral analysis and modal analysis are currently not implemented. The

interpretation of the analysis is not very in-depth and might be incomplete or incorrect

as the author has no background in wind engineering. This also shows as there is

currently no implementation for transforming the coordinate system to mean wind

coordinates, which would commonly be used for turbulence-intensity calculations for

example. However, the modular design of this works code should allow to easily

implement the missing functionality or use third-party libraries in the data processing

and analysis.

116

5.4 Future work

While the author took care to utilise the parallel computation of numpy functionality,

attempts on further parallelisation should be made where possible, using

multiprocessing for example. To further decrease the computational load, a high-

performance Python compiler such as numba could be utilized. Other methods to

increase performance could be gpu utilisation or outsourcing parts of the process to a

server, or high-performance cluster.

Another approach to improve this work lies in implementing additional functionality

such as spectral analysis, modal analysis or the transformation to mean wind

coordinates. Additionally, machine learning could be used to, for example, perform

regression on the wind response and clustering on the wind conditions. B. da Costa

gives a great overview of possibilities in [51].

Finally, the anomalies discovered at H18E and H10E could be further examined for

example by performing CFD-simulations or LIDAR studies. The suitability of the

linearity assumption could be further examined, especially regarding the potential

underestimation of the drag coefficient at positive AOAs.

5.5 Authors experience

For the author it was of high importance to create a modular, flexible tool that could

be used to perform further analysis than what has been done in this work. The

Python and Jupyter Notebook environment have perfectly supported this goal. Style

guides and documentations of Python and its libraries such as [35], [36], [37], [41],

[42], [43], [44], [45] and [47] were very helpful in building the BridgeData class and

documenting it properly. Examining the data and creating large amounts of diverse

but consistent visualisations for various measurement type combinations has been a

very enjoyable process for the author. The previous relevant works on the bridge

data have been very helpful to understand the complex wind engineering related

phenomena around the Lysefjord Bridge.

The author assumed a role in between the perspective of a wind engineer and a data

scientist. This has required a cross-disciplinary mindset, which allowed the author to

acquire, utilise and reproduce knowledge from both domains without the need for an

in-depth background in either. While this experience has been challenging, the

knowledge and skillsets gained from both domains are worth it.

117

References

[1] B. Elliott, Director, The Tacoma Narrows Bridge Collapse. [Film]. United States

of America, Washington.1940.

[2] J. Tveiten, <Dynamic analysis of a suspension bridge,= Universitetet i Stavanger

- Faculty of Science and Technology, Stavanger, 2012.

[3] J. Wang, E. Cheynet, J. Bogunovic Jakobsen and J. T. Snæbjörnsson, <Time-

Domain Analysis of Wind-Induced Response of a Suspension Bridge in

Comparison With the Full-Scale Measurements,= in International Conference on

Ocean, Offshore and Arctic Engineering, Trondheim, 2017.

[4] Google LLC, <Google Street View,= July 2022. [Online]. Available:

https://www.google.de/maps/@58.9242807,6.0971971,3a,45.6y,314.36h,94.02t

/data=!3m6!1e1!3m4!1ssxkD7Fn1ASOaDqRcIDAh_Q!2e0!7i16384!8i8192.

[Accessed 11 May 2023].

[5] Google LLC, <Google Street View,= July 2022. [Online]. Available:

https://www.google.de/maps/@58.9127151,6.0779843,3a,20.4y,42.68h,91.71t/

data=!3m6!1e1!3m4!1s7NdvJPV-zhwZB3RQKSEkyg!2e0!7i16384!8i8192.

[Accessed 11 May 2023].

[6] Google LLC, <Google Maps,= 2023. [Online]. Available:

https://www.google.com/maps/@58.9314358,6.0412977,10.22z/data=!5m1!1e4

. [Accessed 21 April 2023].

[7] J. T. Snæbjörnsson, J. Bogunovic Jakobsen, E. Cheynet and J. Wang, <Full-

scale monitoring of wind and suspension bridge response,= in First Conference

of Computational Methods in Offshore Technology, Stavanger, 2017.

[8] Google LLC, <Google Maps,= 2023. [Online]. Available:

https://www.google.com/maps/dir/NCC+Helle+sandtak,+4110+Forsand/Norsk+

Spennbetong+AS,+Myrbakken,+Forsand/Lysefjord+Bridge,+Sekund%C3%A6r+

Fylkesvei+491,+Forsand/Stavanger/@58.9513388,5.7813112,11z/data=!4m26!

4m25!1m5!1m1!1s0x463a29682eb02777:0x5247ac464b20. [Accessed 29 April

2023].

118

[9] Google LLC, <Google Maps,= 2023. [Online]. Available:

https://www.google.de/maps/dir/NCC+Helle+sandtak,+Forsand/Bj%C3%B8rn+

Hansen+AS+Betongelement,+Myrbakken+51,+4110+Forsand/Lauvvik+ferjekai,

+4308+Sandnes/Sandnes/Stavanger/@58.9028614,5.8356285,11.75z/data=!4

m32!4m31!1m5!1m1!1s0x463a29682eb02777:0x5247ac464. [Accessed 26

May 2023].

[10] Lysefjorden Utvikling AS, <LYSEFJORDEN 365: EXPLORE THE LYSEFJORD

BY FERRY,= 2023. [Online]. Available:

https://lysefjorden365.com/ferry/#touristferry. [Accessed 26 May 2023].

[11] Windfinder, <Annual wind and weather statistics for Forsand/Lysefjorden,=

February 2017. [Online]. Available:

https://www.windfinder.com/windstatistics/forsand_lysefjorden. [Accessed 18

May 2023].

[12] Windfinder, <Annual wind and weather statistics for Liarvatnet,= April 2023.

[Online]. Available: https://www.windfinder.com/windstatistics/liarvatnet.

[Accessed 18 May 2023].

[13] Windfinder, <Annual wind and weather statistics for Sandnes/Hanafjellet,= July

2019. [Online]. Available:

https://www.windfinder.com/windstatistics/sandnes_harrafjellet. [Accessed 18

May 2023].

[14] Windfinder, <Annual wind and weather statistics for Stavanger Airport, Sola,=

April 2023. [Online]. Available:

https://www.windfinder.com/windstatistics/stavanger_sola. [Accessed 18 May

2023].

[15] Windfinder, <Annual wind and weather statistics for Stokkavika/Idse,= May 2020.

[Online]. Available: https://www.windfinder.com/windstatistics/stokkavika_idse.

[Accessed 18 May 2023].

[16] Windfinder, <Monthly wind speed statistics and directions for Meling/Forsand,=

February 2017. [Online]. Available:

https://www.windfinder.com/windstatistics/meling_forsand. [Accessed 18 May

2023].

119

[17] Windfinder, <Map,= 2023. [Online]. Available:

https://www.windfinder.com/#11/58.9700/5.8413/rain/spot. [Accessed 18 May

2023].

[18] E. Cheynet, S. Liu, M. C. Ong, J. Bogunovic Jakobsen, J. T. Snæbjörnsson and

I. Gatin, <The influence of terrain on the mean wind flow characteristics in a

fjord,= Journal of Wind Engineering & Industrial Aeorodynamics, vol. 205, 2020.

[19] G. Box, <Robustness in the strategy of scientific model building,= in Robustness

in Statistics, Launer, 1979.

[20] E. Cheynet, <Wind-induced vibrations of a suspension bridge - A case study in

full-scale,= Universitetet i Stavanger, Faculty of Science and Technology,

Department of Mechanical and Structural Engineering and Materials Science,

Stavanger, 2016.

[21] Gill Instruments Limited, <WindMaster Pro Datasheet iss 8,= 17 August 2022.

[Online]. Available: https://gillinstruments.com/compare-3-axis-

anemometers/windmaster-3axis/. [Accessed 23 January 2023].

[22] Vaisala, <Vaisala Weather Transmitter WXT520 USER'S GUIDE,= 10 October

2012. [Online]. Available:

https://www.vaisala.com/sites/default/files/documents/M210906EN-C.pdf.

[Accessed 2023 April 29].

[23] Canterbury Seismic Instruments Ltd., <CUSP-Me Specifications,= 10 May 2017.

[Online]. Available: https://csi.net.nz/images/csi%20cusp-

me%20specification.pdf. [Accessed 13 June 2023].

[24] E. Cheynet, N. Daniotti, J. Bogunovic Jakobsen and J. T. Snæbjörnsson,

<Improved long-span bridge modeling using data-driven identification of vehicle-

induced vibrations,= Structural Control and Health Monitoring, vol. 27, no. 9,

2020.

[25] Google LLC, <Google Street View,= July 2022. [Online]. Available:

https://www.google.de/maps/@58.9236844,6.0982108,3a,75y,315.26h,100.8t/d

ata=!3m6!1e1!3m4!1scoKmBZSqSjDXvS-3fd9cDA!2e0!7i16384!8i8192.

[Accessed 11 May 2023].

120

[26] Google LLC, <Google Street View,= July 2022. [Online]. Available:

https://www.google.de/maps/@58.9236062,6.0983437,3a,75y,181.17h,104.8t/d

ata=!3m6!1e1!3m4!1s9lHm91zk5zxTWddkSLifdg!2e0!7i16384!8i8192.

[Accessed 11 May 2023].

[27] Google LLC, <Google Street View,= July 2022. [Online]. Available:

https://www.google.de/maps/@58.9232071,6.0990383,3a,75y,289.7h,99.29t/da

ta=!3m6!1e1!3m4!1stG-LiVwBm7KJh1WMyvCC6A!2e0!7i16384!8i8192.

[Accessed 11 May 2023].

[28] COMSOL, <Eigenfrequency Analysis,= 08 May 2018. [Online]. Available:

https://www.comsol.com/multiphysics/eigenfrequency-analysis. [Accessed 08

06 2023].

[29] COMSOL, <Mode Superposition,= 08 May 2018. [Online]. Available:

https://www.comsol.com/multiphysics/mode-superposition?parent=structural-

mechanics-0182-222. [Accessed 08 June 2023].

[30] SOH Wind Engineering LLC, <LYSEFJORD BRIDGE, NORWAY - Static wind

tunnel tests,= WILLISTON, USA, 2021.

[31] S. O. Hansen, B. I. Robin George Srouji and K. Berntsen, <Vortex-induced

vibrations of streamlined single box girder bridge decks,= in 14th International

Conference on Wind Engineering, Porto Alegre, 2015.

[32] E. Hjorth-Hansen, E. Strømmen, J. Bogunovic Jakobsen, H.-P. Brathaug and E.

Solheim, <Wind tunnel investigations for a proposed suspension bridge across

the hardanger fjord,= in 2nd European Conference on Structural Dynamics,

Trondheim, 1993.

[33] TIOBE Software BV, <TIOBE Index for May 2023,= 2 May 2023. [Online].

Available: https://www.tiobe.com/tiobe-index/. [Accessed 23 May 2023].

[34] R. Scarlett, <Why Python keeps growing, explained,= GitHub, 02 March 2023.

[Online]. Available: https://github.blog/2023-03-02-why-python-keeps-growing-

explained/. [Accessed 23 May 2023].

[35] M. Cone, <Markdown Guide Basic Syntax,= 2023. [Online]. Available:

https://www.markdownguide.org/basic-syntax/. [Accessed 31 May 2023].

121

[36] Python Software Foundation, <Documentation » Python HOWTOs » Functional

Programming HOWTO,= Sphinx, 17 May 2023. [Online]. Available:

https://docs.python.org/3/howto/functional.html. [Accessed 17 May 2023].

[37] Python Software Foundation, <Documentation » The Python Tutorial » 9.

Classes,= Sphinx, 17 May 2023. [Online]. Available:

https://docs.python.org/3/tutorial/classes.html. [Accessed 17 May 2023].

[38] E. Byeon, <Speed Testing Pandas vs. Numpy,= Towards Data Science, 14

December 2020. [Online]. Available: https://towardsdatascience.com/speed-

testing-pandas-vs-numpy-ffbf80070ee7. [Accessed 22 May 2023].

[39] N. McCullum, <NumPy Arrays vs. Pandas Series: A Performance Comparison,=

6th January 2021. [Online]. Available: https://www.nickmccullum.com/numpy-

arrays-pandas-series-performance-

comparison/#:~:text=what%20we%20discussed%3A-

,A%20numpy%20array%20is%20a%20grid%20of%20values%20that%20belon

g,function%20of%20the%20Pandas%20library.. [Accessed 2022 May 2023].

[40] G. Balaraman, <Numpy Vs Pandas Performance Comparison,= 14 March 2017.

[Online]. Available: http://gouthamanbalaraman.com/blog/numpy-vs-pandas-

comparison.html. [Accessed 22 May 2023].

[41] G. v. Rossum, B. Warsaw and N. Coghlan, <PEP 8 – Style Guide for Python

Code,= 30 April 2023. [Online]. Available: https://peps.python.org/pep-0008/.

[Accessed 17 May 2023].

[42] D. Goodger and G. v. Rossum, <PEP 257 – Docstring Conventions,= 06 June

2022. [Online]. Available: https://peps.python.org/pep-0257/. [Accessed 17 May

2023].

[43] numpydoc maintainers, <NumPy Style Guide,= Sphinx, 2023. [Online]. Available:

https://numpydoc.readthedocs.io/en/latest/format.html. [Accessed 17 May

2023].

[44] pandas, <pandas docstring guide,= Sphinx, 2023. [Online]. Available:

https://pandas.pydata.org/docs/development/contributing_docstring.html.

[Accessed 17 May 2023].

122

[45] NumPy Developers, <numpy.arctan2,= Sphinx, 2022. [Online]. Available:

https://numpy.org/doc/stable/reference/generated/numpy.arctan2.html.

[Accessed 22 May 2023].

[46] Norwegian Meteorological Institute and the Norwegian Broadcasting

Corporation, <Yr,= 2018. [Online]. Available:

https://www.yr.no/en/statistics/graph/5-

44560/Norway/Rogaland/Sola/Sola?q=2018. [Accessed 11 May 2023].

[47] The SciPy community, <Statistical functions scipy.stats.kurtosis,= Sphinx, 2023.

[Online]. Available:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosis.html.

[Accessed 29 May 2023].

[48] SKYbrary Aviation Safety, <Stall Definition,= 2023. [Online]. Available:

https://www.skybrary.aero/articles/stall#:~:text=Description,is%20typically%20ar

ound%2015%C2%B0.. [Accessed 30 May 2023].

[49] Google LLC, <Google Maps,= 2023. [Online]. Available:

https://www.google.de/maps/@58.9353105,6.1070676,4334m/data=!3m1!1e3.

[Accessed 05 May 2023].

[50] Google LLC, <Google Street View,= July 2022. [Online]. Available:

https://www.google.de/maps/@58.9236844,6.0982108,3a,75y,34.14h,94.34t/da

ta=!3m6!1e1!3m4!1scoKmBZSqSjDXvS-3fd9cDA!2e0!7i16384!8i8192.

[Accessed 11 May 2023].

[51] B. M. da Costa, <Trial lecture: Applications of machine learning algorithms in

wind engineering,= University of Stavanger, Stavanger.

[52] Windfinder, <Annual wind and weather statistics for Jørpeland,= August 2014.

[Online]. Available: https://www.windfinder.com/windstatistics/joerpeland.

[Accessed 18 May 2023].

[53] Windfinder, <Annual wind and weather statistics for Hundvåg,= October 2018.

[Online]. Available: https://www.windfinder.com/windstatistics/hundvag.

[Accessed 18 May 2023].

XVII

Appendix

A1: Complete Code

➔ The code itself is provided as an .ipynb file. The data is to be obtained from UiS.

➔ Below you will find a .pdf conversion of the Jupyter Notebook. Note that this does

not reflect the complete code as some of the longer lines are truncated.

Analysis of wind and response measurement
data from a suspension bridge
This Jupyter Notebook is accompanying documentation to the MASTER’S THESIS Analysis of
wind and response measurement data from a suspension bridge by René König.

Universitetet i Stavanger (UiS)

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme / specialisation: Computational Engineering

The spring semester, 2023

Open

Author: René König, 268127

Supervisor at UiS: Professor Aksel Hiorth

Co-supervisor: Professor Jasna Bogunovic Jakobsen

External supervisor(s): Bernardo Morais da Costa, Statens vegvesen

Thesis title: Analysis of wind and response measurement data from a suspension bridge

Credits (ECTS): 30

Keywords: Python, Data Science, Software Development, Suspension Bridge, Wind Engineering,
Wind Response, Full-Scale Monitoring, Anemometers, Accelerometers

Stavanger, 14.06.2023

Abstract
The Lysefjord Bridge is a suspension bridge at the entrance to the Lysefjord in south western
Norway at which full-scale measurements on wind conditions and bridge response are collected
using anemometers and accelerometers. In this work Python is used to develop a toolset for
analysing the wind and response measurement data from the Lysefjord Bridge. The functionality
is provided through different methods compiled in a class. This includes methods for importing
and combining data from multiple days, re-arranging and interpreting the data, feature
engineering, data cleaning, filtering and various types of visualisations. The code is
demonstrated in an analysis of 30 days of data. The analysis focuses on the wind conditions for
south-westerly and north-easterly winds in terms of wind speeds, primary directions, turbulence
intensity and angle of attack as well as the bridges lateral, vertical and torsional wind response.
The analysis shows on average slightly higher wind speeds, lower turbulence intensities and
higher angles of attack for south-westerly winds, compared to north-easterly winds. Towards the

southern end of the bridge the wind direction has a south tendency for south-westerly winds
and north tendency for north-easterly winds. Turbulence intensity is measured slightly higher on
the downwind side of the bridge. The angle of attack is straightened towards 0° on the
downwind side. Furthermore, the analysis shows that the assumption of a linear correlation
between drag coefficient and angle of attack used in the so-called quasi-steady theory of wind
loading and the corresponding numerical simulations underestimates most of the larger lateral
bridge responses at angles of attack above 0°. The lift and moment coefficients estimated using
similar linearity assumptions overestimate some of the larger vertical and torsional bridge
responses at angles of attack above +5°.

Libraries used
The libraries below are used in this code.

The code was developed under Python version 3.9.6

BridgeData class definition
The BridgeData class defined below contains most of the functionallity of this work to load,
process and analyze data from the Lysefjord Bridge.

In []: import numpy as np # Math, handling data arrays
import matplotlib.pyplot as plt # Plots
import matplotlib as mpl # Handle colormaps
from matplotlib.colors import ListedColormap # Create colormaps
import scipy.io # Read matlab files
import scipy.optimize # Curve-fitting
import scipy.stats # Statistics
import seaborn as sn # Heatmaps
from windrose import WindroseAxes # Wind roses
import gc # Garbage collection to free up memory
import dill # Saving and loading data
import warnings
warnings.filterwarnings('ignore') # Clean up the notebook by ignoring the expected w

In []: class BridgeData:
 """A class for processing wind and response data from a suspensionbridge, as in

 Attributes

 file_names : list of strs
 List of Lysefjord Bridge dataExtracted.mat MATLAB file names at `file_path`
 file_path : str
 Defining the filepath to the location of the bridge data relative to this no
 char_lim : int, default 255
 Character limit for filepath when saving figures. A too long fliepath can le
 tower_dist : float, default 446
 Distance between the two towers of the bridge in meters.
 sag : float, default 45
 Sag of the main cables in meters, measured from the top of the towers.
 n_hangers : int, default 35
 Number of hanger pairs (hangers per main cable) between the towers.
 hanger_dist : float, default 12

 Distance between hanger pairs in y-direction in meters.
 first_hanger_y_tower_dist : float, default 19
 Distance of the first hanger pair from the north tower in meters.
 last_hanger_y_tower_dist : float, default 19
 Distance of the last hanger pair from the south tower in meters.
 mid_span_cable_height_above_deck : float, default = 3
 Height of the main cables above the deck at mid-span in meters.
 mid_span_deck_height : float, default 53.37
 Height of the deck above the waterline at mid-span in meters.
 ...
 acc_x_dist_from_centerline : float, default 7.15/2
 Distance from the East and West accelerometers from the centerline of the br
 g : float, default 9.818287
 Local gravity constant. Default value for stavanger measured according to 'G
 anemo_range : float, default 65
 Anemometer range in +- m/s.
 acc_range : float, default 5
 Accelerometer range in +- G.

 """
 def __init__(self,file_names,file_path = '../Data/Bridge/dataExtracted/',char_li
 tower_dist = 446, # m
 h_towers = 102.26, # m
 sag = 45, # m
 n_hangers = 35,
 hanger_dist = 12, # m
 first_hanger_y_tower_dist = 19, # m
 last_hanger_y_tower_dist = 19, # m
 mid_span_cable_height_above_deck = 3, # m
 mid_span_deck_height = 53.37, # m
 tower_1_deck_support_height = 44.9, # m
 tower_2_deck_support_height = 52.36, # m
 girder_height = 2.76, # m
 cable_section_weight = 816, # kg/m
 hanger_section_weight = 95, # kg/m
 girder_section_weight = 5350, # kg/m
 cable_x_dist = 10.5, # m assumption
 deck_width = 9.5, # m assumption
 girder_width = 12.3, # m
 acc_x_dist_from_centerline = 7.15/2, # m
 g = 9.818287,
 anemo_range = 65,
 acc_range = 5
):
 """Initializes the class.

 Parameters

 file_names : list of strs
 List of Lysefjord Bridge dataExtracted.mat MATLAB file names at `file_pa
 file_path : str
 Defining the filepath to the location of the bridge data relative to thi
 char_lim : int, default 255
 Character limit for filepath when saving figures. A too long fliepath ca
 tower_dist : float, default 446
 Distance between the two towers of the bridge in meters.
 sag : float, default 45
 Sag of the main cables in meters, measured from the top of the towers.
 n_hangers : int, default 35
 Number of hanger pairs (hangers per main cable) between the towers.
 hanger_dist : float, default 12
 Distance between hanger pairs in y-direction in meters.
 first_hanger_y_tower_dist : float, default 19
 Distance of the first hanger pair from the north tower in meters.

 last_hanger_y_tower_dist : float, default 19
 Distance of the last hanger pair from the south tower in meters.
 mid_span_cable_height_above_deck : float, default = 3
 Height of the main cables above the deck at mid-span in meters.
 mid_span_deck_height : float, default 53.37
 Height of the deck above the waterline at mid-span in meters.
 ...
 acc_x_dist_from_centerline : float, default 7.15/2
 Distance from the East and West accelerometers from the centerline of th
 g : float, default 9.818287
 Local gravity constant. Default value for stavanger measured according t
 anemo_range : float, default 65
 Anemometer range in +- m/s.
 acc_range : float, default 5
 Accelerometer range in +- G.
 """
 self.file_names = file_names
 self.file_path = file_path
 self.char_lim = char_lim

 self.tower_dist = tower_dist
 self.h_towers = h_towers
 self.sag = sag
 self.n_hangers = n_hangers
 self.hanger_dist = hanger_dist
 self.first_hanger_y_tower_dist = first_hanger_y_tower_dist
 self.last_hanger_y_tower_dist = last_hanger_y_tower_dist
 self.mid_span_cable_height_above_deck = mid_span_cable_height_above_deck
 self.mid_span_deck_height = mid_span_deck_height
 self.tower_1_deck_support_height = tower_1_deck_support_height
 self.tower_2_deck_support_height = tower_2_deck_support_height
 self.girder_height = girder_height
 self.cable_section_weight = cable_section_weight
 self.hanger_section_weight = hanger_section_weight
 self.girder_section_weight = girder_section_weight
 self.deck_width = deck_width
 self.girder_width = girder_width
 self.cable_x_dist = cable_x_dist
 self.acc_x_dist_from_centerline = acc_x_dist_from_centerline
 self.g = g
 self.anemo_range = anemo_range
 self.acc_range = acc_range
 self.acc_unit = 'µG'

 # Pre-processing
 def convert_MATLAB(self,data,delete_data_after_import=True,ignore_nans=True,rena
 """Convert Lysefjord Bridge dataExtracted.mat files imported via `scipy.io.l

 Parameters

 data : dict of {str : ndarray}
 Dictionary with variable names as keys, and loaded matrices as values fr
 delete_data_after_import : bool, default True
 Delete original `data` from memory after import to free up memory.
 ignore_nans : bool, default True
 Ignores nans when calculating mean, std, min and max, using the remainin
 rename_H20_acc : bool, default True
 Rename accelerometers H20 to H24, as there seems to be a systematic erro
 replace_invalid : bool, default True
 Replace invalid sensor readings (outside of technical sensor range) with
 full_detail : bool, default False
 Keep full detail of `data`, sampled at 50Hz instead of resampling to eve
 H ... TopBottom : bool, default True
 Select which part of the `data` should be imported or generated during i

 Returns

 anemo_names : list of str
 List of anemometer names.
 acc_names : list of str
 List of accelerometer names.
 time_array : array_like
 t_array : array_like
 anemo : dict of {str : array_like}
 Data from anemometers, 2d arrays sensor_id x measurement_id, grouped by
 acc : dict of {str : array_like}
 Data from accelerometers, 2d arrays sensor_id x measurement_id, grouped
 weather : dict of {str : array_like}
 Data from weatherstation, 1d arrays measurement_id, grouped by measureme
 """
 # Convert time data.
 time = data['time'].T[0]
 t = data['t'][0]

 time_array = time
 t_array = np.repeat(t,time_array.shape[0])

 # Get names of anemometers and accelerometers.
 anemo_names = []
 acc_names = []
 for ind,anemo in enumerate(data['AnemoName'][0]):
 anemo_names.append(anemo[0])
 for ind,acc in enumerate(data['AccelName'][0]):
 if rename_H20_acc:
 if acc[0] == 'H20':
 acc_names.append('H24')
 else:
 acc_names.append(acc[0])
 else:
 acc_names.append(acc[0])
 anemo_names = np.array(anemo_names)
 acc_names = np.array(acc_names)

 anemo_shape = (len(anemo_names),len(time))
 acc_shape = (len(acc_names),len(time))

 # Initialize dicts for data from anemometers, weather and accelerometers.
 anemo = {}
 weather = {}
 acc = {}

 if replace_invalid:
 # Replace data out of technical range of sensors with nan.
 data['H'][(data['H']>self.anemo_range)|(data['H']<0)] = np.nan
 data['W'][(data['W']>self.anemo_range)|(data['W']<-self.anemo_range)] =
 data['Dir'] = np.where((data['Dir']>360)|(data['Dir']<0),np.nan,data['Di

 data['Aox_W'][(data['Aox_W']>self.acc_range*1e6)|(data['Aox_W']<-self.ac
 data['Aoy_W'][(data['Aoy_W']>self.acc_range*1e6)|(data['Aoy_W']<-self.ac
 data['Aoz_W'][(data['Aoz_W']>(self.acc_range+1)*1e6)|(data['Aoz_W']<-(se

 data['Aox_E'][(data['Aox_E']>self.acc_range*1e6)|(data['Aox_E']<-self.ac
 data['Aoy_E'][(data['Aoy_E']>self.acc_range*1e6)|(data['Aoy_E']<-self.ac
 data['Aoz_E'][(data['Aoz_E']>(self.acc_range+1)*1e6)|(data['Aoz_E']<-(se

 # Decompose horizontal wind vector into vx and vy component
 # according to the bridge coordinate system.

 vx = -np.sin(np.deg2rad(data['Dir']))*data['H']
 vy = -np.cos(np.deg2rad(data['Dir']))*data['H']

 if full_detail:
 # Retain full detail of the data, sampled at 50Hz instead of every 10min
 # Note that the data is described as _mean, although no mean is calculat
 # This enables use of functions orig. designed for the downsampled data.
 self.full_detail = True
 anemo_shape = (len(anemo_names),len(t)*len(time))
 acc_shape = (len(acc_names),len(t)*len(time))

 # Transform time arrays.
 time_array = np.linspace(time[0],time[-1],len(t)*len(time))
 t_array = np.tile(t,len(time))

 # Convert/create numpy arrays from original data
 # organized in dictionaries by type of measurement.
 if H:
 anemo['H_mean'] = data['H'].reshape(anemo_shape)
 if W:
 anemo['W_mean'] = data['W'].reshape(anemo_shape)

 if Vx or Dir or Upwind:
 anemo['Vx_mean'] = vx.reshape(anemo_shape)
 if Vy or Dir or Upwind:
 anemo['Vy_mean'] = vy.reshape(anemo_shape)

 if Dir or Upwind:
 anemo['Dir_mean'] = data['Dir'].reshape(anemo_shape)

 if Tv:
 anemo['Tv_mean'] = data['Tv'].reshape(anemo_shape)

 if AOA:
 anemo['AOA_mean'] = np.rad2deg(np.arctan(data['W']/data['H'])).resha

 if AOI:
 anemo['AOI_mean'] = np.where((0<data['Dir'])&(data['Dir']<=90),90-da

 if Aox_W:
 acc['Aox_W_mean'] = data['Aox_W'].reshape(acc_shape)

 if Aoy_W:
 acc['Aoy_W_mean'] = data['Aoy_W'].reshape(acc_shape)

 if Aoz_W:
 acc['Aoz_W_mean'] = data['Aoz_W'].reshape(acc_shape)

 if Aox_E:
 acc['Aox_E_mean'] = data['Aox_E'].reshape(acc_shape)

 if Aoy_E:
 acc['Aoy_E_mean'] = data['Aoy_E'].reshape(acc_shape)

 if Aoz_E:
 acc['Aoz_E_mean'] = data['Aoz_E'].reshape(acc_shape)

 if centr:
 acc['Aox_C_mean'] = ((data['Aox_W']+data['Aox_E'])/2).reshape(acc_sh
 acc['Aoy_C_mean'] = ((data['Aoy_W']+data['Aoy_E'])/2).reshape(acc_sh
 acc['Aoz_C_mean'] = ((data['Aoz_W']+data['Aoz_E'])/2).reshape(acc_sh

 if theta:
 acc['theta_mean'] = np.rad2deg(np.arctan(((data['Aoz_W'] - data['Aoz

 if T:
 weather['T_mean'] = data['T'].flatten()

 if P:
 weather['P_mean'] = data['P'].flatten()

 if Hum:
 weather['Hum_mean'] = data['Hum'].flatten()

 else:
 self.full_detail = False

 # Convert/create numpy arrays from original data
 # organized in dictionaries by type of measurement.
 if ignore_nans:
 # Use np.nanmean etc. instead of np.mean to ignore nans.
 if H:
 anemo['H_mean'] = np.nanmean(data['H'],axis=2)
 anemo['H_std'] = np.nanstd(data['H'],axis=2)
 anemo['H_min'] = np.nanmin(data['H'],axis=2)
 anemo['H_max'] = np.nanmax(data['H'],axis=2)

 if W:
 anemo['W_mean'] = np.nanmean(data['W'],axis=2)
 anemo['W_std'] = np.nanstd(data['W'],axis=2)
 anemo['W_min'] = np.nanmin(data['W'],axis=2)
 anemo['W_max'] = np.nanmax(data['W'],axis=2)

 if Vx or Dir or Upwind:
 anemo['Vx_mean'] = np.nanmean(vx,axis=2)
 anemo['Vx_std'] = np.nanstd(vx,axis=2)
 anemo['Vx_min'] = np.nanmin(vx,axis=2)
 anemo['Vx_max'] = np.nanmax(vx,axis=2)

 if Vy or Dir or Upwind:
 anemo['Vy_mean'] = np.nanmean(vy,axis=2)
 anemo['Vy_std'] = np.nanstd(vy,axis=2)
 anemo['Vy_min'] = np.nanmin(vy,axis=2)
 anemo['Vy_max'] = np.nanmax(vy,axis=2)

 if Dir or Upwind:
 # Calculate mean of direction from Vx_mean and Vy_mean
 # instead of original data to deal with 360-0 discontinuity.
 anemo['Dir_mean'] = (np.rad2deg(np.arctan2(anemo['Vx_mean'],anem
 #vv Physically irrelevant because of 360-0 discontinuity, kept f
 anemo['Dir_std'] = (np.rad2deg(np.arctan2(anemo['Vx_std'],anemo[
 anemo['Dir_min'] = (np.rad2deg(np.arctan2(anemo['Vx_min'],anemo[
 anemo['Dir_max'] = (np.rad2deg(np.arctan2(anemo['Vx_max'],anemo[
 #^^ Physically irrelevant because of 360-0 discontinuity, kept f

 if Tv:
 anemo['Tv_mean'] = np.nanmean(data['Tv'],axis=2)
 anemo['Tv_std'] = np.nanstd(data['Tv'],axis=2)
 anemo['Tv_min'] = np.nanmin(data['Tv'],axis=2)
 anemo['Tv_max'] = np.nanmax(data['Tv'],axis=2)

 if AOA:
 anemo['AOA_mean'] = np.nanmean(np.rad2deg(np.arctan(data['W']/da
 anemo['AOA_std'] = np.nanstd(np.rad2deg(np.arctan(data['W']/data
 anemo['AOA_min'] = np.nanmin(np.rad2deg(np.arctan(data['W']/data
 anemo['AOA_max'] = np.nanmax(np.rad2deg(np.arctan(data['W']/data

 if AOI:
 anemo['AOI_mean'] = np.nanmean(np.where((0<data['Dir'])&(data['D
 anemo['AOI_std'] = np.nanstd(np.where((0<data['Dir'])&(data['Dir
 anemo['AOI_min'] = np.nanmin(np.where((0<data['Dir'])&(data['Dir
 anemo['AOI_max'] = np.nanmax(np.where((0<data['Dir'])&(data['Dir

 if Aox_W:
 acc['Aox_W_mean'] = np.nanmean(data['Aox_W'],axis=2)
 acc['Aox_W_std'] = np.nanstd(data['Aox_W'],axis=2)
 acc['Aox_W_min'] = np.nanmin(data['Aox_W'],axis=2)
 acc['Aox_W_max'] = np.nanmax(data['Aox_W'],axis=2)
 acc['Aox_W_max_by_std'] = acc['Aox_W_max']/acc['Aox_W_std']

 if Aoy_W:
 acc['Aoy_W_mean'] = np.nanmean(data['Aoy_W'],axis=2)
 acc['Aoy_W_std'] = np.nanstd(data['Aoy_W'],axis=2)
 acc['Aoy_W_min'] = np.nanmin(data['Aoy_W'],axis=2)
 acc['Aoy_W_max'] = np.nanmax(data['Aoy_W'],axis=2)
 acc['Aoy_W_max_by_std'] = acc['Aoy_W_max']/acc['Aoy_W_std']

 if Aoz_W:
 acc['Aoz_W_mean'] = np.nanmean(data['Aoz_W'],axis=2)
 acc['Aoz_W_std'] = np.nanstd(data['Aoz_W'],axis=2)
 acc['Aoz_W_min'] = np.nanmin(data['Aoz_W'],axis=2)
 acc['Aoz_W_max'] = np.nanmax(data['Aoz_W'],axis=2)
 acc['Aoz_W_max_by_std'] = acc['Aoz_W_max']/acc['Aoz_W_std']

 if Aox_E:
 acc['Aox_E_mean'] = np.nanmean(data['Aox_E'],axis=2)
 acc['Aox_E_std'] = np.nanstd(data['Aox_E'],axis=2)
 acc['Aox_E_min'] = np.nanmin(data['Aox_E'],axis=2)
 acc['Aox_E_max'] = np.nanmax(data['Aox_E'],axis=2)
 acc['Aox_E_max_by_std'] = acc['Aox_E_max']/acc['Aox_E_std']

 if Aoy_E:
 acc['Aoy_E_mean'] = np.nanmean(data['Aoy_E'],axis=2)
 acc['Aoy_E_std'] = np.nanstd(data['Aoy_E'],axis=2)
 acc['Aoy_E_min'] = np.nanmin(data['Aoy_E'],axis=2)
 acc['Aoy_E_max'] = np.nanmax(data['Aoy_E'],axis=2)
 acc['Aoy_E_max_by_std'] = acc['Aoy_E_max']/acc['Aoy_E_std']

 if Aoz_E:
 acc['Aoz_E_mean'] = np.nanmean(data['Aoz_E'],axis=2)
 acc['Aoz_E_std'] = np.nanstd(data['Aoz_E'],axis=2)
 acc['Aoz_E_min'] = np.nanmin(data['Aoz_E'],axis=2)
 acc['Aoz_E_max'] = np.nanmax(data['Aoz_E'],axis=2)
 acc['Aoz_E_max_by_std'] = acc['Aoz_E_max']/acc['Aoz_E_std']

 if centr:
 acc['Aox_C_mean'] = np.nanmean((data['Aox_W']+data['Aoy_E'])/2,a
 acc['Aox_C_std'] = np.nanstd((data['Aox_W']+data['Aox_E'])/2,axi
 acc['Aox_C_min'] = np.nanmin((data['Aox_W']+data['Aox_E'])/2,axi
 acc['Aox_C_max'] = np.nanmax((data['Aox_W']+data['Aox_E'])/2,axi
 acc['Aox_C_max_by_std'] = acc['Aox_C_max']/acc['Aox_C_std']

 acc['Aoy_C_mean'] = np.nanmean((data['Aoy_W']+data['Aoy_E'])/2,a
 acc['Aoy_C_std'] = np.nanstd((data['Aoy_W']+data['Aoy_E'])/2,axi
 acc['Aoy_C_min'] = np.nanmin((data['Aoy_W']+data['Aoy_E'])/2,axi
 acc['Aoy_C_max'] = np.nanmax((data['Aoy_W']+data['Aoy_E'])/2,axi
 acc['Aoy_C_max_by_std'] = acc['Aoy_C_max']/acc['Aoy_C_std']

 acc['Aoz_C_mean'] = np.nanmean((data['Aoz_W']+data['Aoz_E'])/2,a
 acc['Aoz_C_std'] = np.nanstd((data['Aoz_W']+data['Aoz_E'])/2,axi

 acc['Aoz_C_min'] = np.nanmin((data['Aoz_W']+data['Aoz_E'])/2,axi
 acc['Aoz_C_max'] = np.nanmax((data['Aoz_W']+data['Aoz_E'])/2,axi
 acc['Aoz_C_max_by_std'] = acc['Aoz_C_max']/acc['Aoz_C_std']

 if theta:
 acc['theta_mean'] = np.nanmean(np.rad2deg(np.arctan(((data['Aoz_
 acc['theta_std'] = np.nanstd(np.rad2deg(np.arctan(((data['Aoz_W'
 acc['theta_min'] = np.nanmin(np.rad2deg(np.arctan(((data['Aoz_W'
 acc['theta_max'] = np.nanmax(np.rad2deg(np.arctan(((data['Aoz_W'
 acc['theta_max_by_std'] = acc['theta_max']/acc['theta_std']

 if T:
 weather['T_mean'] = np.nanmean(data['T'],axis=1)
 weather['T_std'] = np.nanstd(data['T'],axis=1)
 weather['T_min'] = np.nanmin(data['T'],axis=1)
 weather['T_max'] = np.nanmax(data['T'],axis=1)

 if P:
 weather['P_mean'] = np.nanmean(data['P'],axis=1)
 weather['P_std'] = np.nanstd(data['P'],axis=1)
 weather['P_min'] = np.nanmin(data['P'],axis=1)
 weather['P_max'] = np.nanmax(data['P'],axis=1)

 if Hum:
 weather['Hum_mean'] = np.nanmean(data['Hum'],axis=1)
 weather['Hum_std'] = np.nanstd(data['Hum'],axis=1)
 weather['Hum_min'] = np.nanmin(data['Hum'],axis=1)
 weather['Hum_max'] = np.nanmax(data['Hum'],axis=1)

 else:
 if H:
 anemo['H_mean'] = np.mean(data['H'],axis=2)
 anemo['H_std'] = np.std(data['H'],axis=2)
 anemo['H_min'] = np.min(data['H'],axis=2)
 anemo['H_max'] = np.max(data['H'],axis=2)

 if W:
 anemo['W_mean'] = np.mean(data['W'],axis=2)
 anemo['W_std'] = np.std(data['W'],axis=2)
 anemo['W_min'] = np.min(data['W'],axis=2)
 anemo['W_max'] = np.max(data['W'],axis=2)

 if Vx or Dir or Upwind:
 anemo['Vx_mean'] = np.mean(vx,axis=2)
 anemo['Vx_std'] = np.std(vx,axis=2)
 anemo['Vx_min'] = np.min(vx,axis=2)
 anemo['Vx_max'] = np.max(vx,axis=2)

 if Vy or Dir or Upwind:
 anemo['Vy_mean'] = np.mean(vy,axis=2)
 anemo['Vy_std'] = np.std(vy,axis=2)
 anemo['Vy_min'] = np.min(vy,axis=2)
 anemo['Vy_max'] = np.max(vy,axis=2)

 if Dir or Upwind:
 # Calculate mean of direction from Vx_mean and Vy_mean
 # instead of original data to deal with 360-0 discontinuity.
 anemo['Dir_mean'] = (np.rad2deg(np.arctan2(anemo['Vx_mean'],anem
 #vv Physically irrelevant because of 360-0 discontinuity, kept f
 anemo['Dir_std'] = (np.rad2deg(np.arctan2(anemo['Vx_std'],anemo[
 anemo['Dir_min'] = (np.rad2deg(np.arctan2(anemo['Vx_min'],anemo[
 anemo['Dir_max'] = (np.rad2deg(np.arctan2(anemo['Vx_max'],anemo[
 #^^ Physically irrelevant because of 360-0 discontinuity, kept f

 if Tv:
 anemo['Tv_mean'] = np.mean(data['Tv'],axis=2)
 anemo['Tv_std'] = np.std(data['Tv'],axis=2)
 anemo['Tv_min'] = np.min(data['Tv'],axis=2)
 anemo['Tv_max'] = np.max(data['Tv'],axis=2)

 if AOA:
 anemo['AOA_mean'] = np.mean(np.rad2deg(np.arctan(data['W']/data[
 anemo['AOA_std'] = np.std(np.rad2deg(np.arctan(data['W']/data['H
 anemo['AOA_min'] = np.min(np.rad2deg(np.arctan(data['W']/data['H
 anemo['AOA_max'] = np.max(np.rad2deg(np.arctan(data['W']/data['H
 if AOI:
 anemo['AOI_mean'] = np.mean(np.where((0<data['Dir'])&(data['Dir'
 anemo['AOI_std'] = np.std(np.where((0<data['Dir'])&(data['Dir']<
 anemo['AOI_min'] = np.min(np.where((0<data['Dir'])&(data['Dir']<
 anemo['AOI_max'] = np.max(np.where((0<data['Dir'])&(data['Dir']<

 if Aox_W:
 acc['Aox_W_mean'] = np.mean(data['Aox_W'],axis=2)
 acc['Aox_W_std'] = np.std(data['Aox_W'],axis=2)
 acc['Aox_W_min'] = np.min(data['Aox_W'],axis=2)
 acc['Aox_W_max'] = np.max(data['Aox_W'],axis=2)
 acc['Aox_W_max_by_std'] = acc['Aox_W_max']/acc['Aox_W_std']

 if Aoy_W:
 acc['Aoy_W_mean'] = np.mean(data['Aoy_W'],axis=2)
 acc['Aoy_W_std'] = np.std(data['Aoy_W'],axis=2)
 acc['Aoy_W_min'] = np.min(data['Aoy_W'],axis=2)
 acc['Aoy_W_max'] = np.max(data['Aoy_W'],axis=2)
 acc['Aoy_W_max_by_std'] = acc['Aoy_W_max']/acc['Aoy_W_std']

 if Aoz_W:
 acc['Aoz_W_mean'] = np.mean(data['Aoz_W'],axis=2)
 acc['Aoz_W_std'] = np.std(data['Aoz_W'],axis=2)
 acc['Aoz_W_min'] = np.min(data['Aoz_W'],axis=2)
 acc['Aoz_W_max'] = np.max(data['Aoz_W'],axis=2)
 acc['Aoz_W_max_by_std'] = acc['Aoz_W_max']/acc['Aoz_W_std']

 if Aox_E:
 acc['Aox_E_mean'] = np.mean(data['Aox_E'],axis=2)
 acc['Aox_E_std'] = np.std(data['Aox_E'],axis=2)
 acc['Aox_E_min'] = np.min(data['Aox_E'],axis=2)
 acc['Aox_E_max'] = np.max(data['Aox_E'],axis=2)
 acc['Aox_E_max_by_std'] = acc['Aox_E_max']/acc['Aox_E_std']

 if Aoy_E:
 acc['Aoy_E_mean'] = np.mean(data['Aoy_E'],axis=2)
 acc['Aoy_E_std'] = np.std(data['Aoy_E'],axis=2)
 acc['Aoy_E_min'] = np.min(data['Aoy_E'],axis=2)
 acc['Aoy_E_max'] = np.max(data['Aoy_E'],axis=2)
 acc['Aoy_E_max_by_std'] = acc['Aoy_E_max']/acc['Aoy_E_std']

 if Aoz_E:
 acc['Aoz_E_mean'] = np.mean(data['Aoz_E'],axis=2)
 acc['Aoz_E_std'] = np.std(data['Aoz_E'],axis=2)
 acc['Aoz_E_min'] = np.min(data['Aoz_E'],axis=2)
 acc['Aoz_E_max'] = np.max(data['Aoz_E'],axis=2)
 acc['Aoz_E_max_by_std'] = acc['Aoz_E_max']/acc['Aoz_E_std']

 if centr:
 acc['Aox_C_mean'] = np.mean((data['Aox_W']+data['Aox_E'])/2,axis
 acc['Aox_C_std'] = np.std((data['Aox_W']+data['Aox_E'])/2,axis=2

 acc['Aox_C_min'] = np.min((data['Aox_W']+data['Aox_E'])/2,axis=2
 acc['Aox_C_max'] = np.max((data['Aox_W']+data['Aox_E'])/2,axis=2
 acc['Aox_C_max_by_std'] = acc['Aox_C_max']/acc['Aox_C_std']

 acc['Aoy_C_mean'] = np.mean((data['Aoy_W']+data['Aoy_E'])/2,axis
 acc['Aoy_C_std'] = np.std((data['Aoy_W']+data['Aoy_E'])/2,axis=2
 acc['Aoy_C_min'] = np.min((data['Aoy_W']+data['Aoy_E'])/2,axis=2
 acc['Aoy_C_max'] = np.max((data['Aoy_W']+data['Aoy_E'])/2,axis=2
 acc['Aoy_C_max_by_std'] = acc['Aoy_C_max']/acc['Aoy_C_std']

 acc['Aoz_C_mean'] = np.mean((data['Aoz_W']+data['Aoz_E'])/2,axis
 acc['Aoz_C_std'] = np.std((data['Aoz_W']+data['Aoz_E'])/2,axis=2
 acc['Aoz_C_min'] = np.min((data['Aoz_W']+data['Aoz_E'])/2,axis=2
 acc['Aoz_C_max'] = np.max((data['Aoz_W']+data['Aoz_E'])/2,axis=2
 acc['Aoz_C_max_by_std'] = acc['Aoz_C_max']/acc['Aoz_C_std']

 if theta:
 acc['theta_mean'] = np.mean(np.rad2deg(np.arctan(((data['Aoz_W']
 acc['theta_std'] = np.std(np.rad2deg(np.arctan(((data['Aoz_W'] -
 acc['theta_min'] = np.min(np.rad2deg(np.arctan(((data['Aoz_W'] -
 acc['theta_max'] = np.max(np.rad2deg(np.arctan(((data['Aoz_W'] -
 acc['theta_max_by_std'] = acc['theta_C_max']/acc['theta_C_std']

 if T:
 weather['T_mean'] = np.mean(data['T'],axis=1)
 weather['T_std'] = np.std(data['T'],axis=1)
 weather['T_min'] = np.min(data['T'],axis=1)
 weather['T_max'] = np.max(data['T'],axis=1)

 if P:
 weather['P_mean'] = np.mean(data['P'],axis=1)
 weather['P_std'] = np.std(data['P'],axis=1)
 weather['P_min'] = np.min(data['P'],axis=1)
 weather['P_max'] = np.max(data['P'],axis=1)

 if Hum:
 weather['Hum_mean'] = np.mean(data['Hum'],axis=1)
 weather['Hum_std'] = np.std(data['Hum'],axis=1)
 weather['Hum_min'] = np.min(data['Hum'],axis=1)
 weather['Hum_max'] = np.max(data['Hum'],axis=1)
 if Turb:
 if H:
 anemo['H_turb'] = anemo['H_std']/np.sqrt(np.square(anemo['H_mean
 if W:
 anemo['W_turb'] = np.abs(anemo['W_std']/np.sqrt(np.square(anemo[
 if Vx:
 anemo['Vx_turb'] = np.abs(anemo['Vx_std']/np.sqrt(np.square(anem
 if Vy:
 anemo['Vy_turb'] = np.abs(anemo['Vy_std']/np.sqrt(np.square(anem

 if Upwind:
 # Create boolean arrays determening if a sensor is up- or downwind
 # at each datapoint, depending on direction measurement.
 anemo['Upwind'] = np.zeros(anemo_shape)
 for ind,anemo_name in enumerate(anemo_names):
 if anemo_name.endswith('W') or anemo_name.endswith('Wb') or anemo_na
 anemo['Upwind'][ind] = np.where(anemo['Dir_mean'][ind]>=180,1,0)
 elif anemo_name.endswith('E') or anemo_name.endswith('Eb') or anemo_
 anemo['Upwind'][ind] = np.where(anemo['Dir_mean'][ind]<180,1,0)
 anemo['Downwind'] = (~anemo['Upwind'].astype(bool)).astype(int)

 if Hanger_num or y_pos:
 anemo['Hanger_num'] = np.zeros(anemo_shape)

 acc['Hanger_num'] = np.zeros(acc_shape)
 for ind,anemo_name in enumerate(anemo_names):
 if anemo_name.startswith('H'):
 anemo['Hanger_num'][ind] = np.repeat(int(anemo_name[1:3]),anemo_
 elif anemo_name.startswith('S'):
 anemo['Hanger_num'][ind] = np.repeat(int(self.n_hangers+1),anemo
 for ind,acc_name in enumerate(acc_names):
 if acc_name.startswith('H'):
 acc['Hanger_num'][ind] = np.repeat(int(acc_name[1:3]),acc_shape[
 elif acc_name.startswith('S'):
 acc['Hanger_num'][ind] = np.repeat(int(self.n_hangers+1),acc_sha

 if y_pos:
 anemo['y_pos'] = np.where(anemo['Hanger_num']==0,self.tower_dist,np.wher
 acc['y_pos'] = np.where(acc['Hanger_num']==0,self.tower_dist,np.where(ac

 if WestEast:
 anemo['West'] = np.zeros(anemo_shape)
 anemo['East'] = np.zeros(anemo_shape)
 for ind,anemo_name in enumerate(anemo_names):
 if anemo_name.endswith('W') or anemo_name.endswith('Wt') or anemo_na
 anemo['West'][ind] = np.repeat(True,anemo_shape[1])
 anemo['East'][ind] = np.repeat(False,anemo_shape[1])
 elif anemo_name.endswith('E') or anemo_name.endswith('Et') or anemo_
 anemo['West'][ind] = np.repeat(False,anemo_shape[1])
 anemo['East'][ind] = np.repeat(True,anemo_shape[1])
 else: # Assume West for sensors without declaration as they might be
 anemo['West'][ind] = np.repeat(True,anemo_shape[1])
 anemo['East'][ind] = np.repeat(False,anemo_shape[1])
 # Not applicable for accelerometers.
 acc['West'] = np.zeros(acc_shape)
 acc['East'] = np.zeros(acc_shape)

 if TopBottom:
 anemo['Top'] = np.zeros(anemo_shape)
 anemo['Bottom'] = np.zeros(anemo_shape)
 for ind,anemo_name in enumerate(anemo_names):
 if anemo_name.endswith('Wb') or anemo_name.endswith('Eb') or anemo_n
 anemo['Top'][ind] = np.repeat(False,anemo_shape[1])
 anemo['Bottom'][ind] = np.repeat(True,anemo_shape[1])
 elif anemo_name.endswith('Wt') or anemo_name.endswith('Et'):
 anemo['Top'][ind] = np.repeat(True,anemo_shape[1])
 anemo['Bottom'][ind] = np.repeat(False,anemo_shape[1])
 else: # Assume Bottom for sensors without declaration as they might
 anemo['Top'][ind] = np.repeat(False,anemo_shape[1])
 anemo['Bottom'][ind] = np.repeat(True,anemo_shape[1])
 # Not applicable for accelerometers.
 acc['Top'] = np.zeros(acc_shape)
 acc['Bottom'] = np.zeros(acc_shape)

 if delete_data_after_import:
 # Delete original data after import to free up memory.
 del data
 gc.collect()

 return anemo_names, acc_names, time_array, t_array, anemo, acc, weather

 def define_units(self,accs_in_SI_units=True):
 """Method to convert units and define units of all measurements in a diction

 Parameters

 accs_in_SI_units : bool, default True

 Whether to have measurements from accelerometers in m/s (SI-unit) or µG

 """
 self.units = {}
 for key in self.anemo.keys():
 if key.startswith('H_') or key.startswith('W_') or key.startswith('Vx_')
 self.units[key]='[m/s]'
 elif key.startswith('Dir_') or key.startswith('AOA_') or key.startswith(
 self.units[key]='[°]'
 elif key.startswith('Tv_'):
 self.units[key]='[°C]'
 elif key.startswith('Upwind') or key.startswith('Downwind') or key.start
 self.units[key]=''
 elif key.startswith('y_pos'):
 self.units[key]='[m]'
 if key.endswith('_turb'):
 self.units[key]=''

 for key in self.weather.keys():
 if key.startswith('T'):
 self.units[key]='[°C]'
 elif key.startswith('P'):
 self.units[key]='[hPa]'
 elif key.startswith('Hum'):
 self.units[key]='[%]'

 for key in self.acc.keys():
 if key.startswith('Ao') and not key.endswith('_by_std'):
 if accs_in_SI_units:
 if self.acc_unit == 'µG':
 self.acc[key] = self.acc[key]*(1e-6*self.g)
 self.units[key]='[m s$^{-2}$]'
 else:
 if self.acc_unit == 'SI':
 self.acc[key] = self.acc[key]/(1e-6*self.g)
 self.units[key]='[µG]'
 elif key.startswith('theta') and not key.endswith('_by_std'):
 self.units[key]='[° s$^{-2}$]'
 elif key.endswith('_by_std'):
 self.units[key]=''

 if accs_in_SI_units:
 self.acc_unit = 'SI'
 else:
 self.acc_unit = 'µG'

 def load_data(self,print_data_structure=False,delete_data_after_import=True,igno
 """Wrapper-method to import and combine multiple days of data using `convert

 Convert Lysefjord Bridge dataExtracted.mat files imported via `scipy.io.load

 Parameters

 print_data_structure : bool, default False
 Print the structure of the original data. Primarily used for developemen
 delete_data_after_import : bool, default True
 Delete original data from memory after import to free up memory
 ignore_nans : bool, default True
 Ignores nans when calculating mean, std, min and max, using the remainin
 rename_H20_acc : bool, default True
 Rename accelerometers H20 to H24, as there seems to be a systematic erro
 replace_invalid : bool, default True

 Replace invalid sensor readings (outside of technical sensor range) with
 full_detail : bool, default False
 Keep full detail of data, sampled at 50Hz instead of resampling to every
 H ... TopBottom : bool, default True
 Select which part of the data should be imported or generated during imp

 See Also

 `convert_MATLAB`
 `define_units`
 """
 # Initialize with data of the first day in the list of file_names.
 print('Day',1,':',self.file_names[0][:-4][14:])
 temp_data = scipy.io.loadmat(self.file_path+self.file_names[0])
 if print_data_structure:
 print(temp_data)
 self.anemo_names, self.acc_names, self.time_array, self.t_array, self.anemo,
 del temp_data
 gc.collect()

 # Batch-processing of further days of data, if any,
 # with temporary variables being created for each day
 # and deleted afterwards to free up memory for processing of the next day.
 for day in range(1,len(self.file_names)):
 print('Day',day+1,':',self.file_names[day][:-4][14:])
 temp_data = scipy.io.loadmat(self.file_path+self.file_names[day])
 temp_anemo_names, temp_acc_names, temp_time_array, temp_t_array, temp_an

 del temp_data
 gc.collect()

 anemo_names,ind = np.unique(np.append(self.anemo_names,temp_anemo_names)
 self.anemo_names = anemo_names[np.argsort(ind)]

 acc_names,ind = np.unique(np.append(self.acc_names,temp_acc_names), retu
 self.acc_names = acc_names[np.argsort(ind)]

 for key in temp_anemo.keys():
 if key in self.anemo.keys():
 self.anemo[key] = np.hstack((self.anemo[key],temp_anemo[key]))
 else:
 self.anemo[key] = np.hstack((np.zeros_like(self.time_array),temp

 for key in temp_acc.keys():
 if key in self.acc.keys():
 self.acc[key] = np.hstack((self.acc[key],temp_acc[key]))
 else:
 self.acc[key] = np.hstack((np.zeros_like(self.time_array),temp_a

 for key in temp_weather.keys():
 if key in self.weather.keys():
 self.weather[key] = np.hstack((self.weather[key],temp_weather[ke
 else:
 self.weather[key] = np.hstack((np.zeros_like(self.time_array),te

 self.time_array = np.hstack((self.time_array, temp_time_array))
 self.t_array = np.hstack((self.t_array, temp_t_array))

 del temp_anemo_names, temp_acc_names, temp_time_array, temp_t_array, tem
 gc.collect()

 self.define_units(accs_in_SI_units)

 # Processing

 def find_invalid_sensors(self,data,threshold=0.5,lp_cutoff=np.inf,hp_cutoff=-np.
 """Helper-method for data cleaning finding invalid sensors in `data`.

 Parameters

 data : array_like
 Measurement data in which invalid sensors are to be found.
 threshold : float, default 0.5
 Fraction of data from a specific sensor that is allowed to be invalid be
 lp_cutoff : float or int, default np.inf
 Lowpass cutoff point: If a value is higher than `lp_cutoff`it is interpr
 hp_cutoff : float or int, default -np.inf
 Highpass cutoff point: If a value is lower than `hp_cutoff`it is interpr
 zeros : bool, default False
 Zeros are interpreted as invalid values.
 nans : bool, default True
 nans are interpreted as invalid values.
 lowpass : bool, default False
 Values above `lp_cutoff` are interpreted as invalid values.
 highpass : bool, default False
 Values below `hp_cutoff` are interpreted as invalid values.

 Returns

 invalid_sensor_id : array_like
 ids of invalid sensors.
 ok_sensor_id : array_like
 ids of ok sensors.

 See Also

 `find_common_ok_sensors`
 `remove_invalid_sensors`
 """
 invalid_sensor_id = np.array([])

 if zeros:
 potentially_invalid_sensors, count = np.unique(np.where(data==0)[0],retu
 invalid_sensor_id = np.unique(np.append(invalid_sensor_id,potentially_in

 if nans:
 potentially_invalid_sensors, count = np.unique(np.where(np.isnan(data))[
 invalid_sensor_id = np.unique(np.append(invalid_sensor_id,potentially_in

 if lowpass:
 potentially_invalid_sensors, count = np.unique(np.where(data>lp_cutoff)[
 invalid_sensor_id = np.unique(np.append(invalid_sensor_id,potentially_in

 if highpass:
 potentially_invalid_sensors, count = np.unique(np.where(data<hp_cutoff)[
 invalid_sensor_id = np.unique(np.append(invalid_sensor_id,potentially_in

 invalid_sensor_id = np.array([int(i) for i in invalid_sensor_id]).astype(int
 ok_sensor_id = np.array(list(set(np.arange(data.shape[0]))-(set(invalid_sens

 return invalid_sensor_id, ok_sensor_id

 def find_common_ok_sensors(self,ok_sensor_ids_s1,ok_sensor_ids_s2):
 """Method to find common ok sensors.

 Usefull for preparation of post-processing.

 Parameters

 ok_sensor_ids_s1 : list or array_like of ints
 ids of ok sensors from measurement type 1.
 ok_sensor_ids_s2 : list or array_like of ints
 ids of ok sensors from measurement type 2.

 Returns

 common_sensor_id : list
 Sensor ids of ok sensors in both sets of measurements.
 s1_ind : list
 Sensor indices of common ok sensors for measurement type 1.
 s2_ind : list
 Sensor indices of common ok sensors for measurement type 2.

 See Also

 `find_invalid_sensors`
 `get_ok_sensor_ind`
 """
 s1_ind = []
 for ind, sensor_id in enumerate(ok_sensor_ids_s1):
 if sensor_id in ok_sensor_ids_s2:
 s1_ind.append(ind)
 s2_ind = []
 for ind, sensor_id in enumerate(ok_sensor_ids_s2):
 if sensor_id in ok_sensor_ids_s1:
 s2_ind.append(ind)

 common_sensor_id = list(set(set(ok_sensor_ids_s1) & set(ok_sensor_ids_s2)))
 return common_sensor_id, s1_ind, s2_ind

 def remove_invalid_sensors(self,data,ok_sensor_id):
 """Helper-method for data cleaning removing invalid sensors from `data`.

 Parameters

 data : array_like
 Measurement data in which invalid sensors are to be removed.
 ok_sensor_id : array_like
 Index of ok sensors in measurement data.

 Returns

 data_cleaned : array_like
 `data` without invalid sensors.

 See Also

 `find_invalid_sensors`
 `find_common_ok_sensors`
 """
 if len(ok_sensor_id)>0:
 data_cleaned = data[ok_sensor_id]
 else:
 data_cleaned = []
 return data_cleaned

 def idx_data(self,data,nans=False,zeros=False,lp_cutoff=np.inf,hp_cutoff=-np.inf
 """Helper-method indexing data.

 Parameters

 data : array_like
 Measurement data in which data is to be indexed.

 lp_cutoff : float or int, default np.inf
 Lowpass cutoff point: If a value is higher than `lp_cutoff`it is indexed
 hp_cutoff : float or int, default -np.inf
 Highpass cutoff point: If a value is lower than `lh_cutoff`it is indexed
 nans : bool, default False
 Nans are indexed.
 zeros : bool, default False
 Zeros are indexed.
 lowpass : bool, default False
 Values above `lp_cutoff` are indexed.
 highpass : bool, default False
 Values below `hp_cutoff` are indexed.

 Returns

 idx : array_like
 Indices of data.
 """
 if len(data):
 idx = np.array([])
 if nans:
 idx = np.union1d(idx,np.argwhere(np.any(np.isnan(data[..., :]), axis
 if zeros:
 idx = np.union1d(idx,np.argwhere(np.any(data[..., :] == 0, axis=0)))
 if lowpass:
 idx = np.union1d(idx,np.argwhere(np.any(data[..., :] > lp_cutoff, ax
 if highpass:
 idx = np.union1d(idx,np.argwhere(np.any(data[..., :] < hp_cutoff, ax
 idx = np.unique(idx).astype(int)
 return idx
 else:
 raise ValueError('Data is empty.')

 def clean_data(self,delete_original_data=False,threshold=0.5,detailed_report=Fal
 """Wrapper-method for data cleaning using `find_invalid_sensors`, `remove_in

 Notes

 If `remove_invalid` is `True` in `load_data`, `clean_data` might not find mo

 Parameters

 delete_original_data : bool, default False
 Delete the original (un-cleaned) `data` to free up memory.
 threshold : float, default 0.5
 Fraction of data from a specific sensor that is allowed to be invalid be
 detailed_report : bool, default False
 Print out a detailed report of the data cleaning. Used for de-bugging an

 See Also

 `find_invalid_sensors`
 `find_common_ok_sensors`
 `get_ok_sensor_ind`
 `remove_invalid_sensors`
 `idx_data`
 """
 # Initialize dicts for cleaned data.
 self.anemo_cleaned = {}
 self.anemo_invalid_sensor_id = {}
 self.anemo_ok_sensor_id = {}
 self.acc_cleaned = {}
 self.acc_invalid_sensor_id = {}
 self.acc_ok_sensor_id = {}

 self.weather_cleaned = {}
 if self.acc_unit == 'µG':
 acc_thresh_unit_fact = 1e6
 else:
 acc_thresh_unit_fact = self.g

 # Anemometers
 for key in self.anemo.keys():
 # Find invalid sensors in each key.
 if key.startswith('H_m'):
 self.anemo_invalid_sensor_id[key], self.anemo_ok_sensor_id[key] = se
 elif key.startswith('Vx_m') or key.startswith('Vy_m') or key.startswith(
 self.anemo_invalid_sensor_id[key], self.anemo_ok_sensor_id[key] = se
 elif key.startswith('Dir_m'):
 self.anemo_invalid_sensor_id[key], self.anemo_ok_sensor_id[key] = se
 elif key.endswith('_std') or key.endswith('_turb'):
 self.anemo_invalid_sensor_id[key], self.anemo_ok_sensor_id[key] = se
 else:
 self.anemo_invalid_sensor_id[key], self.anemo_ok_sensor_id[key] = se

 # Combine invalid sensors from keys of same sensor.
 if not key.endswith('_turb'): # Not applicable for turbulence calculatio
 if key[:key.find('_')] not in self.anemo_invalid_sensor_id:
 self.anemo_invalid_sensor_id[key[:key.find('_')]] = self.anemo_i
 else:
 self.anemo_invalid_sensor_id[key[:key.find('_')]] = np.unique(np

 if len(self.anemo_ok_sensor_id[key]) == 0:
 print(key,'all sensors deemed invalid')
 try:
 del self.anemo_cleaned[key], self.anemo_invalid_sensor_id[key],
 except:
 print(key, 'already deleted')
 elif len(self.anemo_invalid_sensor_id[key]) == 0:
 if detailed_report:
 print(key,'all sensors deemed ok')
 else:
 if detailed_report:
 print(key,'ok sensors:',self.anemo_names[self.anemo_ok_sensor_id
 print(key,'invalid sensors:',self.anemo_names[self.anemo_invalid

 # Remove invalid sensors for all keys of same sensor.
 for key in self.anemo.keys():

 self.anemo_invalid_sensor_id[key] = self.anemo_invalid_sensor_id[key[:ke

 if key.startswith('AOA') or key.endswith('_turb'): # AOA and turbulence
 self.anemo_invalid_sensor_id[key] = np.unique(np.append(self.anemo_i
 self.anemo_invalid_sensor_id[key] = np.unique(np.append(self.anemo_i
 elif key.startswith('Vx') or key.startswith('Vy') or key.startswith('Dir
 self.anemo_invalid_sensor_id[key] = np.unique(np.append(self.anemo_i

 self.anemo_ok_sensor_id[key] = np.array(list(set(np.arange(self.anemo[ke
 self.anemo_cleaned[key] = self.remove_invalid_sensors(self.anemo[key],se

 if len(self.anemo_ok_sensor_id[key]) == 0:
 print(key,'all sensors deemed invalid')
 try:
 del self.anemo_cleaned[key], self.anemo_invalid_sensor_id[key],
 except:
 print(key, 'already deleted')
 elif len(self.anemo_invalid_sensor_id[key]) == 0:
 if detailed_report:
 print(key,'all sensors deemed ok')

 else:
 if detailed_report:
 print(key,'ok sensors:',self.anemo_names[self.anemo_ok_sensor_id
 print(key,'invalid sensors:',self.anemo_names[self.anemo_invalid

 # Accelerometers
 for key in self.acc.keys():
 # Find invalid sensors in each key.
 if key.endswith('_max'):
 if key.startswith('Aoz_'):
 self.acc_invalid_sensor_id[key], self.acc_ok_sensor_id[key] = se
 elif key.startswith('Ao'):
 self.acc_invalid_sensor_id[key], self.acc_ok_sensor_id[key] = se
 else:
 self.acc_invalid_sensor_id[key], self.acc_ok_sensor_id[key] = se
 elif key.endswith('_min'):
 if key.startswith('Aoz_'):
 self.acc_invalid_sensor_id[key], self.acc_ok_sensor_id[key] = se
 elif key.startswith('Ao'):
 self.acc_invalid_sensor_id[key], self.acc_ok_sensor_id[key] = se
 else:
 self.acc_invalid_sensor_id[key], self.acc_ok_sensor_id[key] = se
 else:
 self.acc_invalid_sensor_id[key], self.acc_ok_sensor_id[key] = self.f

 # Combine invalid sensors from keys of same sensor.
 if key.startswith('Aox_W') or key.startswith('Aoy_W') or key.startswith(
 if 'W_all' not in self.acc_invalid_sensor_id:
 self.acc_invalid_sensor_id['W_all'] = self.acc_invalid_sensor_id
 else:
 self.acc_invalid_sensor_id['W_all'] = np.unique(np.append(self.a
 elif key.startswith('Aox_E') or key.startswith('Aoy_E') or key.startswit
 if 'E_all' not in self.acc_invalid_sensor_id:
 self.acc_invalid_sensor_id['E_all'] = self.acc_invalid_sensor_id
 else:
 self.acc_invalid_sensor_id['E_all'] = np.unique(np.append(self.a
 elif key.startswith('Aox_C') or key.startswith('Aoy_C') or key.startswit
 if 'C_all' not in self.acc_invalid_sensor_id:
 self.acc_invalid_sensor_id['C_all'] = self.acc_invalid_sensor_id
 else:
 self.acc_invalid_sensor_id['C_all'] = np.unique(np.append(self.a

 if len(self.acc_ok_sensor_id[key]) == 0:
 print(key,'all sensors deemed invalid')
 try:
 del self.acc_cleaned[key], self.acc_invalid_sensor_id[key], self
 except:
 print(key, 'already deleted')
 elif len(self.acc_invalid_sensor_id[key]) == 0:
 if detailed_report:
 print(key,'all sensors deemed ok')
 else:
 if detailed_report:
 print(key,'ok sensors:',self.acc_names[self.acc_ok_sensor_id[key
 print(key,'invalid sensors:',self.acc_names[self.acc_invalid_sen

 # Remove invalid sensors for all keys of same sensor.
 for key in self.acc.keys():
 if key.startswith('Aox_W') or key.startswith('Aoy_W') or key.startswith(
 self.acc_invalid_sensor_id[key] = self.acc_invalid_sensor_id['W_all'
 elif key.startswith('Aox_E') or key.startswith('Aoy_E') or key.startswit
 self.acc_invalid_sensor_id[key] = self.acc_invalid_sensor_id['E_all'
 elif key.startswith('Aox_C') or key.startswith('Aoy_C') or key.startswit
 self.acc_invalid_sensor_id[key] = self.acc_invalid_sensor_id['C_all'

 if key.startswith('Aox_C'): #A ox_C dependent on Aox_W and Aox_E.
 self.acc_invalid_sensor_id[key] = np.unique(np.append(self.acc_inval
 self.acc_invalid_sensor_id[key] = np.unique(np.append(self.acc_inval
 elif key.startswith('Aoy_C'): # Aoy_C dependent on Aoy_W and Aoy_E.
 self.acc_invalid_sensor_id[key] = np.unique(np.append(self.acc_inval
 self.acc_invalid_sensor_id[key] = np.unique(np.append(self.acc_inval
 if key.startswith('Aoz_C') or key.startswith('theta'): # Aoz_C and theta
 self.acc_invalid_sensor_id[key] = np.unique(np.append(self.acc_inval
 self.acc_invalid_sensor_id[key] = np.unique(np.append(self.acc_inval

 self.acc_ok_sensor_id[key] = np.array(list(set(np.arange(self.acc[key].s
 self.acc_cleaned[key] = self.remove_invalid_sensors(self.acc[key],self.a

 if len(self.acc_ok_sensor_id[key]) == 0:
 print(key,'all sensors deemed invalid')
 try:
 del self.acc_cleaned[key], self.acc_invalid_sensor_id[key], self
 except:
 print(key, 'already deleted')
 elif len(self.acc_invalid_sensor_id[key]) == 0:
 if detailed_report:
 print(key,'all sensors deemed ok')
 else:
 if detailed_report:
 print(key,'ok sensors:',self.acc_names[self.acc_ok_sensor_id[key
 print(key,'invalid sensors:',self.acc_names[self.acc_invalid_sen

 # Find outliers in remaining sensors.
 idx = np.array([])

 # Anemometers
 for key in self.anemo_cleaned.keys():
 if key.startswith('Dir_m'):
 idx = np.union1d(idx,self.idx_data(self.anemo_cleaned[key],nans=True
 elif key.startswith('H_m'):
 idx = np.union1d(idx,self.idx_data(self.anemo_cleaned[key],nans=True
 elif key.startswith('Vx_m') or key.startswith('Vy_m') or key.startswith(
 idx = np.union1d(idx,self.idx_data(self.anemo_cleaned[key],nans=True
 elif key.endswith('_std') or key.endswith('_turb'):
 idx = np.union1d(idx,self.idx_data(self.anemo_cleaned[key],nans=True
 else:
 idx = np.union1d(idx,self.idx_data(self.anemo_cleaned[key],nans=True
 if detailed_report:
 print(key,' cummulative data loss:',np.round(100*(len(idx)/self.time

 # Accelerometers
 for key in self.acc_cleaned.keys():
 if key.endswith('_max'):
 if key.startswith('Aoz_'):
 idx = np.union1d(idx,self.idx_data(self.acc_cleaned[key],nans=Tr
 elif key.startswith('Ao'):
 idx = np.union1d(idx,self.idx_data(self.acc_cleaned[key],nans=Tr
 else:
 idx = np.union1d(idx,self.idx_data(self.acc_cleaned[key],nans=Tr
 elif key.endswith('_min'):
 if key.startswith('Aoz_'):
 idx = np.union1d(idx,self.idx_data(self.acc_cleaned[key],nans=Tr
 elif key.startswith('Ao'):
 idx = np.union1d(idx,self.idx_data(self.acc_cleaned[key],nans=Tr
 else:
 idx = np.union1d(idx,self.idx_data(self.acc_cleaned[key],nans=Tr
 else:
 idx = np.union1d(idx,self.idx_data(self.acc_cleaned[key],nans=True,z

 idx = idx.astype(int)

 # Remove outliers from all sensors.
 self.time_array_cleaned = np.delete(self.time_array,idx,axis=0)
 self.t_array_cleaned = np.delete(self.t_array,idx,axis=0)

 for key in self.weather.keys():
 self.weather_cleaned[key] = np.delete(self.weather[key],idx,axis=0)

 for key in self.anemo_cleaned.keys():
 self.anemo_cleaned[key] = np.delete(self.anemo_cleaned[key],idx,axis=1)

 for key in self.acc_cleaned.keys():
 self.acc_cleaned[key] = np.delete(self.acc_cleaned[key],idx,axis=1)

 print('Total data loss:',np.round(100*(1-self.time_array_cleaned.shape[0]/se

 # Delete original data after cleaning to free up memory.
 if delete_original_data:
 del self.anemo, self.acc, self.weather, self.time_array, self.t_array, i
 gc.collect()

 def get_ok_sensor_ind(self,sensor_names=[],sensor_type='anemo',key='H_mean'):
 """Method to get sensor indices of ok sensors for a given `key`.

 Parameters

 sensor_names : list or str, optional
 List of sensor names to find in ok sensors of type `sensor_type` for `ke
 sensor_type : {'anemo', 'acc'}
 Type of the sensors.
 key : str, default 'H_mean'
 Key of measurement type from sensor.

 Returns

 s_ind : list
 Sensor indices of ok sensors for a given `key`.

 Notes

 Requires `anemo_ok_sensor_id` or `acc_ok_sensor_id`.
 """
 s_ind = []
 if len(sensor_names):
 if type(sensor_names)!=list:
 if type(sensor_names)==str:
 sensor_names=[sensor_names]
 else:
 raise TypeError('sensor_names must be list or str.')
 if sensor_type == 'anemo':
 for sensor in sensor_names:
 if sensor in self.anemo_names[self.anemo_ok_sensor_id[key]]:
 s_ind.append(np.where(self.anemo_names[self.anemo_ok_sensor_
 else:
 raise ValueError(sensor+' not in ok anemometers of key '+key
 elif sensor_type == 'acc':
 for sensor in sensor_names:
 if sensor in self.acc_names[self.acc_ok_sensor_id[key]]:
 s_ind.append(np.where(self.acc_names[self.acc_ok_sensor_id[k
 else:
 raise ValueError(sensor+' not in ok accelerometers of key '+
 else:
 raise ValueError('sensor_type must be "anemo" or "acc".')

 else:
 raise ValueError('No sensor_names provided')
 return(s_ind)

 def find_traffic(self,traffic_thresh=8,cleaned=True):
 """Method to find traffic dominated vibrations in accelerometers data using

 Parameters

 traffic_thresh : float, default 8
 Threshold for Aoz_C_max_by_std to use for filtering. Recommended 6 ... 8
 cleaned : bool, default True
 Create the array `traffic_cleaned` for the cleaned data.

 Notes

 Requires `acc['Aoz_C_max_by_std']`.
 """
 if 'Aoz_C_max_by_std' in self.acc.keys():
 self.traffic = np.zeros(self.time_array.shape[0])
 idx = self.idx_data(self.acc['Aoz_C_max_by_std'],zeros=False,lp_cutoff=t
 self.traffic[idx] = 1

 if cleaned:
 self.traffic_cleaned = np.zeros(self.time_array_cleaned.shape[0])
 idx_cleaned = self.idx_data(self.acc_cleaned['Aoz_C_max_by_std'],zer
 self.traffic_cleaned[idx_cleaned] = 1
 else:
 raise KeyError('find_traffic requires Aoz_C_max_by_std.')

 def feature_time(self,cleaned=True):
 """Method to create time arrays in days, hours, minutes and seconds, startin

 Parameters

 cleaned : bool, default True
 Create the time arrays for the cleaned data aswell.
 """
 self.days = self.time_array-self.time_array[0]
 self.hours = self.days*24
 self.minutes = self.hours*60
 self.seconds = self.minutes*60

 if cleaned:
 self.days_cleaned = self.time_array_cleaned-self.time_array_cleaned[0]
 self.hours_cleaned = self.days_cleaned*24
 self.minutes_cleaned = self.hours_cleaned*60
 self.seconds_cleaned = self.minutes_cleaned*60

 def filter_data(self,data,prior_idxs=None,nans=False,zeros=False,lp_cutoff=np.in
 """Method to filter data.

 Parameters

 data : array_like
 Measurement data in which data is to be indexed.
 prior_idxs : array_like, optional
 Indices of prior filterings with which new indices will be combined.
 lp_cutoff : float or int, default np.inf
 Lowpass cutoff point: If a value is lower than `lp_cutoff`it is indexed
 hp_cutoff : float or int, default -np.inf
 Highpass cutoff point: If a value is higher than `lh_cutoff`it is indexe
 nans : bool, default False
 Nans are indexed.

 zeros : bool, default False
 Zeros are indexed.
 lowpass : bool, default False
 Values above `lp_cutoff` are indexed.
 highpass : bool, default False
 Values below `hp_cutoff` are indexed.
 method : {'all','any'}, default 'all'
 Method to use for filtering. Index a datapoint when the filtercondition
 mode : {'and','or'}, default 'and'
 Mode in which indices are to be combined. 'and' if all filterconditions
 prior_mode : {'and','or'}, default 'and'
 Mode in which indices are to be combined with indices of prior filtering

 Returns

 idx : array_like
 Indices of filtered data.

 See Also

 `idx_data`
 """
 if len(data):
 if mode == 'or':
 idx = np.array([])
 elif mode == 'and':
 idx = np.arange(np.shape(data)[-1])
 else:
 if type(mode)==str:
 raise ValueError('Incompatible mode. mode needs to be "and" or "
 else:
 raise TypeError('mode needs to be a string, either "and" or "or"

 if len(np.shape(data))==1:
 if mode == 'or':
 if nans:
 idx = np.union1d(idx,np.where(np.isnan(data)))
 if zeros:
 idx = np.union1d(idx,np.where(data[..., :] == 0))
 if lowpass:
 idx = np.union1d(idx,np.where(data[..., :] < lp_cutoff))
 if highpass:
 idx = np.union1d(idx,np.where(data[..., :] > hp_cutoff))
 elif mode == 'and':
 if nans:
 idx = np.intersect1d(idx,np.where(np.isnan(data)))
 if zeros:
 idx = np.intersect1d(idx,np.where(data[..., :] == 0))
 if lowpass:
 idx = np.intersect1d(idx,np.where(data[..., :] < lp_cutoff))
 if highpass:
 idx = np.intersect1d(idx,np.where(data[..., :] > hp_cutoff))
 else:
 if method == 'all':
 if mode == 'or':
 if nans:
 idx = np.union1d(idx,np.argwhere(np.all(np.isnan(data[..
 if zeros:
 idx = np.union1d(idx,np.argwhere(np.all(data[..., :] ==
 if lowpass:
 idx = np.union1d(idx,np.argwhere(np.all(data[..., :] < l
 if highpass:
 idx = np.union1d(idx,np.argwhere(np.all(data[..., :] > h
 elif mode == 'and':

 if nans:
 idx = np.intersect1d(idx,np.argwhere(np.all(np.isnan(dat
 if zeros:
 idx = np.intersect1d(idx,np.argwhere(np.all(data[..., :]
 if lowpass:
 idx = np.intersect1d(idx,np.argwhere(np.all(data[..., :]
 if highpass:
 idx = np.intersect1d(idx,np.argwhere(np.all(data[..., :]

 elif method == 'any':
 if mode == 'or':
 if nans:
 idx = np.union1d(idx,np.argwhere(np.any(np.isnan(data[..
 if zeros:
 idx = np.union1d(idx,np.argwhere(np.any(data[..., :] ==
 if lowpass:
 idx = np.union1d(idx,np.argwhere(np.any(data[..., :] < l
 if highpass:
 idx = np.union1d(idx,np.argwhere(np.any(data[..., :] > h
 elif mode == 'and':
 if nans:
 idx = np.intersect1d(idx,np.argwhere(np.any(np.isnan(dat
 if zeros:
 idx = np.intersect1d(idx,np.argwhere(np.any(data[..., :]
 if lowpass:
 idx = np.intersect1d(idx,np.argwhere(np.any(data[..., :]
 if highpass:
 idx = np.intersect1d(idx,np.argwhere(np.any(data[..., :]
 else:
 if type(method)==str:
 raise ValueError('Incompatible method. method needs to be "a
 else:
 raise TypeError('method needs to be a string, either "any" o

 if type(prior_idxs)!=type(None):
 if prior_mode == 'or':
 idx = np.union1d(idx, np.array(prior_idxs).astype(int))
 elif prior_mode == 'and':
 idx = np.intersect1d(idx,np.array(prior_idxs).astype(int))
 else:
 if type(prior_mode)==str:
 raise ValueError('Incompatible prior_mode. prior_mode needs
 else:
 raise TypeError('prior_mode needs to be a string, either "an

 idx = np.unique(idx).astype(int)
 return idx
 else:
 raise ValueError('data is empty.')

 # Post-processing
 def bridge_layout(self,b_anemo_height_above_deck=6,t_anemo_height_above_deck=10,
 """Method to create a bridge layout showing the sensor positions for the sel

 Parameters

 b_anemo_height_above_deck : float, default 6
 Height above the bridge deck in meters, at which the bottom row anemomet
 t_anemo_height_above_deck : float, default 10
 Height above the bridge deck in meters, at which the top row anemometers
 d_acc_height_above_deck : float, default -0.3
 Default height above the bridge deck in meters, at which the acceleromet
 top_view : bool, default True
 Create a top-view layout of the bridge.

 side_view : bool, default True
 Create a side-view layout of the bridge.
 show_cables : bool, default True
 Show the main supporting cables of the brige.
 show_deck : bool, default True
 Show the deck of the brige.
 show_girder : bool, default True
 Show the bridge girder.
 show_hangers : bool, default True
 Show the hangers on which the deck is suspended.
 show_towers : bool, default True
 Show the north- and south-tower of the bridge.
 show_COMs : bool, default False
 Show the center of mass for each element of the bridge model.
 show_joints : bool, default False
 Show the joints between elements of the bridge model.
 show_sensors : bool, default True
 Show the locations of anemometers and accelerometers that were active on
 show_water : bool, default True
 Show the waterline in the side-view layout.
 invert_xaxis : bool, default True
 Invert the x-axis to start at hanger 1 (at the north tower) from the lef
 title_suffix : str, optional
 Add a suffix to the title.
 save : bool, default False:
 Save the plot in ../images/. Note: Requires the prior existence of that
 """
 # Calculate y_ and z_ positions of cables and deck.
 y_ = np.zeros(self.n_hangers+2)
 y_[1:-1] = np.linspace(self.first_hanger_y_tower_dist,self.tower_dist-self.l
 y_[-1] = self.tower_dist
 z_cable = np.zeros_like(y_)
 z_cable[0] = z_cable[-1] = self.h_towers
 z_cable[len(z_cable)//2] = self.h_towers - self.sag

 def parabola(x,a,h,k):
 y = a*np.square(x-h)+k
 return y

 h_cable = self.tower_dist/2
 k_cable = self.h_towers - self.sag

 popt_cable, pcov_cable = scipy.optimize.curve_fit(parabola,[y_[0],y_[(self.n
 z_cable = parabola(y_,popt_cable[0],h_cable,k_cable)

 z_deck = np.zeros_like(z_cable)
 z_deck[(self.n_hangers+2)//2] = self.mid_span_deck_height
 z_deck[0] = self.tower_1_deck_support_height+self.girder_height
 z_deck[-1] = self.tower_2_deck_support_height+self.girder_height

 h_deck = y_[(self.n_hangers+2)//2]
 k_deck = z_deck[(self.n_hangers+2)//2]

 popt_deck, pcov_deck = scipy.optimize.curve_fit(parabola,[y_[0],y_[(self.n_h
 z_deck = parabola(y_,popt_deck[0],popt_deck[1],popt_deck[2])

 # Get sensor positions from sensor names.
 anemo_hanger_num = np.zeros(len(self.anemo_names))
 acc_hanger_num = np.zeros(len(self.acc_names))
 x_anemometer = np.zeros(len(self.anemo_names))
 anemo_height_above_deck = np.zeros(len(self.anemo_names))
 acc_height_above_deck = np.zeros(len(self.acc_names))

 for ind,anemo_name in enumerate(self.anemo_names):

 if anemo_name.startswith('H'):
 anemo_hanger_num[ind] = int(anemo_name[1:3])
 elif anemo_name.startswith('N'):
 anemo_hanger_num[ind] = 0
 anemo_height_above_deck[ind] = self.h_towers-self.tower_2_deck_suppo
 x_anemometer[ind] = -self.cable_x_dist/2
 elif anemo_name.startswith('S'):
 anemo_hanger_num[ind] = self.n_hangers+1
 anemo_height_above_deck[ind] = self.h_towers-self.tower_1_deck_suppo
 x_anemometer[ind] = -self.cable_x_dist/2
 if anemo_name.endswith('W') or anemo_name.endswith('Wb') or anemo_name.e
 x_anemometer[ind] = -self.cable_x_dist/2
 elif anemo_name.endswith('E') or anemo_name.endswith('Eb') or anemo_name
 x_anemometer[ind] = self.cable_x_dist/2
 if anemo_name.endswith('W') or anemo_name.endswith('Wb') or anemo_name.e
 anemo_height_above_deck[ind] = b_anemo_height_above_deck
 elif anemo_name.endswith('Wt') or anemo_name.endswith('Et'):
 anemo_height_above_deck[ind] = t_anemo_height_above_deck

 for ind,acc_name in enumerate(self.acc_names):
 if acc_name.startswith('H'):
 acc_hanger_num[ind] = int(acc_name[1:3])
 acc_height_above_deck[ind] = d_acc_height_above_deck
 elif acc_name.startswith('N'):
 acc_hanger_num[ind] = 0
 acc_height_above_deck[ind] = self.h_towers-self.tower_2_deck_support
 elif acc_name.startswith('S'):
 acc_hanger_num[ind] = self.n_hangers+1
 acc_height_above_deck[ind] = self.h_towers-self.tower_1_deck_support

 y_anemometer = y_[np.subtract(self.n_hangers+1, anemo_hanger_num).astype(int
 y_accelerometer = y_[np.subtract(self.n_hangers+1, acc_hanger_num).astype(in

 z_anemometer = np.interp(y_anemometer,y_,z_deck) + anemo_height_above_deck
 z_accelerometer = np.interp(y_accelerometer,y_,z_deck) + acc_height_above_de

 # Calculate COMs, joint positions, lengths and masses.
 hanger_COM = [y_[1:-1],(z_cable[1:-1]+z_deck[1:-1])/2]
 hanger_top_joint = [y_[1:-1],z_cable[1:-1]]
 hanger_bottom_joint = [y_[1:-1],z_deck[1:-1]]
 hanger_length = z_cable[1:-1]-z_deck[1:-1]
 hanger_mass = self.hanger_section_weight*hanger_length

 cable_segment_COM = np.zeros((2,self.n_hangers+1))
 cable_segment_length = np.zeros(self.n_hangers+1)

 deck_segment_COM = np.zeros((2,self.n_hangers+1))
 deck_segment_length = np.zeros(self.n_hangers+1)

 for ind in range(self.n_hangers+1):
 cable_segment_COM[0][ind] = (y_[ind+1]+y_[ind])/2
 cable_segment_COM[1][ind] = (z_cable[ind+1]+z_cable[ind])/2
 cable_segment_length[ind] = np.linalg.norm(x=[np.array([y_[ind+1],z_cabl

 deck_segment_COM[0][ind] = (y_[ind+1]+y_[ind])/2
 deck_segment_COM[1][ind] = ((z_deck[ind+1]-(self.girder_height/2))+(z_de
 deck_segment_length[ind] = np.linalg.norm(x=[np.array([y_[ind+1],z_deck[

 cable_segment_south_joint = [y_[:-1],z_cable[:-1]]
 cable_segment_north_joint = [y_[1:],z_cable[1:]]
 cable_segment_mass = self.cable_section_weight*cable_segment_length

 deck_segment_south_joint = [y_[:-1],z_deck[:-1]]
 deck_segment_north_joint = [y_[1:],z_deck[1:]]

 deck_segment_mass = self.girder_section_weight*deck_segment_length

 tot_cable_length = np.sum(cable_segment_length)
 tot_deck_length = np.sum(deck_segment_length)
 tot_cable_mass = np.sum(cable_segment_mass)
 tot_deck_mass = np.sum(deck_segment_mass)

 # Create bridge layout.
 if top_view:
 plt.figure(figsize=(12,4))
 if show_cables:
 plt.plot(y_,np.repeat(self.cable_x_dist/2,len(y_)),'-',color='b',lab
 plt.plot(y_,np.repeat(-self.cable_x_dist/2,len(y_)),'-',color='g',la

 if show_deck:
 plt.plot(y_,np.repeat(self.deck_width/2,len(y_)),'-',color='dimgrey'
 plt.plot(y_,np.repeat(0,len(y_)),'--',color='dimgrey',label='centerl
 plt.plot(y_,np.repeat(-self.deck_width/2,len(y_)),'-',color='dimgrey
 plt.fill_between(y_,self.deck_width/2,-self.deck_width/2,color='ligh

 if show_girder:
 plt.plot(y_,np.repeat(self.girder_width/2,len(y_)),'--',color='darkg
 plt.plot(y_,np.repeat(-self.girder_width/2,len(y_)),'--',color='dark

 if show_hangers:
 plt.plot(y_,np.repeat(self.cable_x_dist/2,len(y_)),'.',color='b',lab
 plt.plot(y_,np.repeat(-self.cable_x_dist/2,len(y_)),'.',color='g',la

 if show_towers:
 plt.plot([y_[0]],self.cable_x_dist/2,'d',ms=10,color='black',label='
 plt.plot([y_[0]],-self.cable_x_dist/2,'d',ms=10,color='black')
 plt.plot([y_[-1]],self.cable_x_dist/2,'d',ms=10,color='red',label='N
 plt.plot([y_[-1]],-self.cable_x_dist/2,'d',ms=10,color='red')

 if show_COMs:
 plt.plot(hanger_COM[0],np.repeat(self.cable_x_dist/2,len(hanger_COM[
 plt.plot(hanger_COM[0],np.repeat(-self.cable_x_dist/2,len(hanger_COM
 plt.plot(cable_segment_COM[0],np.repeat(self.cable_x_dist/2,len(cabl
 plt.plot(cable_segment_COM[0],np.repeat(-self.cable_x_dist/2,len(cab
 plt.plot(deck_segment_COM[0],np.repeat(0,len(deck_segment_COM[0])),'

 if show_joints:
 plt.plot(hanger_top_joint[0],np.repeat(self.cable_x_dist/2,len(hange
 plt.plot(hanger_top_joint[0],np.repeat(-self.cable_x_dist/2,len(hang
 plt.plot(hanger_bottom_joint[0],np.repeat(self.cable_x_dist/2,len(ha
 plt.plot(hanger_bottom_joint[0],np.repeat(-self.cable_x_dist/2,len(h

 plt.plot(cable_segment_south_joint[0],np.repeat(self.cable_x_dist/2,
 plt.plot(cable_segment_south_joint[0],np.repeat(-self.cable_x_dist/2
 plt.plot(cable_segment_north_joint[0],np.repeat(self.cable_x_dist/2,
 plt.plot(cable_segment_north_joint[0],np.repeat(-self.cable_x_dist/2

 plt.vlines(deck_segment_south_joint[0],-self.deck_width/2,self.deck_
 plt.vlines(deck_segment_north_joint[0],-self.deck_width/2,self.deck_

 if show_sensors:
 plt.plot(y_accelerometer,np.repeat(self.acc_x_dist_from_centerline,l
 plt.plot(y_accelerometer,np.repeat(-self.acc_x_dist_from_centerline,
 plt.plot(y_anemometer,x_anemometer,'^',ms=10,mec='black',color='gray

 if xticks_h_num:
 xtick_labels = list(np.arange(0,self.n_hangers+2,1))[::-1]
 xtick_labels[0] = 'S_Tower'
 xtick_labels[-1] = 'N_Tower'

 plt.xticks(y_,xtick_labels)
 plt.xlabel('hanger number')
 else:
 plt.xticks(np.arange(0,self.tower_dist+10,10),np.arange(0,self.tower
 plt.xlabel('distance [m]')

 if invert_xaxis:
 plt.xlim(self.tower_dist+1,-1)
 else:
 plt.xlim(-1,self.tower_dist+1)

 plt.yticks(np.arange(-1*np.round(max((self.girder_width,self.cable_x_dis
 plt.ylim(-1.5*np.round(max((self.girder_width,self.cable_x_dist,self.dec
 plt.legend(bbox_to_anchor=(1, 0.5), loc='center left')
 plt.grid()
 plt.ylabel('distance from centerline [m]')

 plt.title(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][:-4][14
 if save:
 plt.savefig(('../images/'+self.file_names[0][:-4]+'-'+self.file_name
 plt.show()
 plt.close()
 gc.collect()

 if side_view:
 plt.figure(figsize=(12,4))
 if show_cables:
 if invert_xaxis:
 plt.plot(y_,z_cable,'-',color='g',label='cable')
 else:
 plt.plot(y_,z_cable,'-',color='b',label='cable')

 if show_deck:
 plt.plot(y_,z_deck,'-',color='dimgrey',label='deck')

 if show_girder:
 plt.plot(y_,z_deck-self.girder_height,'-',color='darkgrey',label='gi
 plt.fill_between(y_,z_deck,z_deck-self.girder_height,color='darkgrey

 if show_hangers:
 if invert_xaxis:
 plt.vlines(hanger_bottom_joint[0],hanger_bottom_joint[1],hanger_
 else:
 plt.vlines(hanger_bottom_joint[0],hanger_bottom_joint[1],hanger_

 if show_towers:
 plt.vlines([y_[0]],[0],[z_cable[0]],color='black',label='South Tower
 plt.vlines([y_[-1]],[0],[z_cable[-1]],color='red',label='North Tower

 if show_water:
 plt.hlines(0,0,self.tower_dist,linestyle='-.',color='blue',label='Wa

 if show_COMs:
 plt.plot(hanger_COM[0],hanger_COM[1],'o',color='m',label='hanger COM
 plt.plot(cable_segment_COM[0],cable_segment_COM[1],'o',color='y',lab
 plt.plot(deck_segment_COM[0],deck_segment_COM[1],'o',color='c',label

 if show_joints:
 plt.plot(hanger_top_joint[0],hanger_top_joint[1],'.',color='m',label
 plt.plot(hanger_bottom_joint[0],hanger_bottom_joint[1],'.',color='m'

 plt.plot(cable_segment_south_joint[0],cable_segment_south_joint[1],'
 plt.plot(cable_segment_north_joint[0],cable_segment_north_joint[1],'

 plt.plot(deck_segment_south_joint[0],deck_segment_south_joint[1],'.'
 plt.plot(deck_segment_north_joint[0],deck_segment_north_joint[1],'.'

 if show_sensors:
 plt.plot(y_accelerometer,z_accelerometer,'s',ms=10,mec='black',color
 plt.plot(y_anemometer,z_anemometer,'^',ms=10,mec='black',color='gray

 if xticks_h_num:
 xtick_labels = list(np.arange(0,self.n_hangers+2,1))[::-1]
 xtick_labels[0] = 'S_Tower'
 xtick_labels[-1] = 'N_Tower'
 plt.xticks(y_,xtick_labels)
 plt.xlabel('hanger number')
 else:
 plt.xticks(np.arange(0,self.tower_dist+10,10),np.arange(0,self.tower
 plt.xlabel('distance [m]')

 if invert_xaxis:
 plt.xlim(self.tower_dist+1,-1)
 else:
 plt.xlim(-1,self.tower_dist+1)

 plt.yticks(np.arange(0,self.h_towers,10),np.arange(0,self.h_towers,10))
 plt.legend(bbox_to_anchor=(1, 0.5), loc='center left')
 plt.grid()
 plt.ylabel('height above water [m]')
 plt.title(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][:-4][14
 if save:
 plt.savefig(('../images/'+self.file_names[0][:-4]+'-'+self.file_name
 plt.show()
 plt.close()
 gc.collect()

 def plot_data(self,x_array,y_arrays,labels=[],title_suffix='',xlabel='x',ylabel=
 """Method to plot Lysefjord Bridge data in a consistent manner.

 Parameters

 x_array : array_like
 Array of x-values to be plotted.
 y_arrays : array_like or list of array_likes
 Array(s) of y-values to be plotted.
 labels : list of str, optional
 Labels for the data series.
 title_suffix : str, optional
 Add a suffix to the title.
 xlabel : str, default 'x'
 Label for the x-axis.
 ylabel : str, default 'y'
 Label for the y-axis.
 yunit : str, default '[]'
 Unit of y-axis.
 grid : bool, default True
 Show a grid on the plot.
 legend : bool, default True
 Show a legend on the plot.
 split_sensors : bool, default False
 Split the plot into the different sensors.
 xlim : tuple of (float, float), optional
 Tuple of two values specifying the x-axis limits.
 ylim : tuple of (float, float), optional
 Tuple of two values specifying the y-axis limits.
 axhlines : list of float, optional

 List of y-values for horizontal lines to be plotted on the plot.
 axhline_colors : list of str, default ['r','r','gold','g']
 List of colors for the horizontal lines.
 yticks : array_like, optional
 Array of y-axis tick values.
 ignored_sensors : list of str, optional
 List of sensors to be ignored in the plot.
 save : bool, default False:
 Save the plot in ../images/. Note: Requires the prior existence of that
 """

 # Manage labels.
 if len(y_arrays.shape)!=1:
 if len(labels)<np.shape(y_arrays)[0]:
 difference = np.shape(y_arrays)[0]-len(labels)
 for i in range(difference):
 labels=np.append(labels,'data '+str(len(labels)+1))

 if self.full_detail:
 ylabel=ylabel.replace('_mean','')

 # Plot single dataseries.
 if len(y_arrays.shape)==1:
 plt.figure(figsize=(12,5))
 plt.plot(x_array,y_arrays,label=labels[0])
 for ind,y in enumerate(axhlines):
 try:
 plt.axhline(y,linestyle='--',label=y,color=axhline_colors[ind])
 except:
 try:
 plt.axhline(y,linestyle='--',label=y,color=axhline_colors[-1
 except:
 plt.axhline(y,linestyle='--',label=y)
 if grid:
 plt.grid()
 if legend:
 plt.legend(bbox_to_anchor=(1, 0.5), loc='center left')
 plt.xlabel(xlabel)
 plt.ylabel(ylabel+' '+yunit)
 plt.title(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][:-4][14
 plt.xlim(xlim)
 plt.ylim(ylim)
 plt.yticks(yticks)
 elif len(y_arrays)==0:
 raise ValueError('No Data.')
 return

 # Plot multiple dataseries.
 else:
 if split_sensors:
 fig = plt.figure(figsize=(12,7),constrained_layout=True)
 axes = []
 for i in range(np.shape(y_arrays)[0]):
 if labels[i] not in ignored_sensors:
 if i == 0:
 axes.append(plt.subplot(len(y_arrays),1,i+1))
 else:
 axes.append(plt.subplot(len(y_arrays),1,i+1,sharex=axes[
 plt.plot(x_array,y_arrays[i],label=labels[i])
 for ind,y in enumerate(axhlines):
 try:
 plt.axhline(y,linestyle='--',label=y,color=axhline_c
 except:

 try:
 plt.axhline(y,linestyle='--',label=y,color=axhli
 except:
 plt.axhline(y,linestyle='--',label=y)
 if grid:
 plt.grid()
 if legend:
 plt.legend(bbox_to_anchor=(1, 0.5), loc='center left')
 if i == 0:
 plt.title(self.file_names[0][:-4][14:]+' - '+self.file_n
 plt.xlim(xlim)
 plt.ylim(ylim)
 plt.yticks(yticks)
 fig.supxlabel(xlabel)
 fig.supylabel(ylabel+' '+yunit)
 else:
 plt.figure(figsize=(12,5))
 for i in range(np.shape(y_arrays)[0]):
 if labels[i] not in ignored_sensors:
 plt.plot(x_array,y_arrays[i],label=labels[i])
 for ind,y in enumerate(axhlines):
 try:
 plt.axhline(y,linestyle='--',label=y,color=axhline_colors[in
 except:
 try:
 plt.axhline(y,linestyle='--',label=y,color=axhline_color
 except:
 plt.axhline(y,linestyle='--',label=y)
 if grid:
 plt.grid()
 if legend:
 plt.legend(bbox_to_anchor=(1, 0.5), loc='center left')
 plt.xlabel(xlabel)
 plt.ylabel(ylabel+' '+yunit)
 plt.title(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][:-4
 plt.xlim(xlim)
 plt.ylim(ylim)
 plt.yticks(yticks)
 if save:
 plt.savefig(('../images/'+self.file_names[0][:-4]+'-'+self.file_names[-1
 plt.show()
 plt.close()
 gc.collect()

 def hist(self,data,bins=50,xlabel='data',xunit='[]',mode='relative frequency [%]
 """Method to create histograms on bridge data in a consistent manner.

 Parameters

 data : array_like
 Data to create the histogram on.
 bins : int, default 50
 Number of bins.
 xlabel : str, default 'data'
 Label describing the `data`.
 xunit : str, default '[]'
 Unit of `data`.
 mode : {'absolute frequency','relative frequency [%]','probability density'}
 Mode of the histogram. 'absolute frequency' has the bars height equal to
 title_suffix : str, optional
 Add a suffix to the title.
 split_sensors : bool, default False
 Split the histogram into the different sensors.
 sensors : list of str, optional

 List of sensor labels to place above seperate histograms if `split_senso
 ncol : int, default 4
 Number of columns defining the grid to place the histograms on if `split
 bridge_model : bool, default False
 Whether to place the histograms on a gird based on their location at the
 Hanger_num : list of int, optional
 List of the hanger numbers at which each sensor is located.
 West, Top : list of bool, optional
 List of booleans defining whether each sensor is located on the West sid
 save : bool, default False
 Save the histogram in ../images/. Note: Requires the prior existence of

 See Also

 `hist2d`
 `windrose`
 """
 # Manage labels.
 if len(data.shape)!=1:
 if len(sensors)<len(data):
 difference = len(data)-len(sensors)
 for i in range(difference):
 sensors=np.append(sensors,'sensor '+str(len(sensors)+1))

 if self.full_detail:
 xlabel=xlabel.replace('_mean','')

 if len(np.shape(data))==1 or split_sensors==False:
 # Create one histogram for one or multiple sensors.
 plt.figure(figsize=(10,8))
 if mode == 'absolute frequency':
 plt.hist(data.flatten(),density=False,bins=bins)
 elif mode == 'relative frequency [%]':
 plt.hist(data.flatten(),density=False,weights=np.zeros_like(data.fla
 elif mode == 'probability density':
 plt.hist(data.flatten(),density=True,bins=bins)
 else:
 raise ValueError('Invalid mode. mode needs to be "absolute frequency
 plt.xlabel(xlabel+' '+xunit)
 plt.ylabel(mode)
 plt.title(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][:-4][14

 else:
 # Create multiple histograms for multiple sensors.
 if bridge_model:
 # Place histograms on a grid based on the sensors' locations on the

 # Assign a level based on West/East and Top/Bottom location of the s
 lvl = []
 for i in range(np.shape(data)[0]):
 if West[i] == 1:
 if Top[i] == 1:
 lvl.append(2)
 else:
 lvl.append(3)
 else:
 if Top[i] == 1:
 lvl.append(0)
 else:
 lvl.append(1)

 # Skip empty rows and cols.
 Hanger_nums = np.unique(Hanger_num)
 ncol = len(Hanger_nums)

 col = []
 unique_lvls = np.unique(lvl)
 nrow = len(unique_lvls)
 row = []
 for i in range(np.shape(data)[0]):
 col.append(np.where(Hanger_nums==Hanger_num[i])[0][0])
 row.append(np.where(unique_lvls==lvl[i])[0][0])

 # Plot the histograms.
 fig = plt.figure(figsize=(5*ncol,5*nrow),constrained_layout=True)
 axes = []
 for i in range(np.shape(data)[0]):
 if i == 0:
 axes.append(plt.subplot2grid((nrow,ncol),(row[i],col[i])))
 else:
 axes.append(plt.subplot2grid((nrow,ncol),(row[i],col[i]),sha
 if mode == 'absolute frequency':
 plt.hist(data[i],density=False,bins=bins)
 elif mode == 'relative frequency [%]':
 plt.hist(data[i],density=False,weights=np.zeros_like(data[i]
 elif mode == 'probability density':
 plt.hist(data[i],density=True,bins=bins)
 else:
 raise ValueError('Invalid mode. mode needs to be "absolute f
 plt.title(sensors[i])
 fig.supxlabel(xlabel+' '+xunit)
 fig.supylabel(mode)
 fig.suptitle(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][
 else:
 nrow = np.ceil(len(data)/ncol).astype(int)
 fig = plt.figure(figsize=(5*ncol,5*nrow),constrained_layout=True)
 axes = []
 for i in range(np.shape(data)[0]):
 if i == 0:
 axes.append(plt.subplot(nrow,ncol,i+1))
 else:
 axes.append(plt.subplot(nrow,ncol,i+1,sharex=axes[0],sharey=
 if mode == 'absolute frequency':
 plt.hist(data[i],density=False,bins=bins)
 elif mode == 'relative frequency [%]':
 plt.hist(data[i],density=False,weights=np.zeros_like(data[i]
 elif mode == 'probability density':
 plt.hist(data[i],density=True,bins=bins)
 else:
 raise ValueError('Invalid mode. mode needs to be "absolute f
 plt.title(sensors[i])
 fig.supxlabel(xlabel+' '+xunit)
 fig.supylabel('probability density')
 fig.suptitle(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][

 if save:
 plt.savefig(('../images/'+self.file_names[0][:-4]+'-'+self.file_names[-1
 plt.show()
 plt.close()
 gc.collect()

 def scatterplot(self,data1,data2,data3,label1='data1',label2='data2',label3='dat
 """Method to create scatterplots on bridge data in a consistent manner.

 Parameters:

 data1 : array_like
 Data for x-axis.
 data2 : array_like

 Data for y-axis.
 data3 : array_like
 Data for color-axis.
 label1 : str, default 'data1'
 Label for x-axis.
 label2 : str, default 'data2'
 Label for y-axis.
 label3 : str, default 'data3'
 Label for colorbar.
 units : list of str, default ['[]','[]','[]']
 Units for x-,y- and color-axis.
 title_suffix : str, optional
 Add a suffix to the title.
 color : bool, default True
 The scatterplot is colored based on data3.
 plot_in_order_of_color : bool, default True
 Plot the datapoints of higher color ontop of datapoints of lower color.
 cmap : colormap or str, default 'viridis'
 Colormap to use for the scatterplot.
 vmin : float, optional
 Lower limit for the color-axis.
 vmax : float, optional
 Upper limit for the color-axis.
 curve_fit : bool, default False
 Fit a curve to the scatterplot. Note: Only works for single scatterplot,
 func : {'quadratic', 'linear'}
 Function for curve fitting.
 upper_lim : float, default np.inf
 Upper limit for data3 values.
 lower_lim : float, default -np.inf
 Lower limit for data3 values.
 bounds : tuple, default ([-np.inf,-np.inf,-np.inf],[np.inf,np.inf,np.inf])
 Bounds for curve fitting parameters.
 res : int, default 1000
 Number of points for the curve fitting.
 pred : float, default 1.5
 Value for prediction of curve fitting.
 curve_fit_return : bool, default False
 Return the parameters of the curve fit.
 split_sensors : bool, default False
 Split the scatterplot into the different sensors.
 sensors : list of str, optional
 List of sensor labels to place above seperate scatterplots if `split_sen
 ncol : int, default 4
 Number of columns defining the grid to place the scatterplots on if `spl
 bridge_model : bool, default False
 Whether to place the scatterplots on a gird based on their location at t
 Hanger_num : list of int, optional
 List of the hanger numbers at which each sensor is located.
 West, Top : list of bool, optional
 List of booleans defining whether each sensor is located on the West sid
 save : bool, default False
 Save the scatterplot in ../images/. Note: Requires the prior existence o

 Returns:

 popt1, popt2, pcov1, pcov2 : array_like, optional
 If `curve_fit_return` is True, returns the parameters of the curve fit.

 See Also

 `polar_scatterplot`
 """
 # Checking for miss-shaped data.

 if color:
 if not (data1.shape == data2.shape == data3.shape):
 raise IndexError('data1',data1.shape,', data2',data2.shape,' and dat

 else:
 if not (data1.shape == data2.shape):
 raise IndexError('data1',data1.shape,' and data2',data2.shape,' must

 # Manage labels.
 if len(data1.shape)!=1:
 if len(sensors)<len(data1):
 difference = len(data1)-len(sensors)
 for i in range(difference):
 sensors=np.append(sensors,'sensor '+str(len(sensors)+1))

 if self.full_detail:
 label1=label1.replace('_mean','')
 label2=label2.replace('_mean','')
 label3=label3.replace('_mean','')

 if vmin == None:
 vmin=np.min(data3)
 if vmax == None:
 vmax=np.max(data3)

 if type(cmap)==str:
 cmap=mpl.colormaps[cmap]

 if len(np.shape(data1))==1 or split_sensors==False:
 # Create one scatterplot for one or multiple sensors.
 plt.figure(figsize=(10,8))
 if color:
 if plot_in_order_of_color:
 ind=np.argsort(data3.flatten())
 data1=data1.flatten()[ind]
 data2=data2.flatten()[ind]
 data3=data3.flatten()[ind]
 plt.scatter(data1,data2,c=data3,vmin=vmin,vmax=vmax,cmap=cmap)
 plt.colorbar(label=label3+' '+units[2])
 plt.title(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][:-4
 else:
 plt.scatter(data1,data2)
 plt.title(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][:-4
 plt.xlabel(label1+' '+units[0])
 plt.ylabel(label2+' '+units[1])

 if curve_fit:
 if func=='quadratic':
 def quadratic_function(x,a,h,k):
 y = a*(x-h)*(x-h)+k
 return y
 popt1,pcov1=scipy.optimize.curve_fit(quadratic_function,data1[da
 popt2,pcov2=scipy.optimize.curve_fit(quadratic_function,data1[da
 plt.plot(np.linspace(np.mean(data1)-pred*np.abs(np.mean(data1)-n
 plt.plot(np.linspace(np.mean(data1)-pred*np.abs(np.mean(data1)-n
 plt.ylim(np.mean(data2)-pred*np.abs(np.mean(data2)-np.min(data2)
 plt.legend(bbox_to_anchor=(1, 0), loc='lower right',ncol=2)
 elif func=='linear':
 def linear_function(x,a,b):
 y = a*x+b
 return y
 popt1,pcov1=scipy.optimize.curve_fit(linear_function,data1[data3
 popt2,pcov2=scipy.optimize.curve_fit(linear_function,data1[data3
 plt.plot(np.linspace(np.mean(data1)-pred*np.abs(np.mean(data1)-n

 plt.plot(np.linspace(np.mean(data1)-pred*np.abs(np.mean(data1)-n
 plt.ylim(np.mean(data2)-pred*np.abs(np.mean(data2)-np.min(data2)
 plt.legend(bbox_to_anchor=(1, 0), loc='lower right',ncol=2)
 else:
 raise NotImplementedError('Only "quadratic" and "linear" functio
 else:
 # Create multiple scatterplots for multiple sensors.
 if bridge_model:
 # Place scatterplots on a grid based on the sensors' locations on th
 # Assign level based on West/East and Top/Bottom location.
 lvl = []
 for i in range(np.shape(data1)[0]):
 if West[i] == 1:
 if Top[i] == 1:
 lvl.append(2)
 else:
 lvl.append(3)
 else:
 if Top[i] == 1:
 lvl.append(0)
 else:
 lvl.append(1)
 # Skip empty rows and cols.
 Hanger_nums = np.unique(Hanger_num)
 ncol = len(Hanger_nums)
 col = []
 unique_lvls = np.unique(lvl)
 nrow = len(unique_lvls)
 row = []
 for i in range(np.shape(data1)[0]):
 col.append(np.where(Hanger_nums==Hanger_num[i])[0][0])
 row.append(np.where(unique_lvls==lvl[i])[0][0])

 # Plot the scatterplots.
 fig = plt.figure(figsize=(5*ncol,5*nrow),constrained_layout=True)
 axes = []
 for i in range(np.shape(data1)[0]):
 if i == 0:
 axes.append(plt.subplot2grid((nrow,ncol),(row[i],col[i])))
 else:
 axes.append(plt.subplot2grid((nrow,ncol),(row[i],col[i]),sha
 if color:
 if plot_in_order_of_color:
 ind=np.argsort(data3[i])
 data1[i]=data1[i][ind]
 data2[i]=data2[i][ind]
 data3[i]=data3[i][ind]
 sct = plt.scatter(data1[i],data2[i],c=data3[i],vmin=vmin,vma
 else:
 plt.scatter(data1[i],data2[i])
 plt.title(sensors[i])
 if color:
 fig.suptitle(self.file_names[0][:-4][14:]+' - '+self.file_names[
 fig.colorbar(sct, ax=axes,label=label3+' '+units[2])
 else:
 fig.suptitle(self.file_names[0][:-4][14:]+' - '+self.file_names[
 fig.supxlabel(label1+' '+units[0])
 fig.supylabel(label2+' '+units[1])
 else:
 nrow = np.ceil(len(data1)/ncol).astype(int)
 fig = plt.figure(figsize=(5*ncol,5*nrow),constrained_layout=True)
 axes = []
 for i in range(np.shape(data1)[0]):
 if i == 0:

 axes.append(plt.subplot(nrow,ncol,i+1))
 else:
 axes.append(plt.subplot(nrow,ncol,i+1,sharex=axes[0],sharey=
 if color:
 if plot_in_order_of_color:
 ind=np.argsort(data3[i])
 data1[i]=data1[i][ind]
 data2[i]=data2[i][ind]
 data3[i]=data3[i][ind]
 sct = plt.scatter(data1[i],data2[i],c=data3[i],vmin=vmin,vma
 else:
 plt.scatter(data1[i],data2[i])
 plt.title(sensors[i])
 if color:
 fig.suptitle(self.file_names[0][:-4][14:]+' - '+self.file_names[
 fig.colorbar(sct, ax=axes,label=label3+' '+units[2])
 else:
 fig.suptitle(self.file_names[0][:-4][14:]+' - '+self.file_names[
 fig.supxlabel(label1+' '+units[0])
 fig.supylabel(label2+' '+units[1])

 if save:
 if color:
 plt.savefig(('../images/'+self.file_names[0][:-4]+'-'+self.file_name
 else:
 plt.savefig(('../images/'+self.file_names[0][:-4]+'-'+self.file_name
 plt.show()
 plt.close()
 gc.collect()
 if curve_fit:
 if curve_fit_return:
 return popt1, popt2, pcov1, pcov2

 def polar_scatterplot(self,data1,data2,data3,label1='Direction',label2='data2',l
 """Method to create polar scatterplots on bridge data in a consistent manner

 Parameters:

 data1 : array_like
 Data for theta-axis.
 data2 : array_like
 Data for r-axis.
 data3 : array_like
 Data for color-axis.
 label1 : str, default 'data1'
 Label for theta-axis.
 label2 : str, default 'data2'
 Label for r-axis.
 label3 : str, default 'data3'
 Label for colorbar.
 units : list of str, default ['[]','[]','[]']
 Units for x-,y- and color-axis.
 title_suffix : str, optional
 Add a suffix to the title.
 bridge_offset : float, default -42
 Offset of the bridge-axis from the geographic north-south-axis in degree
 bridge_north : bool, default False
 Orient the polar scatterplot with 'bridge-north' at the top.
 color : bool, default True
 The polar scatterplot is colored based on data3.
 plot_in_order_of_color : bool, default True
 Plot the datapoints of higher color ontop of datapoints of lower color.
 cmap : colormap or str, default 'viridis'
 Colormap to use for the polar scatterplot.

 vmin : float, optional
 Lower limit for the color-axis.
 vmax : float, optional
 Upper limit for the color-axis.
 split_sensors : bool, default False
 Split the polar scatterplot into the different sensors.
 sensors : list of str, optional
 List of sensor labels to place above seperate polar scatterplots if `spl
 ncol : int, default 4
 Number of columns defining the grid to place the polar scatterplots on i
 bridge_model : bool, default False
 Whether to place the polar scatterplots on a gird based on their locatio
 Hanger_num : list of int, optional
 List of the hanger numbers at which each sensor is located.
 West, Top : list of bool, optional
 List of booleans defining whether each sensor is located on the West sid
 save : bool, default False
 Save the polar scatterplot in ../images/. Note: Requires the prior exist

 See Also

 `scatterplot`
 `windrose`
 """
 # Checking for miss-shaped data.
 if color:
 if not (data1.shape == data2.shape == data3.shape):
 raise IndexError('data1',data1.shape,', data2',data2.shape,' and dat
 else:
 if not (data1.shape == data2.shape):
 raise IndexError('data1',data1.shape,' and data2',data2.shape,' must

 # Manage labels.
 if len(data1.shape)!=1:
 if len(sensors)<len(data1):
 difference = len(data1)-len(sensors)
 for i in range(difference):
 sensors=np.append(sensors,'sensor '+str(len(sensors)+1))

 if self.full_detail:
 label1=label1.replace('_mean','')
 label2=label2.replace('_mean','')
 label3=label3.replace('_mean','')

 if vmin == None:
 vmin=np.min(data3)
 if vmax == None:
 vmax=np.max(data3)

 if type(cmap)==str:
 cmap=mpl.colormaps[cmap]

 if bridge_north:
 bridge_offset=0

 if len(np.shape(data1))==1 or split_sensors==False:
 # Create one polar scatterplot for one or multiple sensors.
 fig = plt.figure(figsize=(10,8))
 ax = fig.add_subplot(projection='polar')
 plt.axvline(np.deg2rad(bridge_offset),color='r',label='Bridge North')
 plt.axvline(np.deg2rad(180+bridge_offset),color='black',label='Bridge So
 if color:
 if plot_in_order_of_color:
 ind=np.argsort(data3.flatten())

 data1=data1.flatten()[ind]
 data2=data2.flatten()[ind]
 data3=data3.flatten()[ind]
 sct = ax.scatter(np.deg2rad(data1+bridge_offset),data2,c=data3,vmin=
 fig.colorbar(sct,label=label3+' '+units[2])
 fig.suptitle(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][
 else:
 ax.scatter(np.deg2rad(data1+bridge_offset),data2)
 fig.suptitle(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][
 ax.set_xlabel(label1+' '+units[0])
 ax.set_ylabel(label2+' '+units[1], rotation=55)
 ax.yaxis.set_label_coords(0.72, 0.8,transform=ax.transAxes)
 ax.set_theta_zero_location('N', offset=0)
 ax.set_theta_direction(-1)
 plt.legend(bbox_to_anchor=(0.9, 0.05), loc='lower right',bbox_transform=

 else:
 # Create multiple polar scatterplots for multiple sensors.
 if bridge_model:
 # Place polar scatterplots on a grid based on the sensors' locations
 # Assign level based on West/East and Top/Bottom location.
 lvl = []
 for i in range(np.shape(data1)[0]):
 if West[i] == 1:
 if Top[i] == 1:
 lvl.append(2)
 else:
 lvl.append(3)
 else:
 if Top[i] == 1:
 lvl.append(0)
 else:
 lvl.append(1)
 # Skip empty rows and cols.
 Hanger_nums = np.unique(Hanger_num)
 ncol = len(Hanger_nums)
 col = []
 unique_lvls = np.unique(lvl)
 nrow = len(unique_lvls)
 row = []
 for i in range(np.shape(data1)[0]):
 col.append(np.where(Hanger_nums==Hanger_num[i])[0][0])
 row.append(np.where(unique_lvls==lvl[i])[0][0])

 # Plot the polar scatterplots.
 fig = plt.figure(figsize=(5*ncol,5*nrow),constrained_layout=True)
 axes = []
 for i in range(np.shape(data1)[0]):
 if i == 0:
 axes.append(plt.subplot2grid((nrow,ncol),(row[i],col[i]),pro
 plt.axvline(np.deg2rad(bridge_offset),color='r',label='Bridg
 plt.axvline(np.deg2rad(180+bridge_offset),color='black',labe
 else:
 axes.append(plt.subplot2grid((nrow,ncol),(row[i],col[i]),pro
 plt.axvline(np.deg2rad(bridge_offset),color='r')
 plt.axvline(np.deg2rad(180+bridge_offset),color='black')
 if color:
 if plot_in_order_of_color:
 ind=np.argsort(data3[i])
 data1[i]=data1[i][ind]
 data2[i]=data2[i][ind]
 data3[i]=data3[i][ind]
 sct = axes[i].scatter(np.deg2rad(data1[i]+bridge_offset),dat
 else:

 axes[i].scatter(np.deg2rad(data1[i]+bridge_offset),data2[i])
 axes[i].set_theta_zero_location('N', offset=0)
 axes[i].set_theta_direction(-1)
 plt.title(sensors[i])
 if color:
 fig.suptitle(self.file_names[0][:-4][14:]+' - '+self.file_names[
 fig.colorbar(sct, ax=axes,label=label3+' '+units[2])
 else:
 fig.suptitle(self.file_names[0][:-4][14:]+' - '+self.file_names[
 fig.legend(bbox_to_anchor=(0.9, 0), loc='lower right',bbox_transform
 fig.supxlabel(label1+' '+units[0])
 fig.supylabel(label2+' '+units[1],rotation=67.5)
 else:
 nrow = np.ceil(len(data1)/ncol).astype(int)
 fig = plt.figure(figsize=(5*ncol,5*nrow),constrained_layout=True)
 axes = []
 for i in range(np.shape(data1)[0]):
 if i == 0:
 axes.append(plt.subplot(nrow,ncol,i+1,projection='polar'))
 plt.axvline(np.deg2rad(bridge_offset),color='r',label='Bridg
 plt.axvline(np.deg2rad(180+bridge_offset),color='black',labe
 else:
 axes.append(plt.subplot(nrow,ncol,i+1,projection='polar',sha
 plt.axvline(np.deg2rad(bridge_offset),color='r')
 plt.axvline(np.deg2rad(180+bridge_offset),color='black')
 if color:
 if plot_in_order_of_color:
 ind=np.argsort(data3[i])
 data1[i]=data1[i][ind]
 data2[i]=data2[i][ind]
 data3[i]=data3[i][ind]
 sct = axes[i].scatter(np.deg2rad(data1[i]+bridge_offset),dat
 else:
 axes[i].scatter(np.deg2rad(data1[i]+bridge_offset),data2[i])
 axes[i].set_theta_zero_location('N', offset=0)
 axes[i].set_theta_direction(-1)
 plt.title(sensors[i])
 if color:
 fig.suptitle(self.file_names[0][:-4][14:]+' - '+self.file_names[
 fig.colorbar(sct, ax=axes,label=label3+' '+units[2])
 else:
 fig.suptitle(self.file_names[0][:-4][14:]+' - '+self.file_names[
 fig.legend(bbox_to_anchor=(0.9, 0), loc='lower right',bbox_transform
 fig.supxlabel(label1+' '+units[0])
 fig.supylabel(label2+' '+units[1],rotation=67.5)
 if save:
 if color:
 plt.savefig(('../images/'+self.file_names[0][:-4]+'-'+self.file_name
 else:
 plt.savefig(('../images/'+self.file_names[0][:-4]+'-'+self.file_name
 plt.show()
 plt.close()
 gc.collect()

 def windrose(self,Dir,data,bridge_offset=-42,label='data',unit='[]',title_suffix
 """Method to create wind roses on bridge data in a consistent manner.

 Parameters:

 Dir : array_like
 Directional data for theta-axis.
 data : array_like
 Data for wind rose.
 bridge_offset : float, default -42

 Offset of the bridge-axis from the geographic north-south-axis in degree
 label : str, default 'data'
 Label for color-legend.
 unit : str, default '[]'
 Unit of `data`.
 title_suffix : str, optional
 Add a suffix to the title.
 bridge_north : bool, default False
 Orient the wind rose with 'bridge-north' at the top.
 bins : array_like, optional
 Bins to use for the wind rose.
 nbins : int, default 6
 Number of bins to use for the wind rose if `bins` is not provided.
 cmap : colormap or str, default 'viridis'
 Colormap to use for the wind rose.
 split_sensors : bool, default False
 Split the wind rose into the different sensors.
 sensors : list of str, optional
 List of sensor labels to place above seperate wind roses if `split_senso
 ncol : int, default 4
 Number of columns defining the grid to place the wind roses on if `split
 bridge_model : bool, default False
 Whether to place the wind roses on a gird based on their location at the
 Hanger_num : list of int, optional
 List of the hanger numbers at which each sensor is located.
 West, Top : list of bool, optional
 List of booleans defining whether each sensor is located on the West sid
 save : bool, default False
 Save the polar scatterplot in ../images/. Note: Requires the prior exist
 See Also

 `polar_scatterplot`
 `hist`
 `hist2d`
 """
 # Checking for miss-shaped data.
 if not (Dir.shape == data.shape):
 raise IndexError('Dir',Dir.shape,' and data',data.shape,' must be of the

 # Manage labels.
 if len(data.shape)!=1:
 if len(sensors)<len(data):
 difference = len(data)-len(sensors)
 for i in range(difference):
 sensors=np.append(sensors,'sensor '+str(len(sensors)+1))

 if self.full_detail:
 label=label.replace('_mean','')

 if bridge_north:
 bridge_offset=0

 if len(bins)==0:
 bins=np.linspace(np.min(data),np.max(data),nbins)

 if type(cmap)==str:
 cmap=mpl.colormaps[cmap]

 if len(np.shape(data))==1 or split_sensors==False:
 # Create one wind rose for one or multiple sensors.
 fig = plt.figure(figsize=(10,10))
 ax = WindroseAxes.from_ax(fig=fig)

 # Plot the wind rose.

 ax.bar(Dir.flatten()+bridge_offset, data.flatten(), normed=True, opening

 # Setup additional elements.
 ax.axvline(np.deg2rad(90-bridge_offset),color='r',label='Bridge North')
 ax.axvline(np.deg2rad(270-bridge_offset),color='black',label='Bridge Sou
 ax.set_ylabel('relative frequency [%]', rotation=55)
 ax.yaxis.set_label_coords(0.72, 0.8,transform=ax.transAxes)
 ax.set_legend(title=label+' '+unit,bbox_to_anchor=(0.9, 0.1),bbox_transf
 fig.legend(bbox_to_anchor=(0.9, 0.1),bbox_transform=fig.transFigure, loc
 plt.title(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][:-4][14

 else:
 # Create multiple wind roses for multiple sensors.
 if bridge_model:
 # Place the wind roses on a grid based on the sensors' locations on

 # Assign a level based on West/East and Top/Bottom location of the s
 lvl = []
 for i in range(np.shape(data)[0]):
 if West[i] == 1:
 if Top[i] == 1:
 lvl.append(2)
 else:
 lvl.append(3)
 else:
 if Top[i] == 1:
 lvl.append(0)
 else:
 lvl.append(1)

 # Skip empty rows and cols.
 Hanger_nums = np.unique(Hanger_num)
 ncol = len(Hanger_nums)
 col = []
 unique_lvls = np.unique(lvl)
 nrow = len(unique_lvls)
 row = []
 for i in range(np.shape(data)[0]):
 col.append(np.where(Hanger_nums==Hanger_num[i])[0][0])
 row.append(np.where(unique_lvls==lvl[i])[0][0])

 # Create the wind rose axes.
 fig = plt.figure(figsize=(6*ncol,6*nrow),constrained_layout=True)
 axes = []
 for i in range(np.shape(data)[0]):
 temp_ax=plt.subplot2grid((nrow,ncol),(row[i],col[i]))
 rect=temp_ax.get_position()
 temp_ax.remove()
 axes.append(WindroseAxes.from_ax(fig=fig,rect=rect))

 # Plot the wind roses.
 axes[i].bar(Dir[i]+bridge_offset, data[i], normed=True, opening=

 # Setup additional elements.
 if i == 0:
 axes[i].axvline(np.deg2rad(90-bridge_offset),color='r',label
 axes[i].axvline(np.deg2rad(270-bridge_offset),color='black',
 else:
 axes[i].axvline(np.deg2rad(90-bridge_offset),color='r')
 axes[i].axvline(np.deg2rad(270-bridge_offset),color='black')
 plt.title(sensors[i])
 axes[-1].set_legend(title=label+' '+unit,bbox_to_anchor=(0.9, 0.1),
 fig.suptitle(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][
 fig.legend(bbox_to_anchor=(0.9, 0.1), loc='upper left',bbox_transfor

 fig.supylabel('relative frequency [%]',rotation=67.5)
 else:
 # Define the plot grid
 nrow = np.ceil(len(data)/ncol).astype(int)

 # Create the wind rose axes.
 fig = plt.figure(figsize=(6*ncol,6*nrow),constrained_layout=True)
 axes = []
 for i in range(np.shape(data)[0]):
 temp_ax=plt.subplot(nrow,ncol,i+1)
 rect=temp_ax.get_position()
 temp_ax.remove()
 axes.append(WindroseAxes.from_ax(fig=fig,rect=rect))

 # Plot the wind roses.
 axes[i].bar(Dir[i]+bridge_offset, data[i], normed=True, opening=

 # Setup additional elements.
 if i == 0:
 axes[i].axvline(np.deg2rad(90-bridge_offset),color='r',label
 axes[i].axvline(np.deg2rad(270-bridge_offset),color='black',
 else:
 axes[i].axvline(np.deg2rad(90-bridge_offset),color='r')
 axes[i].axvline(np.deg2rad(270-bridge_offset),color='black')
 plt.title(sensors[i])
 axes[-1].set_legend(title=label+' '+unit,bbox_to_anchor=(0.9, 0.1),
 fig.suptitle(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][
 fig.legend(bbox_to_anchor=(0.9, 0.1), loc='upper left',bbox_transfor
 fig.supylabel('relative frequency [%]',rotation=67.5)

 if save:
 plt.savefig(('../images/'+self.file_names[0][:-4]+'-'+self.file_names[-1
 plt.show()
 plt.close()
 gc.collect()

 def hist2d(self,data1,data2,label1='data1',label2='data2',units=['[]','[]'],titl
 """Method to create 2D histograms on bridge data in a consistent manner.

 Parameters

 data1 : array_like
 Data for x-axis of the 2d histogram.
 data2 : array_like
 Data for y-axis of the 2d histogram.
 label1 : str, default 'data1'
 Label describing `data1`.
 label2 : str, default 'data2'
 Label describing `data2`.
 units : list of str, default ['[]','[]']
 Units of `data1` and `data2`.
 title_suffix : str, optional
 Add a suffix to the title.
 bins : tuple of ints, default (20,20)
 Tuple of two values specifying the number of bins in x- and y-direction.
 save : bool, default False
 Save the 2D histogram in ../images/. Note: Requires the prior existence

 See Also

 `hist`
 `windrose`
 """
 if self.full_detail:

 label1=label1.replace('_mean','')
 label2=label2.replace('_mean','')

 plt.figure(figsize=(10,8))
 plt.hist2d(data1,data2,bins,density=True,cmin=0,cmax=1)
 plt.xlabel(label1+' '+units[0])
 plt.ylabel(label2+' '+units[1])
 plt.colorbar(label='probability density')
 plt.title(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][:-4][14:]+'
 if save:
 plt.savefig(('../images/'+self.file_names[0][:-4]+'-'+self.file_names[-1
 plt.show()
 plt.close()
 gc.collect()

 def boxplot(self,data,labels,ylabel='data',yunit='[]',title_suffix='',save=False
 """Method to create boxplots on bridge data in a consistent manner.

 Parameters

 data : array_like
 Data for the boxplots with first axis as sensor id and second axis as me
 labels : list of str
 Sensor labels for the different boxplots.
 ylabel : str, default 'data'
 Label describing `data`.
 yunit : str, optional
 Unit of `data`.
 title_suffix : str, optional
 Add a suffix to the title.
 save : bool, default False
 Save the boxplot in ../images/. Note: Requires the prior existence of th
 """
 if self.full_detail:
 ylabel=ylabel.replace('_mean','')

 plt.figure(figsize=(10,8))
 plt.boxplot(data.T,vert=True,labels=labels)
 plt.ylabel(ylabel+' '+yunit)
 plt.title(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][:-4][14:]+'
 if save:
 plt.savefig(('../images/'+self.file_names[0][:-4]+'-'+self.file_names[-1
 plt.show()
 plt.close()
 gc.collect()

 def correlation_matrix(self,data1,data2,labels_data1=[],labels_data2=[],title1='
 """Method to create heatmaps of correlation matrices on bridge data in a con

 Parameters

 data1 : array_like
 Input data for `data1` to be corelated with itself and `data2`.
 data2 : array_like
 Input data for `data2` to be corelated with itself and `data1`.
 labels_data1 : list of str, optional
 Labels for `data1`.
 labels_data2 : list of str, optional
 Labels for `data2`.
 title1 : str, default 'data1'
 Title describing `data1`.
 title2 : str, default 'data2'
 Title describing `data2`.
 title_suffix : str, optional

Example of how to use the BridgeData
class
The code below is an example to showcase how to use the BridgeData class. Note that the
code generally has to be run from top to bottom, although some code blocks might be able to
run on their own, depending on the state of other code blocks. Should you experience errors or
unexpected result when experimenting with the code try running the code from the top after
you made your changes.

Initialize a BridgeData class instance
Set the file_path .

Set the file_names . Un-comment one of the pre-set list of file_names or create your own.
Make sure the data files are located in the location defined by file_path

 Add a suffix to the title.
 save : bool, default False
 Save the correlation matrix heatmap in ../images/. Note: Requires the pr
 """
 Correlation_matrix = np.corrcoef(data1,data2)
 cm_labels=[title1+' '+label for label in list(labels_data1)]+[title2+' '+lab
 plt.figure(figsize=(12,10))
 try:
 sn.heatmap(Correlation_matrix,cmap='coolwarm',vmin=-1,vmax=1,xticklabels
 except:
 sn.heatmap(Correlation_matrix,cmap='coolwarm',vmin=-1,vmax=1)
 plt.title(self.file_names[0][:-4][14:]+' - '+self.file_names[-1][:-4][14:]+'
 if save:
 plt.savefig(('../images/'+self.file_names[0][:-4]+'-'+self.file_names[-1
 plt.show()
 plt.close()
 gc.collect()

In []: file_path = '../Data/Bridge/dataExtracted/' # Adjust filepath to where your data is

In []: # file_names = ['dataExtracted_2014_05_22.mat'] # From Etienne´s analysis

file_names = ['dataExtracted_2014_08_01.mat','dataExtracted_2014_08_02.mat','dataE

file_names = ['dataExtracted_2014_08_09.mat'] # Up to 25m/s from SSW and NNE

file_names = ['dataExtracted_2014_08_18.mat','dataExtracted_2014_08_19.mat'] # Up

file_names = ['dataExtracted_2014_10_07.mat'] # From Etienne´s analysis N-NE up to

file_names = ['dataExtracted_2014_10_26.mat'] # From Etienne´s analysis S-SW up to

file_names = ['dataExtracted_2014_10_25.mat','dataExtracted_2014_10_26.mat','dataE

file_names = ['dataExtracted_2017_02_20.mat','dataExtracted_2017_02_21.mat','dataE

file_names = ['dataExtracted_2017_04_21.mat','dataExtracted_2017_04_22.mat','dataE

file_names = ['dataExtracted_2017_04_24.mat'] # Peak of 16m/s

Create an instance of the BridgeData class.

Load data
Use the load_data method to import the MATLAB files defined by file_names . refer to the
documentation (using help(BridgeData.load_data)) to learn more about the different
options for the import of the data, such as the full_detail mode, which allows acces to the
full 50Hz sample rate data.

Caution: It is recommended to only use the full_detail mode on one day of data that you
have previously singled out from a larger dataset for detailed analysis. This is because of the
large ammount of data that needs to be processed (4.32 million datapoints per sensor for each
day of data).

Help on function load_data in module __main__:

load_data(self, print_data_structure=False, delete_data_after_import=True, ignore_na
ns=True, rename_H20_acc=True, replace_invalid=True, full_detail=False, H=True, W=Tru
e, Vx=True, Vy=True, Dir=True, Tv=True, Turb=True, Aox_W=True, Aoy_W=True, Aoz_W=Tru
e, Aox_E=True, Aoy_E=True, Aoz_E=True, T=True, P=True, Hum=True, AOA=True, AOI=True,
Upwind=True, theta=True, centr=True, Hanger_num=True, y_pos=True, accs_in_SI_units=T
rue, WestEast=True, TopBottom=True)
 Wrapper-method to import and combine multiple days of data using `convert_MATLAB
`. Parameters are passed on to this helper-method.

 Convert Lysefjord Bridge dataExtracted.mat files imported via `scipy.io.loadmat`
to a more usable structure of numpy arrays, partially grouped in dictionaries, for f
urther processing. 10-min datapackages are condensed into one sample described by th
e mean, std, min and max of that package, unless `full_detail` is used.

 Parameters

 print_data_structure : bool, default False
 Print the structure of the original data. Primarily used for developement an
d bug-fixing

file_names = ['dataExtracted_2017_10_01.mat','dataExtracted_2017_10_02.mat','dataE

file_names = ['dataExtracted_2018_01_14.mat','dataExtracted_2018_01_15.mat'] # Up

file_names = ['dataExtracted_2018_09_18.mat','dataExtracted_2018_09_19.mat']

file_names = ['dataExtracted_2018_09_19.mat']

file_names = ['dataExtracted_2018_09_19.mat','dataExtracted_2018_09_20.mat','dataE

file_names = ['dataExtracted_2018_09_18.mat','dataExtracted_2018_09_19.mat','dataE

file_names = ['dataExtracted_2018_09_18.mat','dataExtracted_2018_09_19.mat','dataExt

file_names = ['dataExtracted_2018_10_02.mat','dataExtracted_2018_10_03.mat']

file_names = ['dataExtracted_2018_10_11.mat','dataExtracted_2018_10_12.mat'] # Up

In []: LFB = BridgeData(file_names=file_names,file_path=file_path)

In []: help(BridgeData.load_data)

 delete_data_after_import : bool, default True
 Delete original data from memory after import to free up memory
 ignore_nans : bool, default True
 Ignores nans when calculating mean, std, min and max, using the remaining no
n-nan values in the 10-min data package for the calculations, instead of setting the
value representing the whole 10-min data package to nan. This results in the return
of more non-nan values, decreasing data loss during cleaning, but increasing import
time.
 rename_H20_acc : bool, default True
 Rename accelerometers H20 to H24, as there seems to be a systematic error in
the MATLAB files.
 replace_invalid : bool, default True
 Replace invalid sensor readings (outside of technical sensor range) with nan
during import. Allows to retain more data during data cleaning with sleightly higher
import time.
 full_detail : bool, default False
 Keep full detail of data, sampled at 50Hz instead of resampling to every 10m
in. It is recommended to not use this for more than 1 day of data at a time. Note: T
he values are represented as _mean arrays, although no mean is calculated. Not all f
unctions of this class are designed to work with this form of data, but it allows mo
re detailed insights in special cases
 H ... TopBottom : bool, default True
 Select which part of the data should be imported or generated during import.
Only select the measurement types you are interested in to keep import times lower.

 See Also

 `convert_MATLAB`
 `define_units`

Note that it is alternatively possible to load the data from a previously saved analysis using
dill.load .

Day 1 : 2018_09_18
Day 2 : 2018_09_19
Day 3 : 2018_09_20
Day 4 : 2018_09_21
Day 5 : 2018_09_22
Day 6 : 2018_09_23
Day 7 : 2018_09_24
Day 8 : 2018_09_25
Day 9 : 2018_09_26
Day 10 : 2018_09_27
Day 11 : 2018_09_28
Day 12 : 2018_09_29
Day 13 : 2018_09_30
Day 14 : 2018_10_01
Day 15 : 2018_10_02
Day 16 : 2018_10_03
Day 17 : 2018_10_04
Day 18 : 2018_10_05
Day 19 : 2018_10_06
Day 20 : 2018_10_07
Day 21 : 2018_10_08
Day 22 : 2018_10_10
Day 23 : 2018_10_11
Day 24 : 2018_10_12
Day 25 : 2018_10_13

In []: LFB.load_data(print_data_structure=False,delete_data_after_import=True,replace_inval
LFB = dill.load(open(file_path+file_names[0][:-4]+'-'+file_names[-1][:-4],'rb'))

Day 26 : 2018_10_14
Day 27 : 2018_10_15
Day 28 : 2018_10_16
Day 29 : 2018_10_17
Day 30 : 2018_10_18

Bridge layout
The names of active anemometers can be obtained from anemo_names .

array(['H08Wb', 'H08Wt', 'H08E', 'H10W', 'H10E', 'H18W', 'H18E', 'H20W',
 'H24W'], dtype='<U5')

The names of active accelerometers can be obtained from acc_names .

array(['H09', 'H18', 'H24', 'H30'], dtype='<U3')

The bridge_layout method creates a layout of the active instrumentation on the bridge
during the selected period.

Traffic classification
The find_traffic method classifies each datapoint to be traffic- (1) or wind-dominated (0)
using the max_by_std criteria on vertical accelerations. This can be used to filter the data. Note
that this method is not available in full_detail mode. Also note that the keyword cleaned
is set to False, as we are dealing with un-processed (un-cleaned) data.

In []: LFB.anemo_names

Out[]:

In []: LFB.acc_names

Out[]:

In []: LFB.bridge_layout()

Traffic percentage: 68.24 %

Filter
The filter_data method allows filtering the data in various ways. Note that multiple filters
can be combined in different ways aswell. It is good practise to add a remark to the title of plots
that use filtered data using the title_suffix keyword. Uncomment one of the filter lines
below to see it in effect, or use it as a template to create your own filter.

Plot un-processed data
Below we will examin how to plot some of the un-processed (un-cleaned) time series data.
Setting your keys_of_interest beforehand allows batch-post-processing in the visualisation
of data using for-loops over all keys and if-conditions on the name of the keys.

Time settings
The method feature_time is used to to initialize time series in days, hours, minutes and
seconds for your data, starting at the first datapoint. Note that the keyword cleaned is set to
False, as we are dealing with un-processed (un-cleaned) data.

You can set your prefered timescale and time_of_interest prior to batch-post-
processing.

In []: if LFB.full_detail==False:
 LFB.find_traffic(traffic_thresh=8,cleaned=False)
 print('Traffic percentage:',np.round(100*np.count_nonzero(LFB.traffic)/len(LFB.t

In []: filter_idxs = np.arange(len(LFB.time_array)); title_suffix = ''
if LFB.full_detail:
 title_suffix+= ' - full detail'
filter_idxs = LFB.filter_data(LFB.anemo['H_mean'],prior_idxs=filter_idxs,hp_cutoff
filter_idxs = LFB.filter_data(LFB.anemo['AOA_mean'],prior_idxs=filter_idxs,hp_cuto
filter_idxs = LFB.filter_data(LFB.traffic,prior_idxs=filter_idxs,zeros=True,mode='

In []: keys_of_interest = ['H_mean','H_max','H_turb','W_mean','W_turb','AOA_mean','AOA_std'
keys_of_interest = ['H_mean','Aoz_C_mean','Aoz_C_max','Aoz_C_max_by_std','Aoz_C_st
keys_of_interest =['H_mean','Aoz_C_mean','Aoz_C_max_by_std']

In []: LFB.feature_time(cleaned=False) #Initiate time series for un-cleaned data.

timescale='days' #Change this variable to 'days', 'hours', 'minutes' or 'seconds' to

if timescale=='days':
 plot_time=LFB.days
 plot_time_label = 'time [d]'
elif timescale=='hours':
 plot_time=LFB.hours
 plot_time_label = 'time [h]'
elif timescale=='minutes':
 plot_time=LFB.minutes
 plot_time_label = 'time [min]'
elif timescale=='seconds':
 plot_time=LFB.seconds

Anemometers
Below is an example for batch post-processing of anemometer data using a for-loop and if-
statements on the keys previously defined by keys_of_interest . This allows to set specific
plot parameters in the plot_data method for different keys. The names of anemometers that
are not of interest can be given to the ignored_anemos keyword as a list.

 plot_time_label = 'time [s]'

time_of_interest=(0,24) #use this line instead of the one below to zoom in on deta
time_of_interest=(None,None) #default

In []: ignored_anemos = []
for key in LFB.anemo.keys():
 if key in keys_of_interest:
 if key.startswith('H_m'):
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo[key].T[filter_idxs].T,yla
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo[key].T[filter_idxs].T,yla
 elif key.startswith('Dir_m'):
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo[key].T[filter_idxs].T,yla
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo[key].T[filter_idxs].T,yla
 elif key.startswith('W_m'):
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo[key].T[filter_idxs].T,yla
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo[key].T[filter_idxs].T,yla
 elif key.startswith('Vx_m') or key.startswith('Vy_m'):
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo[key].T[filter_idxs].T,yla
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo[key].T[filter_idxs].T,yla
 elif key.startswith('AOA_m'):
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo[key].T[filter_idxs].T,yla
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo[key].T[filter_idxs].T,yla
 elif key.startswith('AOI_m'):
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo[key].T[filter_idxs].T,yla
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo[key].T[filter_idxs].T,yla
 else:
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo[key].T[filter_idxs].T,yla

Weather
Similarly the weather data from the weather station on Hanger 10 can be plotted.

In []: for key in LFB.weather.keys():
 if key in keys_of_interest:
 if key.startswith('Hum_mean'):
 LFB.plot_data(plot_time[filter_idxs],LFB.weather[key][filter_idxs],ylabe
 LFB.plot_data(plot_time[filter_idxs],LFB.weather[key][filter_idxs],ylabe
 elif key.startswith('T_mean'):
 LFB.plot_data(plot_time[filter_idxs],LFB.weather[key][filter_idxs],ylabe
 LFB.plot_data(plot_time[filter_idxs],LFB.weather[key][filter_idxs],ylabe
 elif key.startswith('P_mean'):
 LFB.plot_data(plot_time[filter_idxs],LFB.weather[key][filter_idxs],ylabe
 LFB.plot_data(plot_time[filter_idxs],LFB.weather[key][filter_idxs],ylabe

Accelerometers
Similarly the data of accelerometers can be plotted.

Note how the status of the full_detail state of the BridgeData class is used to perform
additional analysis when using the full 50Hz sample rate data. The full_detail mode has to
be enabled during the import of the data in the load_data method.

Caution: It is recommended to only use the full_detail mode on one day of data that you
have previously singled out from a larger dataset for detailed analysis. This is because of the
large ammount of data that needs to be processed (4.32 million datapoints per sensor for each
day of data)..

In []: ignored_acc = []
for key in LFB.acc.keys():
 if key in keys_of_interest:
 if key == 'Aoz_C_mean':
 if LFB.full_detail:
 LFB.plot_data(plot_time[filter_idxs],LFB.acc[key].T[filter_idxs].T,y
 for sensor_id,sensor in enumerate(LFB.acc_names):
 if sensor not in ignored_acc:
 if type(time_of_interest[0]) == type(None) and type(time_of_
 Aoz_C_max = LFB.acc['Aoz_C_mean'][sensor_id][filter_idxs
 Aoz_C_std = LFB.acc['Aoz_C_mean'][sensor_id][filter_idxs
 elif type(time_of_interest[0]) != type(None) and type(time_o
 Aoz_C_max = LFB.acc['Aoz_C_mean'][sensor_id][filter_idxs
 Aoz_C_std = LFB.acc['Aoz_C_mean'][sensor_id][filter_idxs
 elif type(time_of_interest[0]) == type(None) and type(time_o
 Aoz_C_max = LFB.acc['Aoz_C_mean'][sensor_id][filter_idxs
 Aoz_C_std = LFB.acc['Aoz_C_mean'][sensor_id][filter_idxs
 elif type(time_of_interest[0]) != type(None) and type(time_o
 Aoz_C_max = LFB.acc['Aoz_C_mean'][sensor_id][filter_idxs
 Aoz_C_std = LFB.acc['Aoz_C_mean'][sensor_id][filter_idxs
 print(LFB.acc_names[sensor_id])
 print('Aoz_C_max =',np.round(Aoz_C_max,2),'\nAoz_C_std =',np
 else:
 LFB.plot_data(plot_time[filter_idxs],LFB.acc[key].T[filter_idxs].T,y
 else:
 LFB.plot_data(plot_time[filter_idxs],LFB.acc[key].T[filter_idxs].T,ylabe

Traffic
Below is a visualisation of the traffic classification previously created using the find_traffic
method. Note that this method is not available in full_detail mode.

Clean the data
The clean_data method is used to remove 'invalid' sensors, that produce too much invalid
data, as defined by the threshold keyword and remove invalid data from the remaining
sensors. Note that some data cleaning already takes place during the import of the data if the
replace_invalid keyword in the load_data method is set to True.

H_mean all sensors deemed ok
H_std all sensors deemed ok
H_min all sensors deemed ok
H_max all sensors deemed ok
W_mean ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
W_mean invalid sensors: ['H10W']
W_std ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
W_std invalid sensors: ['H10W']
W_min ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']

In []: if LFB.full_detail==False:
 LFB.plot_data(plot_time,LFB.traffic,ylabel='IsTraffic',yunit='',xlabel=plot_time

In []: LFB.clean_data(threshold=0.5,detailed_report=True)

W_min invalid sensors: ['H10W']
W_max ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
W_max invalid sensors: ['H10W']
Vx_mean all sensors deemed ok
Vx_std all sensors deemed ok
Vx_min all sensors deemed ok
Vx_max all sensors deemed ok
Vy_mean all sensors deemed ok
Vy_std all sensors deemed ok
Vy_min all sensors deemed ok
Vy_max all sensors deemed ok
Dir_mean all sensors deemed ok
Dir_std all sensors deemed ok
Dir_min all sensors deemed ok
Dir_max all sensors deemed ok
AOA_mean ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
AOA_mean invalid sensors: ['H10W']
AOA_std ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
AOA_std invalid sensors: ['H10W']
AOA_min ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
AOA_min invalid sensors: ['H10W']
AOA_max ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
AOA_max invalid sensors: ['H10W']
H_turb ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
H_turb invalid sensors: ['H10W']
W_turb ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
W_turb invalid sensors: ['H10W']
Vx_turb ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
Vx_turb invalid sensors: ['H10W']
Vy_turb ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
Vy_turb invalid sensors: ['H10W']
Upwind all sensors deemed ok
Downwind all sensors deemed ok
Hanger_num all sensors deemed ok
y_pos all sensors deemed ok
West all sensors deemed ok
East all sensors deemed ok
Top all sensors deemed ok
Bottom all sensors deemed ok
H_mean all sensors deemed ok
H_std all sensors deemed ok
H_min all sensors deemed ok
H_max all sensors deemed ok
W_mean ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
W_mean invalid sensors: ['H10W']
W_std ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
W_std invalid sensors: ['H10W']
W_min ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
W_min invalid sensors: ['H10W']
W_max ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
W_max invalid sensors: ['H10W']
Vx_mean all sensors deemed ok
Vx_std all sensors deemed ok
Vx_min all sensors deemed ok
Vx_max all sensors deemed ok
Vy_mean all sensors deemed ok
Vy_std all sensors deemed ok
Vy_min all sensors deemed ok
Vy_max all sensors deemed ok
Dir_mean all sensors deemed ok
Dir_std all sensors deemed ok
Dir_min all sensors deemed ok
Dir_max all sensors deemed ok
AOA_mean ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']

AOA_mean invalid sensors: ['H10W']
AOA_std ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
AOA_std invalid sensors: ['H10W']
AOA_min ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
AOA_min invalid sensors: ['H10W']
AOA_max ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
AOA_max invalid sensors: ['H10W']
H_turb ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
H_turb invalid sensors: ['H10W']
W_turb ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
W_turb invalid sensors: ['H10W']
Vx_turb ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
Vx_turb invalid sensors: ['H10W']
Vy_turb ok sensors: ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H24W']
Vy_turb invalid sensors: ['H10W']
Upwind all sensors deemed ok
Downwind all sensors deemed ok
Hanger_num all sensors deemed ok
y_pos all sensors deemed ok
West all sensors deemed ok
East all sensors deemed ok
Top all sensors deemed ok
Bottom all sensors deemed ok
Aox_W_mean all sensors deemed ok
Aox_W_std all sensors deemed ok
Aox_W_min all sensors deemed ok
Aox_W_max all sensors deemed ok
Aox_W_max_by_std all sensors deemed ok
Aoy_W_mean all sensors deemed ok
Aoy_W_std all sensors deemed ok
Aoy_W_min all sensors deemed ok
Aoy_W_max all sensors deemed ok
Aoy_W_max_by_std all sensors deemed ok
Aox_E_mean all sensors deemed ok
Aox_E_std all sensors deemed ok
Aox_E_min all sensors deemed ok
Aox_E_max all sensors deemed ok
Aox_E_max_by_std all sensors deemed ok
Aoy_E_mean all sensors deemed ok
Aoy_E_std all sensors deemed ok
Aoy_E_min all sensors deemed ok
Aoy_E_max all sensors deemed ok
Aoy_E_max_by_std all sensors deemed ok
Aox_C_mean all sensors deemed ok
Aox_C_std all sensors deemed ok
Aox_C_min all sensors deemed ok
Aox_C_max all sensors deemed ok
Aox_C_max_by_std all sensors deemed ok
Aoy_C_mean all sensors deemed ok
Aoy_C_std all sensors deemed ok
Aoy_C_min all sensors deemed ok
Aoy_C_max all sensors deemed ok
Aoy_C_max_by_std all sensors deemed ok
Aoz_C_mean all sensors deemed ok
Aoz_C_std all sensors deemed ok
Aoz_C_min all sensors deemed ok
Aoz_C_max all sensors deemed ok
Aoz_C_max_by_std all sensors deemed ok
theta_mean all sensors deemed ok
theta_std all sensors deemed ok
theta_min all sensors deemed ok
theta_max all sensors deemed ok
theta_max_by_std all sensors deemed ok
Hanger_num all sensors deemed ok

y_pos all sensors deemed ok
West all sensors deemed ok
East all sensors deemed ok
Top all sensors deemed ok
Bottom all sensors deemed ok
Aox_W_mean all sensors deemed ok
Aox_W_std all sensors deemed ok
Aox_W_min all sensors deemed ok
Aox_W_max all sensors deemed ok
Aox_W_max_by_std all sensors deemed ok
Aoy_W_mean all sensors deemed ok
Aoy_W_std all sensors deemed ok
Aoy_W_min all sensors deemed ok
Aoy_W_max all sensors deemed ok
Aoy_W_max_by_std all sensors deemed ok
Aox_E_mean all sensors deemed ok
Aox_E_std all sensors deemed ok
Aox_E_min all sensors deemed ok
Aox_E_max all sensors deemed ok
Aox_E_max_by_std all sensors deemed ok
Aoy_E_mean all sensors deemed ok
Aoy_E_std all sensors deemed ok
Aoy_E_min all sensors deemed ok
Aoy_E_max all sensors deemed ok
Aoy_E_max_by_std all sensors deemed ok
Aox_C_mean all sensors deemed ok
Aox_C_std all sensors deemed ok
Aox_C_min all sensors deemed ok
Aox_C_max all sensors deemed ok
Aox_C_max_by_std all sensors deemed ok
Aoy_C_mean all sensors deemed ok
Aoy_C_std all sensors deemed ok
Aoy_C_min all sensors deemed ok
Aoy_C_max all sensors deemed ok
Aoy_C_max_by_std all sensors deemed ok
Aoz_C_mean all sensors deemed ok
Aoz_C_std all sensors deemed ok
Aoz_C_min all sensors deemed ok
Aoz_C_max all sensors deemed ok
Aoz_C_max_by_std all sensors deemed ok
theta_mean all sensors deemed ok
theta_std all sensors deemed ok
theta_min all sensors deemed ok
theta_max all sensors deemed ok
theta_max_by_std all sensors deemed ok
Hanger_num all sensors deemed ok
y_pos all sensors deemed ok
West all sensors deemed ok
East all sensors deemed ok
Top all sensors deemed ok
Bottom all sensors deemed ok
H_mean cummulative data loss: 0.39 %
H_std cummulative data loss: 0.42 %
H_min cummulative data loss: 0.42 %
H_max cummulative data loss: 0.42 %
W_mean cummulative data loss: 0.42 %
W_std cummulative data loss: 0.42 %
W_min cummulative data loss: 0.42 %
W_max cummulative data loss: 0.42 %
Vx_mean cummulative data loss: 0.42 %
Vx_std cummulative data loss: 0.42 %
Vx_min cummulative data loss: 0.42 %
Vx_max cummulative data loss: 0.42 %
Vy_mean cummulative data loss: 0.42 %

Vy_std cummulative data loss: 0.42 %
Vy_min cummulative data loss: 0.42 %
Vy_max cummulative data loss: 0.42 %
Dir_mean cummulative data loss: 0.42 %
Dir_std cummulative data loss: 0.42 %
Dir_min cummulative data loss: 0.42 %
Dir_max cummulative data loss: 0.42 %
AOA_mean cummulative data loss: 0.42 %
AOA_std cummulative data loss: 0.42 %
AOA_min cummulative data loss: 0.42 %
AOA_max cummulative data loss: 0.42 %
H_turb cummulative data loss: 0.42 %
W_turb cummulative data loss: 0.42 %
Vx_turb cummulative data loss: 0.42 %
Vy_turb cummulative data loss: 0.42 %
Upwind cummulative data loss: 0.42 %
Downwind cummulative data loss: 0.42 %
Hanger_num cummulative data loss: 0.42 %
y_pos cummulative data loss: 0.42 %
West cummulative data loss: 0.42 %
East cummulative data loss: 0.42 %
Top cummulative data loss: 0.42 %
Bottom cummulative data loss: 0.42 %
Total data loss: 0.42 %

Save BridgeData state
dill.dump can be used to save the BridgeData class instance in its current state, including

imported and processed data.

Load BridgeData state
dill.load can be used to load the previously saved BridgeData class instance in its

respective state, at the time of saving, including imported and processed data. This is usefull
when returning to the analysis of a larger dataset, as the long import process (load_data) can
be skipped.

Traffic classification
The traffic classification needs to be re-done for processed (cleaned) data, by setting the
cleaned keyword to True when using the find_traffic method.

Traffic percentage: 68.15 %

Filter

In []: # Save the BridgeData class instance (incl. data)
dill.dump(LFB,file=open(LFB.file_path+LFB.file_names[0][:-4]+'-'+LFB.file_names[-1][

In []: # Re-load the file.
LFB = dill.load(open(file_path+file_names[0][:-4]+'-'+file_names[-1][:-4],'rb'))

In []: if LFB.full_detail==False:
 LFB.find_traffic(traffic_thresh=8,cleaned=True)
 print('Traffic percentage:',np.round(100*np.count_nonzero(LFB.traffic_cleaned)/l

Similarly to the traffic classification, filtering needs to be re-done for processed (cleaned) data,
by providing the _cleaned data array to the filter_data method.

Plot cleaned data
Below you will find examples for plotting the cleaned time series data, similar to what was done
in the plotting of the un-processed (un-cleaned) data.

Time settings
Similarly to the traffic classification, the time arrays need to be re-initialized for processed
(cleaned) data, by setting the cleaned keyword to True when using the feature_time
method.

Anemometers
Below is an example for batch post-processing of anemometer data using a for-loop and if-
statements on the keys previously defined by keys_of_interest . This allows to set specific
plot parameters in the plot_data method for different keys. The names of anemometers that
are not of interest can be given to the ignored_anemos keyword as a list.

In []: filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'
if LFB.full_detail:
 title_suffix+= ' - full detail'
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['H_mean'],prior_idxs=filter_idxs,h
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['AOA_mean'],prior_idxs=filter_idxs
filter_idxs = LFB.filter_data(LFB.traffic_cleaned,prior_idxs=filter_idxs,zeros=Tru
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['Dir_mean'][LFB.get_ok_sensor_ind(
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['AOA_mean'][LFB.get_ok_sensor_ind(

In []: LFB.feature_time(cleaned=True) # Initialize time series for cleaned data.

timescale='days' #Change this variable to 'days', 'hours', 'minutes' or 'seconds' to

if timescale=='days':
 plot_time=LFB.days_cleaned
 plot_time_label = 'time [d]'
elif timescale=='hours':
 plot_time=LFB.hours_cleaned
 plot_time_label = 'time [h]'
elif timescale=='minutes':
 plot_time=LFB.minutes_cleaned
 plot_time_label = 'time [min]'
elif timescale=='seconds':
 plot_time=LFB.seconds_cleaned
 plot_time_label = 'time [s]'

time_of_interest=(600,610) # Use this line instead of the one below to zoom in on
time_of_interest=(None,None) # Default

In []: ignored_anemos = []
for key in LFB.anemo_cleaned.keys():
 if key in keys_of_interest:
 if key.startswith('H_m'):
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo_cleaned[key].T[filter_idx
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo_cleaned[key].T[filter_idx

 elif key.startswith('Dir_m'):
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo_cleaned[key].T[filter_idx
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo_cleaned[key].T[filter_idx
 elif key.startswith('W_m'):
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo_cleaned[key].T[filter_idx
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo_cleaned[key].T[filter_idx
 elif key.startswith('Vx_m') or key.startswith('Vy_m'):
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo_cleaned[key].T[filter_idx
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo_cleaned[key].T[filter_idx
 elif key.startswith('AOA_m'):
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo_cleaned[key].T[filter_idx
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo_cleaned[key].T[filter_idx
 elif key.startswith('AOI_m'):
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo_cleaned[key].T[filter_idx
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo_cleaned[key].T[filter_idx
 else:
 LFB.plot_data(plot_time[filter_idxs],LFB.anemo_cleaned[key].T[filter_idx

Weather
Similarly the weather data from the weather station on Hanger 10 can be plotted.

In []: for key in LFB.weather_cleaned.keys():
 if key in keys_of_interest:
 if key.startswith('Hum_mean'):
 LFB.plot_data(plot_time[filter_idxs],LFB.weather_cleaned[key][filter_idx
 LFB.plot_data(plot_time[filter_idxs],LFB.weather_cleaned[key][filter_idx
 elif key.startswith('T_mean'):
 LFB.plot_data(plot_time[filter_idxs],LFB.weather_cleaned[key][filter_idx
 LFB.plot_data(plot_time[filter_idxs],LFB.weather_cleaned[key][filter_idx
 elif key.startswith('P_mean'):
 LFB.plot_data(plot_time[filter_idxs],LFB.weather_cleaned[key][filter_idx
 LFB.plot_data(plot_time[filter_idxs],LFB.weather_cleaned[key][filter_idx

Accelerometers
Similarly the accelerometer data can be plotted.

In []: ignored_acc=[]
for key in LFB.acc_cleaned.keys():
 if key in keys_of_interest:
 LFB.plot_data(plot_time[filter_idxs],LFB.acc_cleaned[key].T[filter_idxs].T,y

Traffic
Below is a visualisation of the traffic classification previously created using the find_traffic
method. Note that this method is not available in full_detail mode.

Histograms
Below are some examples on creating histograms using the hist method. Note that, as in the
time series plots above, filters can be applied using the filter_data method and
keys_of_interest can be set.

Anemometers

In []: if LFB.full_detail==False:
 LFB.plot_data(plot_time,LFB.traffic_cleaned,ylabel='IsTraffic',yunit='',xlabel=p

In []: filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'
filter_idxs = LFB.filter_data(LFB.traffic_cleaned,prior_idxs=filter_idxs,zeros=Tru
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['H_mean'],prior_idxs=filter_idxs,h
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['Dir_mean'],prior_idxs=filter_idxs
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['Dir_mean'],prior_idxs=filter_idxs

In []: keys_of_interest = ['H_mean','H_max','W_mean','Vx_mean','Vy_mean','Dir_mean','H_turb

Below is an example of histograms on anemometer data. The structure of the batch-processing
is similar to the time-series plots above.

Note how different bins are setup for the histograms of different types of measurements
(keys) for the hist method.

Another usefull keyword is the split_sensors keyword, which when set to True creates a
histogram for each sensor or combines them into a single histogram when set to False.

It is also possible to perform any kind of statistical analysis on the data using standard libraries
like numpy or scipy or other 3rd-party libraries.

In []: for key in LFB.anemo_cleaned.keys():
 if key in keys_of_interest:
 if key.startswith('Dir_m'): # Adjust the bin width to 5° for directional dat
 LFB.hist(LFB.anemo_cleaned[key].T[filter_idxs].T,xlabel=key,xunit=LFB.un
 elif key.startswith('H_m'): # Adjust the bins for consistency.
 LFB.hist(LFB.anemo_cleaned[key].T[filter_idxs].T,xlabel=key,xunit=LFB.un
 elif key.endswith('_turb'): # Adjust the bins for consistency.
 LFB.hist(LFB.anemo_cleaned[key].T[filter_idxs].T,xlabel=key,xunit=LFB.un
 elif key.startswith('AOA_m'): # Adjust the bins for consistency.
 LFB.hist(LFB.anemo_cleaned[key].T[filter_idxs].T,xlabel=key,xunit=LFB.un
 else:
 LFB.hist(LFB.anemo_cleaned[key].T[filter_idxs].T,xlabel=key,xunit=LFB.un
 print('Statistics for',key,LFB.units[key],title_suffix)
 print('--')
 print('Mean:',np.round(np.mean(LFB.anemo_cleaned[key].T[filter_idxs].T),2))
 print('Median:',np.round(np.median(LFB.anemo_cleaned[key].T[filter_idxs].T),
 print('Percentile [10, 25, 75, 90]:',np.round(np.percentile(LFB.anemo_cleane
 print('Minimum:',np.round(np.min(LFB.anemo_cleaned[key].T[filter_idxs].T),2)
 print('Maximum:',np.round(np.max(LFB.anemo_cleaned[key].T[filter_idxs].T),2)
 print('Variance:',np.round(np.var(LFB.anemo_cleaned[key].T[filter_idxs].T),2
 print('Standard deviation:',np.round(np.std(LFB.anemo_cleaned[key].T[filter_
 print('Skewness:',np.round(scipy.stats.skew(LFB.anemo_cleaned[key].T[filter_
 print('Kurtosis:',np.round(scipy.stats.kurtosis(LFB.anemo_cleaned[key].T[fil

Statistics for H_mean [m/s] - cleaned
--
Mean: 4.86
Median: 4.13
Percentile [10, 25, 75, 90]: [1.29 2.45 6.64 9.46]
Minimum: 0.12
Maximum: 21.48
Variance: 10.52
Standard deviation: 3.24
Skewness: 1.07
Kurtosis: 1.19

Statistics for H_max [m/s] - cleaned
--
Mean: 9.17
Median: 8.2
Percentile [10, 25, 75, 90]: [2.55 4.78 12.74 17.07]
Minimum: 0.37
Maximum: 35.03
Variance: 31.59
Standard deviation: 5.62
Skewness: 0.79
Kurtosis: 0.33

Statistics for W_mean [m/s] - cleaned
--
Mean: 0.25
Median: 0.14
Percentile [10, 25, 75, 90]: [-0.15 -0.02 0.43 0.83]
Minimum: -1.41
Maximum: 4.48
Variance: 0.2
Standard deviation: 0.44
Skewness: 1.59
Kurtosis: 4.23

Statistics for Vx_mean [m/s] - cleaned
--
Mean: 1.66
Median: 1.35
Percentile [10, 25, 75, 90]: [-3.84 -1.89 4.79 7.68]
Minimum: -10.97
Maximum: 19.58
Variance: 20.14
Standard deviation: 4.49
Skewness: 0.35
Kurtosis: -0.25

Statistics for Vy_mean [m/s] - cleaned
--
Mean: 1.3
Median: 0.65
Percentile [10, 25, 75, 90]: [-1.5 -0.47 2.71 4.9]
Minimum: -6.95
Maximum: 14.21
Variance: 7.09
Standard deviation: 2.66
Skewness: 1.03
Kurtosis: 1.31

Statistics for Dir_mean [°] - cleaned
--
Mean: 180.89
Median: 222.57
Percentile [10, 25, 75, 90]: [63.3 83.71 250.04 268.52]
Minimum: 0.04
Maximum: 359.93
Variance: 7446.38
Standard deviation: 86.29
Skewness: -0.34
Kurtosis: -1.37

Statistics for AOA_mean [°] - cleaned
--
Mean: 2.44
Median: 1.91
Percentile [10, 25, 75, 90]: [-3.75 -0.69 4.89 9.06]
Minimum: -33.64
Maximum: 57.53
Variance: 36.94
Standard deviation: 6.08
Skewness: 1.03
Kurtosis: 5.42

Statistics for AOA_std [°] - cleaned
--
Mean: 11.13
Median: 9.04
Percentile [10, 25, 75, 90]: [4.17 5.78 15.41 21.51]
Minimum: 0.16
Maximum: 42.78
Variance: 45.8
Standard deviation: 6.77
Skewness: 0.94
Kurtosis: 0.14

Statistics for AOA_min [°] - cleaned
--
Mean: -45.97
Median: -36.54
Percentile [10, 25, 75, 90]: [-88.24 -79.03 -20.49 -13.66]
Minimum: -90.0
Maximum: 45.3
Variance: 832.33
Standard deviation: 28.85
Skewness: -0.35
Kurtosis: -1.42

Statistics for AOA_max [°] - cleaned
--
Mean: 55.15
Median: 53.57
Percentile [10, 25, 75, 90]: [20.8 30.44 84.21 88.36]
Minimum: 1.28
Maximum: 90.0
Variance: 695.77
Standard deviation: 26.38
Skewness: -0.05
Kurtosis: -1.5

Statistics for H_turb - cleaned
--
Mean: 0.28
Median: 0.25
Percentile [10, 25, 75, 90]: [0.12 0.17 0.37 0.48]
Minimum: 0.0
Maximum: 1.29
Variance: 0.02
Standard deviation: 0.14
Skewness: 0.82
Kurtosis: 0.4

The code below showcases how direct statistical comparisons between anemometers can be
implemented. In this example the mean angle of attack and turbulence intensity are compared
between anemometers on the upwind- and downwind-side of the bridge for south-westerly and
north-easterly winds.

In []: keys_of_interest = ['AOA_mean','H_turb']
sensor_names_of_interest = ['H08Wb','H08E', 'H18W','H18E']

#south-westerly wind
filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['Dir_mean'],prior_idxs=filter_idxs,h
for key in LFB.anemo_cleaned.keys():
 if key in keys_of_interest:
 if key.startswith('Dir_m'): # Adjust the bin width to 5° for directional dat
 LFB.hist(LFB.anemo_cleaned[key].T[filter_idxs].T,xlabel=key,xunit=LFB.un
 elif key.startswith('H_m'): # Adjust the bins for consistency.
 LFB.hist(LFB.anemo_cleaned[key].T[filter_idxs].T,xlabel=key,xunit=LFB.un
 elif key.endswith('_turb'): # Adjust the bins for consistency.
 LFB.hist(LFB.anemo_cleaned[key].T[filter_idxs].T,xlabel=key,xunit=LFB.un
 elif key.startswith('AOA_m'): # Adjust the bins for consistency.

 LFB.hist(LFB.anemo_cleaned[key].T[filter_idxs].T,xlabel=key,xunit=LFB.un
 else:
 LFB.hist(LFB.anemo_cleaned[key].T[filter_idxs].T,xlabel=key,xunit=LFB.un
 for sensor_name in sensor_names_of_interest:
 if sensor_name in LFB.anemo_names[LFB.anemo_ok_sensor_id[key]]:
 sensor_id = np.where(LFB.anemo_names[LFB.anemo_ok_sensor_id[key]]==s
 print('Statistics for',sensor_name,key,LFB.units[key],title_suffix)
 print('--')
 print('Mean:',np.round(np.mean(LFB.anemo_cleaned[key].T[filter_idxs]
 print('Median:',np.round(np.median(LFB.anemo_cleaned[key].T[filter_i
 print('Percentile [10, 25, 75, 90]:',np.round(np.percentile(LFB.anem
 print('Minimum:',np.round(np.min(LFB.anemo_cleaned[key].T[filter_idx
 print('Maximum:',np.round(np.max(LFB.anemo_cleaned[key].T[filter_idx
 print('Variance:',np.round(np.var(LFB.anemo_cleaned[key].T[filter_id
 print('Standard deviation:',np.round(np.std(LFB.anemo_cleaned[key].T
 print('\n')
 else:
 raise KeyError(str(sensor_name)+' not in ok anemometers. Choose a va

#north-easterly wind
filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['Dir_mean'],prior_idxs=filter_idxs,l
for key in LFB.anemo_cleaned.keys():
 if key in keys_of_interest:
 if key.startswith('Dir_m'): # Adjust the bin width to 5° for directional dat
 LFB.hist(LFB.anemo_cleaned[key].T[filter_idxs].T,xlabel=key,xunit=LFB.un
 elif key.startswith('H_m'): # Adjust the bins for consistency.
 LFB.hist(LFB.anemo_cleaned[key].T[filter_idxs].T,xlabel=key,xunit=LFB.un
 elif key.endswith('_turb'): # Adjust the bins for consistency.
 LFB.hist(LFB.anemo_cleaned[key].T[filter_idxs].T,xlabel=key,xunit=LFB.un
 elif key.startswith('AOA_m'): # Adjust the bins for consistency.
 LFB.hist(LFB.anemo_cleaned[key].T[filter_idxs].T,xlabel=key,xunit=LFB.un
 else:
 LFB.hist(LFB.anemo_cleaned[key].T[filter_idxs].T,xlabel=key,xunit=LFB.un
 for sensor_name in sensor_names_of_interest:
 if sensor_name in LFB.anemo_names[LFB.anemo_ok_sensor_id[key]]:
 sensor_id = np.where(LFB.anemo_names[LFB.anemo_ok_sensor_id[key]]==s
 print('Statistics for',sensor_name,key,LFB.units[key],title_suffix)
 print('--')
 print('Mean:',np.round(np.mean(LFB.anemo_cleaned[key].T[filter_idxs]
 print('Median:',np.round(np.median(LFB.anemo_cleaned[key].T[filter_i
 print('Percentile [10, 25, 75, 90]:',np.round(np.percentile(LFB.anem
 print('Minimum:',np.round(np.min(LFB.anemo_cleaned[key].T[filter_idx
 print('Maximum:',np.round(np.max(LFB.anemo_cleaned[key].T[filter_idx
 print('Variance:',np.round(np.var(LFB.anemo_cleaned[key].T[filter_id
 print('Standard deviation:',np.round(np.std(LFB.anemo_cleaned[key].T
 print('\n')
 else:
 raise KeyError(str(sensor_name)+' not in ok anemometers. Choose a va

Statistics for H08Wb AOA_mean [°] - cleaned - south-westerly wind
--
Mean: 4.2
Median: 4.13
Percentile [10, 25, 75, 90]: [-1.29 2.15 6.08 8.93]
Minimum: -17.55
Maximum: 35.22
Variance: 23.56
Standard deviation: 4.85

Statistics for H08E AOA_mean [°] - cleaned - south-westerly wind
--
Mean: 2.18
Median: 1.75
Percentile [10, 25, 75, 90]: [-3.35 -0.39 4.02 8.75]
Minimum: -21.04
Maximum: 30.51
Variance: 26.74
Standard deviation: 5.17

Statistics for H18W AOA_mean [°] - cleaned - south-westerly wind
--
Mean: 5.47
Median: 4.5
Percentile [10, 25, 75, 90]: [0.51 2.27 7.21 12.02]
Minimum: -17.74
Maximum: 39.49
Variance: 30.28
Standard deviation: 5.5

Statistics for H18E AOA_mean [°] - cleaned - south-westerly wind
--
Mean: 3.3
Median: 1.18
Percentile [10, 25, 75, 90]: [-3.54 -0.73 5.37 15.46]
Minimum: -21.9
Maximum: 53.22
Variance: 64.0

Standard deviation: 8.0

Statistics for H08Wb H_turb - cleaned - south-westerly wind
--
Mean: 0.24
Median: 0.2
Percentile [10, 25, 75, 90]: [0.12 0.15 0.3 0.42]
Minimum: 0.06
Maximum: 0.89
Variance: 0.01
Standard deviation: 0.12

Statistics for H08E H_turb - cleaned - south-westerly wind
--
Mean: 0.25
Median: 0.22
Percentile [10, 25, 75, 90]: [0.13 0.16 0.31 0.43]
Minimum: 0.07
Maximum: 0.95
Variance: 0.01
Standard deviation: 0.12

Statistics for H18W H_turb - cleaned - south-westerly wind
--
Mean: 0.25
Median: 0.21
Percentile [10, 25, 75, 90]: [0.12 0.16 0.31 0.42]
Minimum: 0.07
Maximum: 0.84
Variance: 0.01
Standard deviation: 0.12

Statistics for H18E H_turb - cleaned - south-westerly wind
--
Mean: 0.25
Median: 0.22
Percentile [10, 25, 75, 90]: [0.13 0.16 0.3 0.41]

Minimum: 0.06
Maximum: 0.98
Variance: 0.01
Standard deviation: 0.11

Statistics for H08Wb AOA_mean [°] - cleaned - north-easterly wind
--
Mean: -0.42
Median: -0.09
Percentile [10, 25, 75, 90]: [-4.95 -2.32 1.73 3.62]
Minimum: -17.86
Maximum: 26.1
Variance: 13.94
Standard deviation: 3.73

Statistics for H08E AOA_mean [°] - cleaned - north-easterly wind
--
Mean: 2.41
Median: 2.36
Percentile [10, 25, 75, 90]: [-5.48 -2.15 6.54 10.84]
Minimum: -27.67
Maximum: 40.72
Variance: 47.37
Standard deviation: 6.88

Statistics for H18W AOA_mean [°] - cleaned - north-easterly wind
--
Mean: 0.39
Median: 0.22
Percentile [10, 25, 75, 90]: [-4.11 -1.63 2.04 4.6]
Minimum: -25.3
Maximum: 36.82
Variance: 22.95
Standard deviation: 4.79

Statistics for H18E AOA_mean [°] - cleaned - north-easterly wind
--

Mean: 2.41
Median: 2.3
Percentile [10, 25, 75, 90]: [-5.12 -0.84 5.62 9.67]
Minimum: -33.11
Maximum: 45.93
Variance: 45.89
Standard deviation: 6.77

Statistics for H08Wb H_turb - cleaned - north-easterly wind
--
Mean: 0.31
Median: 0.31
Percentile [10, 25, 75, 90]: [0.11 0.2 0.42 0.51]
Minimum: 0.04
Maximum: 1.03
Variance: 0.02
Standard deviation: 0.15

Statistics for H08E H_turb - cleaned - north-easterly wind
--
Mean: 0.3
Median: 0.29
Percentile [10, 25, 75, 90]: [0.11 0.18 0.4 0.48]
Minimum: 0.04
Maximum: 0.98
Variance: 0.02
Standard deviation: 0.14

Statistics for H18W H_turb - cleaned - north-easterly wind
--
Mean: 0.31
Median: 0.3
Percentile [10, 25, 75, 90]: [0.11 0.2 0.41 0.5]
Minimum: 0.03
Maximum: 1.0
Variance: 0.02
Standard deviation: 0.15

Statistics for H18E H_turb - cleaned - north-easterly wind
--
Mean: 0.3
Median: 0.29
Percentile [10, 25, 75, 90]: [0.12 0.19 0.4 0.49]
Minimum: 0.0
Maximum: 1.02
Variance: 0.02
Standard deviation: 0.15

Weatherstation

Similarly, data weather data from the weather station at H10W can be analysed.

Accelerometers
Similarly, accelerometer data can be analysed.

Wind roses
Another usefull visualisation technique are wind roses, which can be created using the
windrose method.

Note that it is possible to provide a specific colormap to the keyword cmap and even create
your own colormap, for example by using the ListedColormap class from the matplotlib

In []: filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'
filter_idxs = LFB.filter_data(LFB.traffic_cleaned,prior_idxs=filter_idxs,zeros=Tru
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['H_mean'],prior_idxs=filter_idxs,h
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['Dir_mean'],prior_idxs=filter_idxs
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['Dir_mean'],prior_idxs=filter_idxs

In []: for key in LFB.weather_cleaned.keys():
 if key in keys_of_interest:
 LFB.hist(LFB.weather_cleaned[key][filter_idxs],xlabel=key,xunit=LFB.units[ke
 print('Statistics for',key,LFB.units[key])
 print('---------------------------------')
 print('Average:',np.round(np.mean(LFB.weather_cleaned[key].T[filter_idxs].T)
 print('Median:',np.round(np.median(LFB.weather_cleaned[key].T[filter_idxs].T
 print('Percentile 10, 25, 75 and 90:',np.round(np.percentile(LFB.weather_cle
 print('Minimum:',np.round(np.min(LFB.weather_cleaned[key].T[filter_idxs].T),
 print('Maximum:',np.round(np.max(LFB.weather_cleaned[key].T[filter_idxs].T),
 print('Standard deviation:',np.round(np.std(LFB.weather_cleaned[key].T[filte

In []: for key in LFB.acc_cleaned.keys():
 if key in keys_of_interest:
 LFB.hist(LFB.acc_cleaned[key].T[filter_idxs].T,xlabel=key,xunit=LFB.units[ke
 print('Statistics for',key,LFB.units[key])
 print('---------------------------------')
 print('Average:',np.round(np.mean(LFB.acc_cleaned[key].T[filter_idxs].T),2))
 print('Median:',np.round(np.median(LFB.acc_cleaned[key].T[filter_idxs].T),2)
 print('Percentile 10, 25, 75 and 90:',np.round(np.percentile(LFB.acc_cleaned
 print('Minimum:',np.round(np.min(LFB.acc_cleaned[key].T[filter_idxs].T),2))
 print('Maximum:',np.round(np.max(LFB.acc_cleaned[key].T[filter_idxs].T),2))
 print('Standard deviation:',np.round(np.std(LFB.acc_cleaned[key].T[filter_id

https://matplotlib.org/stable/tutorials/colors/colormaps.html

library.

In this example the colormap from windfinder.com is recreated.

The filters work the same way as above and will not be explained anymore further down.

The wind roses can for example be created for 'H_max' or 'H_mean' . It is also again possible
to split it up per sensor using the split_sensors keyword.

Note that for multi-variat analysis on measurements of different types it is necessary to find the
common_ok_sensors and respective sensor indices first using the find_common_ok_sensors

method.

Also note how our custom Windfinder_wind_rose_cmap colormap is provided to the
keyword cmap of the windrose method for this type of measurement and the respective
bins are setup.

In []: # Colormap for windroses based on windfinder.com colors
Windfinder_wind_rose_cmap = ListedColormap(['darkblue', 'lightskyblue', 'limegreen',

In []: filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['Dir_mean'][LFB.get_ok_sensor_ind(
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['AOA_mean'][LFB.get_ok_sensor_ind(
filter_idxs = LFB.filter_data(LFB.traffic_cleaned,prior_idxs=filter_idxs,zeros=Tru
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['H_mean'],prior_idxs=filter_idxs,h

In []: common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.anemo_ok_sensor_id[
LFB.windrose(LFB.anemo_cleaned['Dir_mean'][s1_ind].T[filter_idxs].T,LFB.anemo_cleane

https://www.windfinder.com/windstatistics/forsand_lysefjorden

In []: common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.anemo_ok_sensor_id[
LFB.windrose(LFB.anemo_cleaned['Dir_mean'][s1_ind].T[filter_idxs].T,LFB.anemo_cleane

AOA wind roses
It is also possible to create wind roses on other types of measurements, such as the angle of
attack (AOA), by providing the respective key 'AOA_mean' .

Note how the 'coolwarm' colormap is provided to the keyword cmap of the windrose
method for this type of measurement and the respective bins are setup.

In []: common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.anemo_ok_sensor_id[
LFB.windrose(LFB.anemo_cleaned['Dir_mean'][s1_ind].T[filter_idxs].T,LFB.anemo_cleane

In []: filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['Dir_mean'][LFB.get_ok_sensor_ind(
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['AOA_mean'][LFB.get_ok_sensor_ind(
filter_idxs = LFB.filter_data(LFB.traffic_cleaned,prior_idxs=filter_idxs,zeros=Tru
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['H_mean'],prior_idxs=filter_idxs,h

In []: common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.anemo_ok_sensor_id[
LFB.windrose(LFB.anemo_cleaned['Dir_mean'][s1_ind].T[filter_idxs].T,LFB.anemo_cleane

Turbulence wind roses
Similarly, wind roses can be created for the horizontal turbulence intensity 'H_turb'

Polar scatterplots
Another visualisation technique for directional data is creating polar scatterplots using the
polar_scatterplot method.

Again a custom colormap Windfinder_cmap is set up for wind speed data ('H_m...') using
the ListedColormap class from the matplotlib library to match the colormap from

In []: common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.anemo_ok_sensor_id[
LFB.windrose(LFB.anemo_cleaned['Dir_mean'][s1_ind].T[filter_idxs].T,LFB.anemo_cleane

windfinder.com.

A similar method of batch-processing as showcased in the time-series plots is utilised, looping
over the key2s_of_interest for the radial axis and key3s_of_interest for the color-axis

Note how different colormaps (cmap) and limits (vmin and vmax) are assigned to different
types of measurement on the color-axis (key3)

In []: # Colormap for scatterplots based on windfinder.com colors
Windfinder_cmap_list = []
for windspeed in range(36):
 if windspeed <= 1:
 Windfinder_cmap_list.append('darkblue')
 elif windspeed <= 4:
 Windfinder_cmap_list.append('lightskyblue')
 elif windspeed <= 11:
 Windfinder_cmap_list.append('limegreen')
 elif windspeed <= 17:
 Windfinder_cmap_list.append('gold')
 else:
 Windfinder_cmap_list.append('tab:red')
Windfinder_cmap = ListedColormap(Windfinder_cmap_list)

In []: filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['Dir_mean'][LFB.get_ok_sensor_ind(
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['AOA_mean'][LFB.get_ok_sensor_ind(
filter_idxs = LFB.filter_data(LFB.traffic_cleaned,prior_idxs=filter_idxs,zeros=Tru
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['H_mean'],prior_idxs=filter_idxs,h
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['AOA_mean'],prior_idxs=filter_idxs

In []: key1 = 'Dir_mean'
key2s_of_interest =['H_mean','H_max','AOA_mean','H_turb']
key3s_of_interest = ['AOA_mean','H_mean','H_turb','AOA_std','AOA_min','AOA_max','W_t

for key2 in key2s_of_interest:
 for key3 in key3s_of_interest:
 if key2 != key3:
 if key3.startswith('AOA_m'):
 cmap = 'coolwarm'
 vmin = -15
 vmax = 15
 elif key3.startswith('H_m'):
 cmap = Windfinder_cmap
 vmin = 0
 vmax = 35
 elif key3.endswith('_turb'):
 cmap = 'viridis'
 vmin = 0
 vmax = 1
 else:
 cmap = 'viridis'
 vmin = None
 vmax = None
 common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.anemo_o
 common_ok_sensors,stemp_ind,s3_ind = LFB.find_common_ok_sensors(common_o
 s1_ind = list(np.array(s1_ind)[stemp_ind])
 s2_ind = list(np.array(s2_ind)[stemp_ind])
 LFB.polar_scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,L

https://www.windfinder.com/windstatistics/forsand_lysefjorden

Boxplots
Aside from splitting the sensors in the different types of visualisations it is also possible to create
boxplots to compare data from different sensors using the boxplot method.

As the boxplot method is based on the function with the same name from the matplotlib
library, using help(plt.boxplot) to refer to the documentation can help to understand this
visualisation

Help on function boxplot in module matplotlib.pyplot:

boxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None,
patch_artist=None, bootstrap=None, usermedians=None, conf_intervals=None, meanline=N
one, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, la
bels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whisker
props=None, manage_ticks=True, autorange=False, zorder=None, *, data=None)
 Draw a box and whisker plot.

 The box extends from the first quartile (Q1) to the third
 quartile (Q3) of the data, with a line at the median. The
 whiskers extend from the box by 1.5x the inter-quartile range
 (IQR). Flier points are those past the end of the whiskers.
 See https://en.wikipedia.org/wiki/Box_plot for reference.

 .. code-block:: none

 Q1-1.5IQR Q1 median Q3 Q3+1.5IQR
 |-----:-----|
 o |--------| : |--------| o o
 |-----:-----|

In []: filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'
filter_idxs = LFB.filter_data(LFB.traffic_cleaned,prior_idxs=filter_idxs,zeros=Tru
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['H_mean'],prior_idxs=filter_idxs,h

In []: help(plt.boxplot)

 flier <-----------> fliers
 IQR

 Parameters

 x : Array or a sequence of vectors.
 The input data. If a 2D array, a boxplot is drawn for each column
 in *x*. If a sequence of 1D arrays, a boxplot is drawn for each
 array in *x*.

 notch : bool, default: False
 Whether to draw a notched boxplot (`True`), or a rectangular
 boxplot (`False`). The notches represent the confidence interval
 (CI) around the median. The documentation for *bootstrap*
 describes how the locations of the notches are computed by
 default, but their locations may also be overridden by setting the
 conf_intervals parameter.

 .. note::

 In cases where the values of the CI are less than the
 lower quartile or greater than the upper quartile, the
 notches will extend beyond the box, giving it a
 distinctive "flipped" appearance. This is expected
 behavior and consistent with other statistical
 visualization packages.

 sym : str, optional
 The default symbol for flier points. An empty string ('') hides
 the fliers. If `None`, then the fliers default to 'b+'. More
 control is provided by the *flierprops* parameter.

 vert : bool, default: True
 If `True`, draws vertical boxes.
 If `False`, draw horizontal boxes.

 whis : float or (float, float), default: 1.5
 The position of the whiskers.

 If a float, the lower whisker is at the lowest datum above
 ``Q1 - whis*(Q3-Q1)``, and the upper whisker at the highest datum
 below ``Q3 + whis*(Q3-Q1)``, where Q1 and Q3 are the first and
 third quartiles. The default value of ``whis = 1.5`` corresponds
 to Tukey's original definition of boxplots.

 If a pair of floats, they indicate the percentiles at which to
 draw the whiskers (e.g., (5, 95)). In particular, setting this to
 (0, 100) results in whiskers covering the whole range of the data.

 In the edge case where ``Q1 == Q3``, *whis* is automatically set
 to (0, 100) (cover the whole range of the data) if *autorange* is
 True.

 Beyond the whiskers, data are considered outliers and are plotted
 as individual points.

 bootstrap : int, optional
 Specifies whether to bootstrap the confidence intervals
 around the median for notched boxplots. If *bootstrap* is
 None, no bootstrapping is performed, and notches are
 calculated using a Gaussian-based asymptotic approximation
 (see McGill, R., Tukey, J.W., and Larsen, W.A., 1978, and
 Kendall and Stuart, 1967). Otherwise, bootstrap specifies

 the number of times to bootstrap the median to determine its
 95% confidence intervals. Values between 1000 and 10000 are
 recommended.

 usermedians : 1D array-like, optional
 A 1D array-like of length ``len(x)``. Each entry that is not
 `None` forces the value of the median for the corresponding
 dataset. For entries that are `None`, the medians are computed
 by Matplotlib as normal.

 conf_intervals : array-like, optional
 A 2D array-like of shape ``(len(x), 2)``. Each entry that is not
 None forces the location of the corresponding notch (which is
 only drawn if *notch* is `True`). For entries that are `None`,
 the notches are computed by the method specified by the other
 parameters (e.g., *bootstrap*).

 positions : array-like, optional
 The positions of the boxes. The ticks and limits are
 automatically set to match the positions. Defaults to
 ``range(1, N+1)`` where N is the number of boxes to be drawn.

 widths : float or array-like
 The widths of the boxes. The default is 0.5, or ``0.15*(distance
 between extreme positions)``, if that is smaller.

 patch_artist : bool, default: False
 If `False` produces boxes with the Line2D artist. Otherwise,
 boxes are drawn with Patch artists.

 labels : sequence, optional
 Labels for each dataset (one per dataset).

 manage_ticks : bool, default: True
 If True, the tick locations and labels will be adjusted to match
 the boxplot positions.

 autorange : bool, default: False
 When `True` and the data are distributed such that the 25th and
 75th percentiles are equal, *whis* is set to (0, 100) such
 that the whisker ends are at the minimum and maximum of the data.

 meanline : bool, default: False
 If `True` (and *showmeans* is `True`), will try to render the
 mean as a line spanning the full width of the box according to
 meanprops (see below). Not recommended if *shownotches* is also
 True. Otherwise, means will be shown as points.

 zorder : float, default: ``Line2D.zorder = 2``
 The zorder of the boxplot.

 Returns

 dict
 A dictionary mapping each component of the boxplot to a list
 of the `.Line2D` instances created. That dictionary has the
 following keys (assuming vertical boxplots):

 - ``boxes``: the main body of the boxplot showing the
 quartiles and the median's confidence intervals if
 enabled.

 - ``medians``: horizontal lines at the median of each box.

 - ``whiskers``: the vertical lines extending to the most
 extreme, non-outlier data points.

 - ``caps``: the horizontal lines at the ends of the
 whiskers.

 - ``fliers``: points representing data that extend beyond
 the whiskers (fliers).

 - ``means``: points or lines representing the means.

 Other Parameters

 showcaps : bool, default: True
 Show the caps on the ends of whiskers.
 showbox : bool, default: True
 Show the central box.
 showfliers : bool, default: True
 Show the outliers beyond the caps.
 showmeans : bool, default: False
 Show the arithmetic means.
 capprops : dict, default: None
 The style of the caps.
 boxprops : dict, default: None
 The style of the box.
 whiskerprops : dict, default: None
 The style of the whiskers.
 flierprops : dict, default: None
 The style of the fliers.
 medianprops : dict, default: None
 The style of the median.
 meanprops : dict, default: None
 The style of the mean.
 data : indexable object, optional
 If given, all parameters also accept a string ``s``, which is
 interpreted as ``data[s]`` (unless this raises an exception).

 See Also

 violinplot : Draw an estimate of the probability density function.

Below are some examples for this type of visualisation, using the same batch-processing
technique as before.

In []: keys_of_interest =['H_mean','AOA_mean','AOA_std','AOA_min','AOA_max','H_turb']
for key in keys_of_interest:
 LFB.boxplot(LFB.anemo_cleaned[key].T[filter_idxs].T,labels=LFB.anemo_names[LFB.a

Scatterplots

Scatterplots can be used to visualize bi-variat data or even tri-variat data using colored
scatterplots. These can be created using the scatterplot method and setting the keyword
color to True.

Alot of the functionallity of this method is shared with the previously described methods and will
not be explained further. For more details refer to the documentation using
help(BridgeData.scatterplot) .

Help on function scatterplot in module __main__:

scatterplot(self, data1, data2, data3, label1='data1', label2='data2', label3='data
3', units=['[]', '[]', '[]'], title_suffix='', color=True, plot_in_order_of_color=Tr
ue, cmap='viridis', vmin=None, vmax=None, curve_fit=False, func='quadratic', upper_l
im=inf, lower_lim=-inf, bounds=([-inf, -inf, -inf], [inf, inf, inf]), res=1000, pred
=1.5, curve_fit_return=False, split_sensors=False, sensors=[], ncol=4, bridge_model=
False, Hanger_num=[], West=[], Top=[], save=False)
 Method to create scatterplots on bridge data in a consistent manner.

 Parameters:

 data1 : array_like
 Data for x-axis.
 data2 : array_like
 Data for y-axis.
 data3 : array_like
 Data for color-axis.
 label1 : str, default 'data1'
 Label for x-axis.
 label2 : str, default 'data2'
 Label for y-axis.
 label3 : str, default 'data3'
 Label for colorbar.
 units : list of str, default ['[]','[]','[]']
 Units for x-,y- and color-axis.
 title_suffix : str, optional
 Add a suffix to the title.
 color : bool, default True
 The scatterplot is colored based on data3.
 plot_in_order_of_color : bool, default True
 Plot the datapoints of higher color ontop of datapoints of lower color.
 cmap : colormap or str, default 'viridis'
 Colormap to use for the scatterplot.
 vmin : float, optional
 Lower limit for the color-axis.
 vmax : float, optional
 Upper limit for the color-axis.
 curve_fit : bool, default False
 Fit a curve to the scatterplot. Note: Only works for single scatterplot, not
multiple.
 func : {'quadratic', 'linear'}
 Function for curve fitting.
 upper_lim : float, default np.inf
 Upper limit for data3 values.
 lower_lim : float, default -np.inf
 Lower limit for data3 values.
 bounds : tuple, default ([-np.inf,-np.inf,-np.inf],[np.inf,np.inf,np.inf])
 Bounds for curve fitting parameters.
 res : int, default 1000
 Number of points for the curve fitting.

In []: help(BridgeData.scatterplot)

 pred : float, default 1.5
 Value for prediction of curve fitting.
 curve_fit_return : bool, default False
 Return the parameters of the curve fit.
 split_sensors : bool, default False
 Split the scatterplot into the different sensors.
 sensors : list of str, optional
 List of sensor labels to place above seperate scatterplots if `split_sensors
` is used.
 ncol : int, default 4
 Number of columns defining the grid to place the scatterplots on if `split_s
ensors` is used and `bridge_model` is False.
 bridge_model : bool, default False
 Whether to place the scatterplots on a gird based on their location at the b
ridge if `split_sensors` is used. Uses `Hanger_num`, `West` and `Top`.
 Hanger_num : list of int, optional
 List of the hanger numbers at which each sensor is located.
 West, Top : list of bool, optional
 List of booleans defining whether each sensor is located on the West side, o
r is a top-row sensor respectively.
 save : bool, default False
 Save the scatterplot in ../images/. Note: Requires the prior existence of th
at folder.

 Returns:

 popt1, popt2, pcov1, pcov2 : array_like, optional
 If `curve_fit_return` is True, returns the parameters of the curve fit.

 See Also

 `polar_scatterplot`

Note that it is also possible to analyse data of different measurement types from anemometers
in relation to data of different measurement types from anccelerometers in different ways to
examine the wind response of the bridge.

Anemo VS Anemo VS Anemo - Wind characteristics
In []: filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'

filter_idxs = LFB.filter_data(LFB.traffic_cleaned,prior_idxs=filter_idxs,zeros=Tru
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['H_mean'],prior_idxs=filter_idxs,h
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['Dir_mean'],prior_idxs=filter_idxs
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['Dir_mean'],prior_idxs=filter_idxs

In []: key1 = 'AOA_mean'
key2 = 'Dir_mean'
key3 = 'H_mean'
common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.anemo_ok_sensor_id[
common_ok_sensors,stemp_ind,s3_ind = LFB.find_common_ok_sensors(common_ok_sensors,LF
s1_ind = list(np.array(s1_ind)[stemp_ind])
s2_ind = list(np.array(s2_ind)[stemp_ind])
if key3.startswith('AOA_m'):
 cmap = 'coolwarm'
 vmin = -15
 vmax = 15
elif key3.startswith('H_m'):
 cmap = Windfinder_cmap
 vmin = 0
 vmax = 35

elif key3.endswith('_turb'):
 cmap = 'viridis'
 vmin = 0
 vmax = 1
else:
 cmap = 'viridis'
 vmin = None
 vmax = None
LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.anemo_cleaned[k

In []: key1 = 'AOA_mean'
key2 = 'Dir_mean'
key3 = 'H_turb'
common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.anemo_ok_sensor_id[
common_ok_sensors,stemp_ind,s3_ind = LFB.find_common_ok_sensors(common_ok_sensors,LF
s1_ind = list(np.array(s1_ind)[stemp_ind])
s2_ind = list(np.array(s2_ind)[stemp_ind])
if key3.startswith('AOA_m'):
 cmap = 'coolwarm'
 vmin = -15
 vmax = 15
elif key3.startswith('H_m'):
 cmap = Windfinder_cmap
 vmin = 0
 vmax = 35
elif key3.endswith('_turb'):
 cmap = 'viridis'
 vmin = 0
 vmax = 1
else:
 cmap = 'viridis'
 vmin = None
 vmax = None
LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.anemo_cleaned[k

In []: # filter_idxs = LFB.filter_data(LFB.anemo_cleaned['W_turb'],prior_idxs=filter_idxs,l
key1 = 'AOA_mean'
key2 = 'Dir_mean'
key3 = 'W_turb'
common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.anemo_ok_sensor_id[
common_ok_sensors,stemp_ind,s3_ind = LFB.find_common_ok_sensors(common_ok_sensors,LF
s1_ind = list(np.array(s1_ind)[stemp_ind])
s2_ind = list(np.array(s2_ind)[stemp_ind])
if key3.startswith('AOA_m'):
 cmap = 'coolwarm'
 vmin = -15
 vmax = 15
elif key3.startswith('H_m'):
 cmap = Windfinder_cmap
 vmin = 0
 vmax = 35
elif key3.endswith('_turb'):
 cmap = 'viridis'
 vmin = 0
 vmax = 1
else:
 cmap = 'viridis'
 vmin = None
 vmax = None
LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.anemo_cleaned[k

In []: key1 = 'H_mean'
key2 = 'AOA_mean'
key3 = 'AOA_std'
common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.anemo_ok_sensor_id[
common_ok_sensors,stemp_ind,s3_ind = LFB.find_common_ok_sensors(common_ok_sensors,LF
s1_ind = list(np.array(s1_ind)[stemp_ind])
s2_ind = list(np.array(s2_ind)[stemp_ind])
if key3.startswith('AOA_m'):
 cmap = 'coolwarm'
 vmin = -15
 vmax = 15
elif key3.startswith('H_m'):
 cmap = Windfinder_cmap
 vmin = 0
 vmax = 35
elif key3.endswith('_turb'):
 cmap = 'viridis'
 vmin = 0
 vmax = 1
else:
 cmap = 'viridis'
 vmin = None
 vmax = None
LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.anemo_cleaned[k

In []: filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['Dir_mean'],prior_idxs=filter_idxs
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['Dir_mean'],prior_idxs=filter_idxs,l
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['W_turb'],prior_idxs=filter_idxs,l
key1 = 'H_mean'
key2 = 'AOA_mean'
key3 = 'W_turb'
common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.anemo_ok_sensor_id[
common_ok_sensors,stemp_ind,s3_ind = LFB.find_common_ok_sensors(common_ok_sensors,LF
s1_ind = list(np.array(s1_ind)[stemp_ind])
s2_ind = list(np.array(s2_ind)[stemp_ind])
if key3.startswith('AOA_m'):
 cmap = 'coolwarm'
 vmin = -15
 vmax = 15
elif key3.startswith('H_m'):
 cmap = Windfinder_cmap
 vmin = 0
 vmax = 35
elif key3.endswith('_turb'):
 cmap = 'viridis'
 vmin = 0
 vmax = 1
else:
 cmap = 'viridis'
 vmin = None
 vmax = None
LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.anemo_cleaned[k

In []: filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['W_turb'],prior_idxs=filter_idxs,l
key1 = 'H_mean'
key2 = 'H_turb'
key3 = 'W_turb'
common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.anemo_ok_sensor_id[
common_ok_sensors,stemp_ind,s3_ind = LFB.find_common_ok_sensors(common_ok_sensors,LF
s1_ind = list(np.array(s1_ind)[stemp_ind])
s2_ind = list(np.array(s2_ind)[stemp_ind])
if key3.startswith('AOA_m'):
 cmap = 'coolwarm'
 vmin = -15
 vmax = 15
elif key3.startswith('H_m'):
 cmap = Windfinder_cmap
 vmin = 0
 vmax = 35
elif key3.endswith('_turb'):
 cmap = 'viridis'
 vmin = 0
 vmax = 1
else:
 cmap = 'viridis'
 vmin = None
 vmax = None
LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.anemo_cleaned[k

Anemo VS Acc VS Anemo - Wind response
Note that in the following scatterplots the data is filtered such that traffic dominated responses
are ignored.

Through batch-processing the same plots are generated for the lateral bridge response
'Aox_C_std' , vertical bridge response 'Aoz_C_std' and torsional bridge response
'theta_std'

The scatterplots below show the bridge response at different mean horizontal wind velocities
'H_mean' . The color-axis displays the horizontal turbulence intensity 'H_turb' .

A red and green parabola are fitted to the data, limited to datapoints with turbulence intensities
above 0.6 and below 0.1 respectively.

In []: filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'
filter_idxs = LFB.filter_data(LFB.traffic_cleaned,prior_idxs=filter_idxs,zeros=True,
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['H_mean'],prior_idxs=filter_idxs,h

In []: key1 = 'H_mean'
key2s_of_interest = ['Aox_C_std','Aoz_C_std','theta_std']
key3 = 'H_turb'
for key2 in key2s_of_interest:
 selected_sensors_key1=['H08Wb','H18W','H20W','H24W']
 selected_sensors_key2=['H09','H18','H24','H30']
 selected_sensors_key3=['H08Wb','H18W','H20W','H24W']
 s1_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key1,sensor_type='a
 s2_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key2,sensor_type='a

 s3_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key3,sensor_type='a
 diff = np.abs(len(s1_ind)-len(s2_ind))
 if key3.startswith('AOA_m'):
 cmap = 'coolwarm'
 vmin = -15
 vmax = 15
 elif key3.startswith('H_m'):
 cmap = Windfinder_cmap
 vmin = 0
 vmax = 35
 elif key3.endswith('_turb'):
 cmap = 'viridis'
 vmin = 0
 vmax = 1
 else:
 cmap = 'viridis'
 vmin = None
 vmax = None
 LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.acc_cleaned

The scatterplots below only take the mean velocity 'Vx_mean' and turbulence intensity
'Vx_turb' in x-direction, which is perpendicular to the bridge, instead of the full horizontal

component. Note that also splits the data in westerly and easterly wind directions, as the x-
component is signed.

In []: key1 = 'Vx_mean'
key2s_of_interest = ['Aox_C_std','Aoz_C_std','theta_std']
key3 = 'Vx_turb'
for key2 in key2s_of_interest:
 selected_sensors_key1=['H08Wb','H18W','H20W','H24W']

 selected_sensors_key2=['H09','H18','H24','H30']
 selected_sensors_key3=['H08Wb','H18W','H20W','H24W']
 s1_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key1,sensor_type='a
 s2_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key2,sensor_type='a
 s3_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key3,sensor_type='a
 diff = np.abs(len(s1_ind)-len(s2_ind))
 if key3.startswith('AOA_m'):
 cmap = 'coolwarm'
 vmin = -15
 vmax = 15
 elif key3.startswith('H_m'):
 cmap = Windfinder_cmap
 vmin = 0
 vmax = 35
 elif key3.endswith('_turb'):
 cmap = 'viridis'
 vmin = 0
 vmax = 1
 else:
 cmap = 'viridis'
 vmin = None
 vmax = None
 LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.acc_cleaned

In the scatterplots below the bridge response divided by the turbulence intensity 'Vx_turb'
at different mean wind speeds in x-direction 'Vx_mean' , measured at midspan from the
downwind anemometer 'H18W' or 'H18E' , depending on the filtered wind direction. The
color-axis is displays 'Vx_turb' . The scatterplots are split across the accelerometer pairs
'H09' , 'H18' , 'H24' and 'H30' .

In []: filter_idxs = LFB.filter_data(LFB.traffic_cleaned,prior_idxs=None,zeros=True,mode='a
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['Dir_mean'],prior_idxs=filter_idxs,h
key1 = 'Vx_mean'
key2s_of_interest = ['Aox_C_std','Aoz_C_std','theta_std']
key3 = 'Vx_turb'

for key2 in key2s_of_interest:
 selected_sensors_key1=['H18W']
 selected_sensors_key2=['H09','H18','H24','H30']
 selected_sensors_key3=selected_sensors_key1
 s1_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key1,sensor_type='a
 s2_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key2,sensor_type='a
 s3_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key3,sensor_type='a
 diff = np.abs(len(s1_ind)-len(s2_ind))
 if key3.startswith('AOA_m'):
 cmap = 'coolwarm'
 vmin = -15
 vmax = 15
 elif key3.startswith('H_m'):
 cmap = Windfinder_cmap
 vmin = 0
 vmax = 35
 elif key3.endswith('_turb'):
 cmap = 'viridis'
 vmin = 0
 vmax = 1
 else:
 cmap = 'viridis'
 vmin = None
 vmax = None
 LFB.scatterplot(np.repeat(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,diff+

In []: filter_idxs = LFB.filter_data(LFB.traffic_cleaned,prior_idxs=None,zeros=True,mode='a
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['Dir_mean'],prior_idxs=filter_idxs,l
key1 = 'Vx_mean'
key2s_of_interest = ['Aox_C_std','Aoz_C_std','theta_std']
key3 = 'Vx_turb'
for key2 in key2s_of_interest:
 selected_sensors_key1=['H18E']

 selected_sensors_key2=['H09','H18','H24','H30']
 selected_sensors_key3=selected_sensors_key1
 s1_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key1,sensor_type='a
 s2_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key2,sensor_type='a
 s3_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key3,sensor_type='a
 diff = np.abs(len(s1_ind)-len(s2_ind))
 if key3.startswith('AOA_m'):
 cmap = 'coolwarm'
 vmin = -15
 vmax = 15
 elif key3.startswith('H_m'):
 cmap = Windfinder_cmap
 vmin = 0
 vmax = 35
 elif key3.endswith('_turb'):
 cmap = 'viridis'
 vmin = 0
 vmax = 1
 else:
 cmap = 'viridis'
 vmin = None
 vmax = None
 LFB.scatterplot(np.repeat(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,diff+

In []: filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'
filter_idxs = LFB.filter_data(LFB.traffic_cleaned,prior_idxs=filter_idxs,zeros=True,
filter_idxs = LFB.filter_data(LFB.anemo_cleaned['H_mean'],prior_idxs=filter_idxs,h

In []: key1 = 'AOA_mean'
key2s_of_interest = ['Aox_C_std','Aoz_C_std','theta_std']
key3 = 'H_mean'
for key2 in key2s_of_interest:

 selected_sensors_key1=['H08Wb','H18W','H20W','H24W']
 selected_sensors_key2=['H09','H18','H24','H30']
 selected_sensors_key3=['H08Wb','H18W','H20W','H24W']
 s1_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key1,sensor_type='a
 s2_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key2,sensor_type='a
 s3_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key3,sensor_type='a
 if key3.startswith('AOA_m'):
 cmap = 'coolwarm'
 vmin = -15
 vmax = 15
 elif key3.startswith('H_m'):
 cmap = Windfinder_cmap
 vmin = 0
 vmax = 35
 elif key3.endswith('_turb'):
 cmap = 'viridis'
 vmin = 0
 vmax = 1
 else:
 cmap = 'viridis'
 vmin = None
 vmax = None
 LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.acc_cleaned

In []: key1 = 'AOA_mean'
key2s_of_interest = ['Aox_C_std','Aoz_C_std','theta_std']
key3 = 'H_turb'
for key2 in key2s_of_interest:
 selected_sensors_key1=['H08Wb','H18W','H20W','H24W']
 selected_sensors_key2=['H09','H18','H24','H30']
 selected_sensors_key3=['H08Wb','H18W','H20W','H24W']
 s1_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key1,sensor_type='a
 s2_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key2,sensor_type='a
 s3_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key3,sensor_type='a
 if key3.startswith('AOA_m'):
 cmap = 'coolwarm'
 vmin = -15

 vmax = 15
 elif key3.startswith('H_m'):
 cmap = Windfinder_cmap
 vmin = 0
 vmax = 35
 elif key3.endswith('_turb'):
 cmap = 'viridis'
 vmin = 0
 vmax = 1
 else:
 cmap = 'viridis'
 vmin = None
 vmax = None
 LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.acc_cleaned

In []: key1 = 'AOA_mean'
key2s_of_interest = ['Aox_C_std','Aoz_C_std','theta_std']
key3 = 'H_turb'
for key2 in key2s_of_interest:
 selected_sensors_key1=['H08Wb','H18W','H20W','H24W']
 selected_sensors_key2=['H09','H18','H24','H30']
 selected_sensors_key3=['H08Wb','H18W','H20W','H24W']
 s1_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key1,sensor_type='a
 s2_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key2,sensor_type='a
 s3_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key3,sensor_type='a
 if key3.startswith('AOA_m'):
 cmap = 'coolwarm'

 vmin = -15
 vmax = 15
 elif key3.startswith('H_m'):
 cmap = Windfinder_cmap
 vmin = 0
 vmax = 35
 elif key3.endswith('_turb'):
 cmap = 'viridis'
 vmin = 0
 vmax = 1
 else:
 cmap = 'viridis'
 vmin = None
 vmax = None
 LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.acc_cleaned

Below are more examples for different combinations of measurements in a scatterplot.

Anemo VS Anemo VS Acc - Wind response
Lateral

ok anemometers for H_mean : ['H08Wb' 'H08Wt' 'H08E' 'H10W' 'H10E' 'H18W' 'H18E' 'H2
0W' 'H24W']
ok anemometers for AOA_mean : ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W'
'H24W']
ok accelerometers for Aox_C_std : ['H09' 'H18' 'H24' 'H30']

In []: key1 = 'H_mean'
key2 = 'AOA_mean'
key3 = 'Aox_C_std'
print('ok anemometers for ',key1,':',LFB.anemo_names[LFB.anemo_ok_sensor_id[key1]])
print('ok anemometers for ',key2,':',LFB.anemo_names[LFB.anemo_ok_sensor_id[key2]])
print('ok accelerometers for ',key3,':',LFB.acc_names[LFB.acc_ok_sensor_id[key3]])
selected_sensors_key1=['H08Wb','H18W','H20W','H24W']
selected_sensors_key2=['H08Wb','H18W','H20W','H24W']
selected_sensors_key3=['H09','H18','H24','H30']
s1_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key1,sensor_type='anemo
s2_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key2,sensor_type='anemo
s3_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key3,sensor_type='acc',

LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.anemo_cleaned[k

ok anemometers for H_mean : ['H08Wb' 'H08Wt' 'H08E' 'H10W' 'H10E' 'H18W' 'H18E' 'H2
0W' 'H24W']
ok anemometers for H_turb : ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H2
4W']
ok accelerometers for Aox_C_std : ['H09' 'H18' 'H24' 'H30']

Vertical

In []: key1 = 'H_mean'
key2 = 'H_turb'
key3 = 'Aox_C_std'
print('ok anemometers for ',key1,':',LFB.anemo_names[LFB.anemo_ok_sensor_id[key1]])
print('ok anemometers for ',key2,':',LFB.anemo_names[LFB.anemo_ok_sensor_id[key2]])
print('ok accelerometers for ',key3,':',LFB.acc_names[LFB.acc_ok_sensor_id[key3]])
selected_sensors_key1=['H08Wb','H18W','H20W','H24W']
selected_sensors_key2=['H08Wb','H18W','H20W','H24W']
selected_sensors_key3=['H09','H18','H24','H30']
s1_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key1,sensor_type='anemo
s2_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key2,sensor_type='anemo
s3_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key3,sensor_type='acc',

LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.anemo_cleaned[k

In []: key1 = 'H_mean'
key2 = 'AOA_mean'
key3 = 'Aoz_C_std'
print('ok anemometers for ',key1,':',LFB.anemo_names[LFB.anemo_ok_sensor_id[key1]])

ok anemometers for H_mean : ['H08Wb' 'H08Wt' 'H08E' 'H10W' 'H10E' 'H18W' 'H18E' 'H2
0W' 'H24W']
ok anemometers for AOA_mean : ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W'
'H24W']
ok accelerometers for Aoz_C_std : ['H09' 'H18' 'H24' 'H30']

ok anemometers for H_mean : ['H08Wb' 'H08Wt' 'H08E' 'H10W' 'H10E' 'H18W' 'H18E' 'H2
0W' 'H24W']
ok anemometers for H_turb : ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H2
4W']
ok accelerometers for Aoz_C_std : ['H09' 'H18' 'H24' 'H30']

print('ok anemometers for ',key2,':',LFB.anemo_names[LFB.anemo_ok_sensor_id[key2]])
print('ok accelerometers for ',key3,':',LFB.acc_names[LFB.acc_ok_sensor_id[key3]])
selected_sensors_key1=['H08Wb','H18W','H20W','H24W']
selected_sensors_key2=['H08Wb','H18W','H20W','H24W']
selected_sensors_key3=['H09','H18','H24','H30']
s1_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key1,sensor_type='anemo
s2_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key2,sensor_type='anemo
s3_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key3,sensor_type='acc',

LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.anemo_cleaned[k

In []: key1 = 'H_mean'
key2 = 'H_turb'
key3 = 'Aoz_C_std'
print('ok anemometers for ',key1,':',LFB.anemo_names[LFB.anemo_ok_sensor_id[key1]])
print('ok anemometers for ',key2,':',LFB.anemo_names[LFB.anemo_ok_sensor_id[key2]])
print('ok accelerometers for ',key3,':',LFB.acc_names[LFB.acc_ok_sensor_id[key3]])
selected_sensors_key1=['H08Wb','H18W','H20W','H24W']
selected_sensors_key2=['H08Wb','H18W','H20W','H24W']
selected_sensors_key3=['H09','H18','H24','H30']
s1_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key1,sensor_type='anemo
s2_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key2,sensor_type='anemo
s3_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key3,sensor_type='acc',

LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.anemo_cleaned[k

Torsional

ok anemometers for H_mean : ['H08Wb' 'H08Wt' 'H08E' 'H10W' 'H10E' 'H18W' 'H18E' 'H2
0W' 'H24W']
ok anemometers for AOA_mean : ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W'
'H24W']
ok accelerometers for theta_std : ['H09' 'H18' 'H24' 'H30']

In []: key1 = 'H_mean'
key2 = 'AOA_mean'
key3 = 'theta_std'
print('ok anemometers for ',key1,':',LFB.anemo_names[LFB.anemo_ok_sensor_id[key1]])
print('ok anemometers for ',key2,':',LFB.anemo_names[LFB.anemo_ok_sensor_id[key2]])
print('ok accelerometers for ',key3,':',LFB.acc_names[LFB.acc_ok_sensor_id[key3]])
selected_sensors_key1=['H08Wb','H18W','H20W','H24W']
selected_sensors_key2=['H08Wb','H18W','H20W','H24W']
selected_sensors_key3=['H09','H18','H24','H30']
s1_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key1,sensor_type='anemo
s2_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key2,sensor_type='anemo
s3_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key3,sensor_type='acc',

LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.anemo_cleaned[k

In []: key1 = 'H_mean'
key2 = 'H_turb'
key3 = 'theta_std'
print('ok anemometers for ',key1,':',LFB.anemo_names[LFB.anemo_ok_sensor_id[key1]])

ok anemometers for H_mean : ['H08Wb' 'H08Wt' 'H08E' 'H10W' 'H10E' 'H18W' 'H18E' 'H2
0W' 'H24W']
ok anemometers for H_turb : ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H2
4W']
ok accelerometers for theta_std : ['H09' 'H18' 'H24' 'H30']

Anemo VS Acc VS Acc - Wind response

ok anemometers for H_mean : ['H08Wb' 'H08Wt' 'H08E' 'H10W' 'H10E' 'H18W' 'H18E' 'H2
0W' 'H24W']
ok accelerometers for Aoz_C_std : ['H09' 'H18' 'H24' 'H30']
ok accelerometers for Aoz_C_max_by_std : ['H09' 'H18' 'H24' 'H30']

print('ok anemometers for ',key2,':',LFB.anemo_names[LFB.anemo_ok_sensor_id[key2]])
print('ok accelerometers for ',key3,':',LFB.acc_names[LFB.acc_ok_sensor_id[key3]])
selected_sensors_key1=['H08Wb','H18W','H20W','H24W']
selected_sensors_key2=['H08Wb','H18W','H20W','H24W']
selected_sensors_key3=['H09','H18','H24','H30']
s1_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key1,sensor_type='anemo
s2_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key2,sensor_type='anemo
s3_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key3,sensor_type='acc',

LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.anemo_cleaned[k

In []: key1 = 'H_mean'
key2 = 'Aoz_C_std'
key3 = 'Aoz_C_max_by_std'
print('ok anemometers for ',key1,':',LFB.anemo_names[LFB.anemo_ok_sensor_id[key1]])
print('ok accelerometers for ',key2,':',LFB.acc_names[LFB.acc_ok_sensor_id[key2]])
print('ok accelerometers for ',key3,':',LFB.acc_names[LFB.acc_ok_sensor_id[key3]])
selected_sensors_key1=['H08Wb','H18W','H20W','H24W']
selected_sensors_key2=['H09','H18','H24','H30']
selected_sensors_key3=['H09','H18','H24','H30']
s1_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key1,sensor_type='anemo
s2_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key2,sensor_type='acc',
s3_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key3,sensor_type='acc',

LFB.scatterplot(LFB.anemo_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.acc_cleaned[key

Acc VS Anemo VS Acc - Wind response

ok anemometers for Aoz_C_std : ['H09' 'H18' 'H24' 'H30']
ok anemometers for H_turb : ['H08Wb' 'H08Wt' 'H08E' 'H10E' 'H18W' 'H18E' 'H20W' 'H2
4W']
ok accelerometers for Aoz_C_max_by_std : ['H09' 'H18' 'H24' 'H30']

Acc VS Acc VS Anemo - Wind response

In []: key1 = 'Aoz_C_std'
key2 = 'H_turb'
key3 = 'Aoz_C_max_by_std'
print('ok anemometers for ',key1,':',LFB.acc_names[LFB.acc_ok_sensor_id[key1]])
print('ok anemometers for ',key2,':',LFB.anemo_names[LFB.anemo_ok_sensor_id[key2]])
print('ok accelerometers for ',key3,':',LFB.acc_names[LFB.acc_ok_sensor_id[key3]])
selected_sensors_key1=['H09','H18','H24','H30']
selected_sensors_key2=['H08Wb','H18W','H20W','H24W']
selected_sensors_key3=['H09','H18','H24','H30']
s1_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key1,sensor_type='acc',
s2_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key2,sensor_type='anemo
s3_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key3,sensor_type='acc',

LFB.scatterplot(LFB.acc_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.anemo_cleaned[key

In []: key1 = 'Aoz_C_std'
key2 = 'Aoz_C_max'
key3 = 'H_mean'
print('ok anemometers for ',key1,':',LFB.acc_names[LFB.acc_ok_sensor_id[key1]])
print('ok anemometers for ',key2,':',LFB.acc_names[LFB.acc_ok_sensor_id[key2]])
print('ok accelerometers for ',key3,':',LFB.anemo_names[LFB.anemo_ok_sensor_id[key3]
selected_sensors_key1=['H09','H18','H24','H30']
selected_sensors_key2=['H09','H18','H24','H30']

ok anemometers for Aoz_C_std : ['H09' 'H18' 'H24' 'H30']
ok anemometers for Aoz_C_max : ['H09' 'H18' 'H24' 'H30']
ok accelerometers for H_mean : ['H08Wb' 'H08Wt' 'H08E' 'H10W' 'H10E' 'H18W' 'H18E'
'H20W' 'H24W']

Acc VS Acc vs Acc - Acceleration characteristics

selected_sensors_key3=['H08Wb','H18W','H20W','H24W']
s1_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key1,sensor_type='acc',
s2_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key2,sensor_type='acc',
s3_ind = LFB.get_ok_sensor_ind(sensor_names=selected_sensors_key3,sensor_type='anemo
if key3.startswith('AOA_m'):
 cmap = 'coolwarm'
 vmin = -15
 vmax = 15
elif key3.startswith('H_m'):
 cmap = Windfinder_cmap
 vmin = 0
 vmax = 35
elif key3.endswith('_turb'):
 cmap = 'viridis'
 vmin = 0
 vmax = 1
else:
 cmap = 'viridis'
 vmin = None
 vmax = None
LFB.scatterplot(LFB.acc_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.acc_cleaned[key2]

In []: key1 = 'Aoz_C_std'
key2 = 'Aoz_C_max'
key3 = 'Aoz_C_max_by_std'
common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.acc_ok_sensor_id[ke
common_ok_sensors,stemp_ind,s3_ind = LFB.find_common_ok_sensors(common_ok_sensors,LF
s1_ind = list(np.array(s1_ind)[stemp_ind])
s2_ind = list(np.array(s2_ind)[stemp_ind])

LFB.scatterplot(LFB.acc_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.acc_cleaned[key2]

In []: key1 = 'Aox_C_std'
key2 = 'Aoz_C_std'
key3 = 'theta_std'
common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.acc_ok_sensor_id[ke
common_ok_sensors,stemp_ind,s3_ind = LFB.find_common_ok_sensors(common_ok_sensors,LF
s1_ind = list(np.array(s1_ind)[stemp_ind])
s2_ind = list(np.array(s2_ind)[stemp_ind])

LFB.scatterplot(LFB.acc_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.acc_cleaned[key2]

In []: key1 = 'Aox_C_std'
key2 = 'theta_std'
key3 = 'Aoz_C_std'
common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.acc_ok_sensor_id[ke
common_ok_sensors,stemp_ind,s3_ind = LFB.find_common_ok_sensors(common_ok_sensors,LF
s1_ind = list(np.array(s1_ind)[stemp_ind])
s2_ind = list(np.array(s2_ind)[stemp_ind])

LFB.scatterplot(LFB.acc_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.acc_cleaned[key2]

In []: key1 = 'Aoz_C_std'
key2 = 'Aox_C_std'
key3 = 'theta_std'
common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.acc_ok_sensor_id[ke
common_ok_sensors,stemp_ind,s3_ind = LFB.find_common_ok_sensors(common_ok_sensors,LF
s1_ind = list(np.array(s1_ind)[stemp_ind])
s2_ind = list(np.array(s2_ind)[stemp_ind])

LFB.scatterplot(LFB.acc_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.acc_cleaned[key2]

In []: key1 = 'Aoz_C_std'
key2 = 'theta_std'
key3 = 'Aox_C_std'
common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.acc_ok_sensor_id[ke
common_ok_sensors,stemp_ind,s3_ind = LFB.find_common_ok_sensors(common_ok_sensors,LF
s1_ind = list(np.array(s1_ind)[stemp_ind])
s2_ind = list(np.array(s2_ind)[stemp_ind])

LFB.scatterplot(LFB.acc_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.acc_cleaned[key2]

In []: key1 = 'theta_std'
key2 = 'Aox_C_std'
key3 = 'Aoz_C_std'
common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.acc_ok_sensor_id[ke
common_ok_sensors,stemp_ind,s3_ind = LFB.find_common_ok_sensors(common_ok_sensors,LF
s1_ind = list(np.array(s1_ind)[stemp_ind])
s2_ind = list(np.array(s2_ind)[stemp_ind])

LFB.scatterplot(LFB.acc_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.acc_cleaned[key2]

In []: key1 = 'theta_std'
key2 = 'Aoz_C_std'
key3 = 'Aox_C_std'
common_ok_sensors,s1_ind,s2_ind = LFB.find_common_ok_sensors(LFB.acc_ok_sensor_id[ke
common_ok_sensors,stemp_ind,s3_ind = LFB.find_common_ok_sensors(common_ok_sensors,LF
s1_ind = list(np.array(s1_ind)[stemp_ind])
s2_ind = list(np.array(s2_ind)[stemp_ind])

LFB.scatterplot(LFB.acc_cleaned[key1][s1_ind].T[filter_idxs].T,LFB.acc_cleaned[key2]

Correlation matrices
Below are some correlation matrices for relevant measurements, selected using
keys_of_interst .

Anemo & Anemo - Wind characteristics

Batch-processing using two nested for-loops over key1 and key2 is used. if-statements are
used to selectively process keys from keys_of_interest and process each key pairing only
once. Another if-statement is used to apply the absolute opperation np.abs to data of keys
starting with 'AOA_m' only.

In []: # keys_of_interest = ['H_mean','H_turb','W_mean','W_turb','Vx_mean','Vx_turb','Vy_me
keys_of_interest = ['H_mean','H_turb','AOA_mean','Aox_C_std','Aoz_C_std','theta_std'

In []: filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'
filter_idxs = LFB.filter_data(LFB.traffic_cleaned,prior_idxs=filter_idxs,zeros=Tru

In []: for key1_num, key1 in enumerate(LFB.anemo_cleaned.keys()):
 if key1 in keys_of_interest:
 for key2_num, key2 in enumerate(LFB.anemo_cleaned.keys()):
 if key2 in keys_of_interest:
 if key1_num < key2_num:
 if key1.startswith('AOA_m'):
 data1 = np.abs(LFB.anemo_cleaned[key1].T[filter_idxs].T)
 title1_suffix = ' (absolute)'
 else:

 data1 = LFB.anemo_cleaned[key1].T[filter_idxs].T
 title1_suffix = ''
 if key2.startswith('AOA_m'):
 data2 = np.abs(LFB.anemo_cleaned[key2].T[filter_idxs].T)
 title2_suffix = ' (absolute)'
 else:
 data2 = LFB.anemo_cleaned[key2].T[filter_idxs].T
 title2_suffix = ''
 LFB.correlation_matrix(data1,data2,title1=key1+title1_suffix,tit

Anemo & Acc - Wind response
For correlations with accelerometer data the data is filtered for traffic, as only the wind response
is of interest.

In []: filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'
filter_idxs = LFB.filter_data(LFB.traffic_cleaned,prior_idxs=filter_idxs,zeros=True,

In []: for key1_num, key1 in enumerate(LFB.anemo_cleaned.keys()):
 if key1 in keys_of_interest:
 for key2_num, key2 in enumerate(LFB.acc_cleaned.keys()):
 if key2 in keys_of_interest:
 if key1.startswith('AOA_m'):
 data1 = np.abs(LFB.anemo_cleaned[key1].T[filter_idxs].T)
 title1_suffix = ' (absolute)'
 else:
 data1 = LFB.anemo_cleaned[key1].T[filter_idxs].T
 title1_suffix = ''
 data2 = LFB.acc_cleaned[key2].T[filter_idxs].T
 title2_suffix = ''
 LFB.correlation_matrix(data1,data2,title1=key1+title1_suffix,title2=

Acc & Acc - Acceleration characteristics
In []: filter_idxs = np.arange(len(LFB.time_array_cleaned)); title_suffix = ' - cleaned'

filter_idxs = LFB.filter_data(LFB.traffic_cleaned,prior_idxs=filter_idxs,zeros=True,

In []: for key1_num, key1 in enumerate(LFB.acc_cleaned.keys()):
 if key1 in keys_of_interest:
 for key2_num, key2 in enumerate(LFB.acc_cleaned.keys()):
 if key2 in keys_of_interest:
 if key1_num < key2_num:
 LFB.correlation_matrix(LFB.acc_cleaned[key1].T[filter_idxs].T,LF

