Appendix to report:

SBJ-33-C5-OON-22-RE-021 K12 - DESIGN OF MOORING AND ANCHORING

Appendix title:

APPENDIX B - INTERLINK STIFFNESS MODELL

Contract no:	18/91094
Project number:	5187772/12777
Document number:	SBJ-33-C5-OON-22-RE-021 App. B
Date:	15.08.2019
Revision:	0
Number of pages:	20
Prepared by:	Theresa Böllmann
Controlled by:	Håkon S. Andersen
Approved by:	Kolbjørn Høyland

CONCEPT DEVELOPMENT FLOATING BRIDGE E39 BJØRNAFJORDEN

Prodex F2 Pure Logic HEYERDAHL ARKITEKTER AS HEEB ANIKO BERGING SWERIM

Table of Content

1	REPORT ANALYSIS MODELL	3
1.1	Materials	3
1.2	Nodes	1
1.3	Loads	5
1.4	Results	7
2	CONTROLL OF ANALYSIS MODELL)
2.1	Case 1 – Cantilever with Stiff hinge10)
2.2	Case 2 – As Case 1 with variable Iy and Iz for links10	5
2.3	Case 3 – As Case 1 with Interlink stiffness for spring between links18	3
2.4		_

1 REPORT ANALYSIS MODELL

1.1 Materials

Materials

Mat	Classification						
1	STEEL						

Cross-sections static properties

SNo	Mat	A[m2]	Ay[m2]	Iy[m4]	yc[mm]	ysc[mm]	E[N/mm2]	g[kg/m]	I-1[m4]
	MRf	It[m4]	Az[m2]	Iz[m4]	zc[mm]	zsc[mm]	G[N/mm2]		I-2[m4]
			Ayz[m2]	Iyz[m4]					α[°]
1	1	1.6741E-02		4.461E-05	0.0	0.0	210000	41.9	1.029E-03
		1.853E-06		1.029E-03	0.0	0.0	80769		4.461E-05
		Link 1							
2	1	1.6741E-02		1.029E-03	0.0	0.0	210000	41.9	
		1.853E-06		4.461E-05	0.0	0.0	80769		
= Link 2									
SNo Mat A[m2] Ay[m2],Az[Iy[m4],Iz[I-1[m4],I- MRf It[m4] G[N/mm2]	= LINK Z SNo section number yc[mm],zc[mm] ordinate of elastic centroid Mat material number ysc[mm],zsc[mm] ordinate of shear centre A[m2] sectional area E[N/mm2] Young's modulus Ay[m2],Az[m2],Ayz[m2] transverse shear deformation area g[kg/m] weight per length Iy[m4],Iz[m4],Iyz[m4] bending moment of inertia and angle of the principal axes reinforcement material number It[m4] torsional moment of inertia finertia finertia								

Spring Material 111

Connection type: 'Implicit Hinge' work law(s) Material type: Elastoplastic, anisotropic hardening

Force-displacement law My

Number		ur[kNm/rad]	u[mrad]	My[kNm]	S[kNm/rad]
111	Му	10588.23	-13.080	-28.50	0.00
			-3.080	-28.50	8076.92
			-2.560	-24.30	8431.37
			-2.050	-20.00	9019.61
			-1.540	-15.40	9230.77
			-1.020	-10.60	10196.08
			-0.510	-5.40	10588.23
			0.000	0.00	10588.23
			0.510	5.40	10000.00
			1.030	10.60	9411.76
			1.540	15.40	9019.61
			2.050	20.00	8431.37
			2.560	24.30	8076.92
			3.080	28.50	0.00
			13.080	28.50	0.00

material and hinge definition

1.2 Nodes

Nodes									
Number	X[m]	Y[m]	Z[m]	eq.PX	eq.PY	eq.PZ	eq.MX	eq.MY	eq.MZ
101	0.000	0.000	0.000	PX	PY	PZ	1	2	3
102	0.584	0.000	0.000	4	5	6	7	8	9
103	1.168	0.000	0.000	11	12	13	14	15	16
104	1.752	0.000	0.000	18	19	20	21	22	23
105	2.336	0.000	0.000	25	26	27	28	29	30
106	2.920	0.000	0.000	32	33	34	35	36	37
107	3.504	0.000	0.000	39	40	41	42	43	44
108	4.088	0.000	0.000	46	47	48	49	50	51
109	4.672	0.000	0.000	53	54	55	56	57	58
110	5.256	0.000	0.000	60	61	62	63	64	65
111	5.840	0.000	0.000	67	68	69	70	71	72
112	6.424	0.000	0.000	74	75	76	77	78	79
113	7.008	0.000	0.000	81	82	83	84	85	86
114	7.592	0.000	0.000	88	89	90	91	92	93
115	8.176	0.000	0.000	95	96	97	98	99	100
116	8.760	0.000	0.000	102	103	104	105	106	107
117	9.344	0.000	0.000	109	110	111	112	113	114
118	9.928	0.000	0.000	116	117	118	119	120	121
119	10.512	0.000	0.000	123	124	125	126	127	128
120	11.096	0.000	0.000	130	131	132	133	134	135
121	11.680	0.000	0.000	137	PY	PZ	MX	138	MZ
MIN	0.000	0.000	0.000						
MAX	11.680	0.000	0.000	138					

1.3 Loads

Load Case 101 3rd Order Theory (UPD.LAGRANGIAN) NONLINEAR Factor forces and moments 1.000

Noc	le W	[mm]X	[mm]YW	WZ[mm]] DX[mr	'ad]	DY[n	inad]	DZ	[mrad]	
10	91					- 1		.730			
Noc	le P	X[kN]	PY[kN]	PZ[kN]] MX[k	(Nm]	MY	kNm]	MZ	[kNm]	MB[kNm
17	21 1	300.0				-					
	1	I			1						
Beam F	Forces a	ind Mome	nts Loadca	ise 101	NONLIN	IEAR					
Grp	Number	x	N N	٧y	٧z		Mt		My		Mz
		[m]	[kN]	[kN]	[kN]		[kNm]	[kNm]	[k	(Nm]
0	1	0.000	1299.9	0.00	13.86		0.00	- 2	9.86	0	.00
		0.584	1299.9	0.00	13.86		0.00	- 2	1.76	e	.00
0	2	0.000	1300.4	0.00	9.73		0.00	- 2	1.62	0	.00
		0.584	1300.4	0.00	9.73		0.00	- 1	5.94	0	.00
0	3	0.000	1300.8	0.00	7.17		0.00	- 1	5.84	0	.00
		0.584	1300.8	0.00	7.17		0.00	- 1	1.66	0	.00
0	4	0.000	1300.6	0.00	5.38		0.00	- 1	1.65	0	.00
		0.584	1300.6	0.00	5.38		0.00	-	8.51	0	.00
0	5	0.000	1300.3	0.00	3.92		0.00	-	8.53	e	.00
		0.584	1300.3	0.00	3.92		0.00	-	6.24	e	.00
0	6	0.000	1300.0	0.00	2.87		0.00	-	6.27	0	.00
		0.584	1300.0	0.00	2.87		0.00	-	4.60	e	.00
0	7	0.000	1299.9	0.00	2.12		0.00	-	4.60	0	.00
		0.584	1299.9	0.00	2.12		0.00	-	3.36	0	00.00
0	8	0.000	1299.8	0.00	1.54		0.00	-	3.38	0	.00
		0.584	1299.8	0.00	1.54		0.00	-	2.48	0	.00
0	9	0.000	1299.9	0.00	1.16		0.00	-	2.48	0	.00
		0.584	1299.9	0.00	1.16		0.00	-	1.80	0	00.00
0	10	0.000	1299.9	0.00	0.83		0.00	-	1.83	0	.00
		0.584	1299.9	0.00	0.83		0.00	-	1.34	0	.00
0	11	0.000	1300.0	0.00	0.62		0.00	-	1.34	0	.00
		0.584	1300.0	0.00	0.62		0.00	-	0.98	0	.00
0	12	0.000	1300.0	0.00	0.45		0.00	-	0.99	0	.00
		0.584	1300.0	0.00	0.45		0.00	-	0.72	0	.00
0	13	0.000	1300.1	0.00	0.32		0.00	-	0.72	0	.00
		0.584	1300.1	0.00	0.32		0.00	-	0.54	0	.00
0	14	0.000	1300.1	0.00	0.24		0.00	-	0.54	0	.00
		0.584	1300.1	0.00	0.24		0.00	-	0.39	0	.00
0	15	0.000	1300.1	0.00	0.16		0.00	-	0.39	0	.00
		0.584	1300.1	0.00	0.16		0.00	-	0.30	0	.00
0	16	0.000	1300.1	0.00	0.14		0.00	-	0.29	0	.00

unite laster (172

Load Case 101 3rd Order Theory (UPD.LAGRANGIAN) NONLINEAR Factor forces and moments 1.000

Loads acting on Nodes

Node	WX[mm]	WY[mm]	WZ[mm]	DX[mrad]	DY[mrad]	DZ[mrad]	
101					8.730		
Node	PX[kN]	PY[kN]	PZ[kN]	MX[kNm]	MY[kNm]	MZ[kNm]	MB[kNm2]
121	1300.0						

Beam	Forces and Moments Loadcase				1 NONLINEAR				
Grp	Number	x	N	Vy	Vz	Mt	My	Mz	
		[m]	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	
0	1	0.000	1299.9	0.00	13.86	0.00	-29.86	0.00	
		0.584	1299.9	0.00	13.86	0.00	-21.76	0.00	
0	2	0.000	1300.4	0.00	9.73	0.00	-21.62	0.00	
		0.584	1300.4	0.00	9.73	0.00	-15.94	0.00	
0	3	0.000	1300.8	0.00	7.17	0.00	-15.84	0.00	
		0.584	1300.8	0.00	7.17	0.00	-11.66	0.00	
0	4	0.000	1300.6	0.00	5.38	0.00	-11.65	0.00	
		0.584	1300.6	0.00	5.38	0.00	-8.51	0.00	
0	5	0.000	1300.3	0.00	3.92	0.00	-8.53	0.00	
		0.584	1300.3	0.00	3.92	0.00	-6.24	0.00	
0	6	0.000	1300.0	0.00	2.87	0.00	-6.27	0.00	
		0.584	1300.0	0.00	2.87	0.00	-4.60	0.00	
0	7	0.000	1299.9	0.00	2.12	0.00	-4.60	0.00	
		0.584	1299.9	0.00	2.12	0.00	-3.36	0.00	
0	8	0.000	1299.8	0.00	1.54	0.00	-3.38	0.00	
		0.584	1299.8	0.00	1.54	0.00	-2.48	0.00	
0	9	0.000	1299.9	0.00	1.16	0.00	-2.48	0.00	
		0.584	1299.9	0.00	1.16	0.00	-1.80	0.00	
0	10	0.000	1299.9	0.00	0.83	0.00	-1.83	0.00	
		0.584	1299.9	0.00	0.83	0.00	-1.34	0.00	
0	11	0.000	1300.0	0.00	0.62	0.00	-1.34	0.00	
		0.584	1300.0	0.00	0.62	0.00	-0.98	0.00	
0	12	0.000	1300.0	0.00	0.45	0.00	-0.99	0.00	
		0.584	1300.0	0.00	0.45	0.00	-0.72	0.00	
0	13	0.000	1300.1	0.00	0.32	0.00	-0.72	0.00	
		0.584	1300.1	0.00	0.32	0.00	-0.54	0.00	
0	14	0.000	1300.1	0.00	0.24	0.00	-0.54	0.00	
		0.584	1300.1	0.00	0.24	0.00	-0.39	0.00	
0	15	0.000	1300.1	0.00	0.16	0.00	-0.39	0.00	
		0.584	1300.1	0.00	0.16	0.00	-0.30	0.00	
0	16	0.000	1300.1	0.00	0.14	0.00	-0.29	0.00	
		0.584	1300.1	0.00	0.14	0.00	-0.21	0.00	

1.4 Results

Beam	Forces a	and Momen	nts Loadca	ise 101	L NONLIN	NEAR			
Grp	Number	х	N	Vy	Vz	Mt	My	Mz	
		[m]	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	
0	16	0.584	1300.1	0.00	0.14	0.00	-0.21	0.00	
0	17	0.000	1300.1	0.00	0.07	0.00	-0.21	0.00	
		0.584	1300.1	0.00	0.07	0.00	-0.17	0.00	
0	18	0.000	1300.1	0.00	0.09	0.00	-0.14	0.00	
		0.584	1300.1	0.00	0.09	0.00	-0.09	0.00	
0	19	0.000	1300.1	0.00	0.03	0.00	-0.09	0.00	
		0.584	1300.1	0.00	0.03	0.00	-0.07	0.00	
0	20	0.000	1300.1	0.00	0.07	0.00	-0.04	0.00	
		0.584	1300.1	0.00	0.07	0.00	-0.00	0.00	
Grp	Grp primary group number								
Number	element n	unber							

Nodal Di	isplacement	s Loadcas	e 101	NONLINEAR	1	
Node	u-X	u-Y	u-Z	phi-X	phi-Y	phi-Z
No	[mm]	[mm]	[mm]	[mrad]	[mrad]	[mrad]
101	0.000	0.000	0.000	0.000	8.730	0.000
102	0.194	0.000	-5.079	0.000	8.660	0.000
103	0.400	0.000	-8.469	0.000	5.247	0.000
104	0.612	0.000	-10.594	0.000	3.620	0.000
105	0.827	0.000	-11.853	0.000	1.858	0.000
106	1.043	0.000	-12.455	0.000	1.020	0.000
107	1.259	0.000	-12.599	0.000	0.086	0.000
108	1.474	0.000	-12.392	0.000	-0.359	0.000
109	1.690	0.000	-11.940	0.000	-0.861	0.000
110	1.906	0.000	-11.298	0.000	-1.101	0.000
111	2.121	0.000	-10.524	0.000	-1.372	0.000
112	2.336	0.000	-9.647	0.000	-1.502	0.000
113	2.552	0.000	-8.699	0.000	-1.649	0.000
114	2.767	0.000	-7.695	0.000	-1.719	0.000
115	2.982	0.000	-6.653	0.000	-1.798	0.000
116	3.197	0.000	-5.580	0.000	-1.836	0.000
117	3.412	0.000	-4.486	0.000	-1.879	0.000
118	3.627	0.000	-3.377	0.000	-1.899	0.000
119	3.841	0.000	-2.257	0.000	-1.920	0.000
120	4.056	0.000	-1.130	0.000	-1.929	0.000
121	4.271	0.000	0.000	0.000	-1.935	0.000

2 CURVE FITTING

The figure and formula below show the results from curve fitting for D=146mm. The beam model as described in section 1 has been run for tensions between 1300kN and 3300kN. Interlink moment between the first two links has been recorded and is plotted with the blue line in the figure below. By means of the recorded values a curve function Mi has been established. The curve is plotted in orange in the figure below.

CONTROLL OF ANALYSIS MODELL 3

Case 1 - Cantilever with Stiff hinge 3.1

Cantilever beam with high spring stiffness which means stiff connection between links. Applied loads are moment, point load and rotation. Both links have same Crossection properties.

3.1.1 Input geometry and cross section

Two chain links modelled with a total length of 2m (1m per link). Hinge applied between both links (at 1m). Force displacement law My defined for this hinge, see figure. Hinge for case 1 is modelled with high stiffness such that the two links perform as a stiff beam together. Fixed support applied at end of link 2. The system performs similar to a cantilever beam.

X-coordinate in m (Max=2.00)

Force-displacement law My

Number	nber \$ur[kNm/rad] u[mrad]		My[kNm]	S[kNm/rad]	
111	My	6.500E+11	-10.000	1300000000.	0.00
			-2.000	1300000000.	6.500E+11
			0.000	0.00	6.500E+11
			2.000	1300000000.	0.00
			10.000	1300000000.	0.00

Crossection properties such as Iy and Iz for the links are calculated separately and given as in put to calculation.

2. Calculation properties	
Radius	$R \coloneqq \frac{D}{2} = 55.5 \ mm$
Cross section area	$A \coloneqq \pi \cdot R^2 = (9.67689 \cdot 10^{-3}) m^2$
Momenet of Inertia	$I_{yy} \coloneqq 2 \cdot \left[\frac{1}{4} \cdot \pi \cdot R^{4}\right] = \left[1.49036 \cdot 10^{-5}\right] m^{4}$
	$I_{zz} := 2 \cdot \left[\frac{1}{4} \cdot \pi \cdot R^4 + \left(\frac{B}{2} - \frac{D}{2} \right)^2 \cdot A \right] = \left[3.44503 \cdot 10^{-4} \right] m^4$

Cross-sections static properties

SNo	Mat MRf	A[m2] It[m4]	Ay[m2] Az[m2]	Iy[m4 Iz[m4] yc[mm]] zc[mm]	ysc[mm] zsc[mm]	E[N/mm2] G[N/mm2]	g[kg/m]	I-1[m4] I-2[m4]
			Ayz[m2]	Iyz[m4]]		A CONTRACTOR OF CONTRACTOR OFO		α[°]
1	1	9.6769E-03		1.490E-0	5 0.0	0.0	210000	24.2	3.445E-04
		6.180E-07		3.445E-04	4 0.0	0.0	79300		1.490E-05
	=	Link 1							
2	1	9.6769E-03		3.445E-04	4 0.0	0.0	210000	24.2	
		6.180E-07		1.490E-0	5 0.0	0.0	79300		
	=	Link 2							
SNo section number Mat material number A[m2] sectional area Ay[m2],Az[m2],Ayz[m2] transverse shear deformation u/m4] Iz[m4] Iz[m4] bending moment of inertia				yc ys E[i area g[yc[mm],zc[mm] ordinate of elastic centroi ysc[mm],zsc[mm] ordinate of shear centre E[N/mm2] Young's modulus g[kg/m] weight per length			troid e	
I-1[m4],I MRf It[m4] G[N/mm2]	-2[m4],0	[°] principal mon reinforcement torsional mon Shear modulus	ments of inertia t material numbe ment of inertia s	and angle of r	the principa	l axes			

3.1.2 Input loads

LC101 = Rotation 20 mrad LC102 = Point load 10 kN LC103 = Moment 5 kNm

Load (moment), nonlinear Loadcase 103 NONLINEAR , (1 cm 3D = unit) about global Y (Unit=5.00 M 1 : 8.39 z kl

3.1.3 Results - Moments

Control Moment for LC101

 $E = 210000 \text{ N/mm}^2$

Iy = $3.445*10^{-4}$ m⁴ (Section SNo 2 is used in this check, both links have same stiffness in) M = α * EI/L = 20mrad/1000 * 210000000 kN/m² * $3.445*10^{-4}$ m⁴/2 = <u>723.5 kNm</u>

 \rightarrow Moment calculation is correct.

Control Moment for LC102

M = P*L = 10kN*2m = 20 kNm

 \rightarrow Moment calculation is correct.

Control Moment for LC103

M = 5 kNm

 \rightarrow Moment calculation is correct.

14

3.1.4 Results - Rotations

Control Rotation for LC101

 $\alpha_{max} = \frac{20 \text{ mrad}}{\alpha_{min}},$ $\alpha_{min} = \frac{0 \text{ mrad}}{\alpha_{min}},$

 \rightarrow Rotation calculation is correct.

Control Rotation for LC102

$$\begin{split} &\mathsf{E} = 210000 \ \text{N/mm}^2 \\ &\mathrm{Iy} = 3.445^{*}10^{-4} \ \text{m}^4 \ (\text{Section SNo 2 is used in this check, both links have same stiffness in}) \\ &\alpha_{max} = \ P^*L^2/(2^*E^*I)^*1000 = \\ & \quad 10 \ \text{kN}^*(2m)^2 \ /(2^*210000000 \ \text{kN/m}^2 \ ^* \ 3.445^*10^{-4} \ \text{m}^4)^*1000 = \underline{0.276 \ \text{mrad}} \end{split}$$

 \rightarrow Rotation calculation is correct.

Control Rotation for LC103

$$\begin{split} &\mathsf{E} = 210000 \; \text{N/mm}^2 \\ &\mathrm{Iy} = 3.445^{*}10^{-4} \; \text{m}^4 \; (\text{Section SNo 2 is used in this check, both links have same stiffness in}) \\ &\alpha_{max} = \; \mathsf{M}^* \mathsf{L} / (\mathsf{E}^* \mathrm{I})^* 1000 = \\ & \; 5 \; \text{kNm}^* 2 \mathrm{m} \; / (210000000 \; \text{kN/m}^2 * 3.445^* 10^{-4} \; \text{m}^4)^* 1000 = \underline{0.138 \; \text{mrad}} \end{split}$$

 \rightarrow Rotation calculation is correct.

Case 2 – As Case 1 with variable Iy and Iz for links 3.2

3.2.1 Input geometry and cross section

Same input as for case 1. However, Crossection stiffness for link2 is 90deg rotated in regard with link 1 (due to chain characteristic).

SNo	Mat	A[m2]	Ay[m2]	Iy[m4]	yc[mm]	ysc[mm]	E[N/mm2]	g[kg/m]	I-1[m4]
	MRf	It[m4]	Az[m2]	Iz[m4]	zc[mm]	zsc[mm]	G[N/mm2]		I-2[m4
-		0 (7(05 03	Ayz[m2]	Iyz[m4]	0.0	0.0	210000	24.2	
1	1	9.6/692-03		1.4906-05	0.0	0.0	210000	24.2	3.4452-04
	-	0.180E-07		3.4450-04	0.0	0.0	79300		1.4902-0
2	1	9 67695-03		3 4455-04	9.9	0.0	210000	24.2	
-	-	6 180E-07		1 4905-05	0.0	0.0	79300	2.4.2	
	-	Link 2		1.4902-09	0.0	0.0	75500		
No at [m2] y[m2],Az[y[m4],Iz[-1[m4],I- Rf t[m4] 5[N/mm2]	n2],Ay n4],Iy 2[m4],	section nu material m sectional z[m2] transverse z[m4] bending mo a[°] principal reinforcem torsional Shear modu	mber umber area shear deformatic ment of inertia moments of inerti moment of inertia lus	yc[ysc E[N, a and angle of the er	m],zc[mm] [mm],zsc[mm /mm2] g/m] he principa	ordinate] ordinate Young's m weight pe l axes	of elastic cen of shear centr odulus r length	troid e	
1 +PR0 2 \$ Da	OG Sonat :	OFIMSHA C:\\Int	terlinkstif	fness_02.d	at (#0	02)		1	1.04.2019
3 \$ 30	b:	NX-C1D9E-	007:000281						10:43
4 HEAD	GE GE	OMETRY DEF	INITION						
5 ECH	AV C	L NO							
6 UNI	r 5	; SYST SPAC	C GDIV 1000						
7									
8 NODI	E NO	XYZ	FIX						
9	201	0 0	0						
10	102	1.0 0	0						
11	202	2.0 0	0 PPMM						
12									
3 BEAN	I FI	T 201 102 1	NCS 1 DIV 1	0 \$EHIN 11	1				
14 BEAN	A FI	T 102 202 1	NCS 2 DIV 1	0 AHIN 111					
15									
16 END									
		Î					1		C
	Lin	 k 1=SNo 1					 Link 2=9	SNo 2	

3.2.2 Input loads

Input loads are the same as for case 1.

3.2.3 Results deformation

Link 2 stiffer than link 1

The deformation plot shows parabolic deformation in the weaker link (link 1) and rather linear deformation in the stronger link (link 2).

The deformation plot shows parabolic deformation in the weaker link (link 2) and rather linear deformation in the stronger link (link 1).

Conclusion

The results above appear reasonable.

Case 3 – As Case 1 with Interlink stiffness for spring 3.3 between links

3.3.1 Input geometry and cross section

Same input as for case 1. However, force displacement law at spring between links is defined according to interlink stiffness.

Number		<pre>\$ur[kNm/rad]</pre>	u[mrad]	My[kNm]	S[kNm/rad]
111 M	٩y	4705.88	-10.000	-16.80	0.00
			-4.360	-16.80	3188.40
			-3.670	-14.60	3428.57
			-2.970	-12.20	3714.28
			-2.270	-9.60	3857.14
			-1.570	-6.90	4142.86
			-0.870	-4.00	4571.43
			-0.170	-0.80	4705.88
			0.000	0.00	4705.88
			0.170	0.80	4571.43
			0.870	4.00	4142.86
			1.570	6.90	3857.14
			2.270	9.60	3714.28
			2.970	12.20	3428.57
			3.670	14.60	3188.40
			4.360	16.80	0.00
			10.000	16.80	0.00

Force-displacement law My

Force-displacement law My

Norconsult 💠 📗 DR. TECHN. OLAV OLSEN

3.3.2 Input loads

Rotation applied on free end. Rotation increased in with equal steps over 13 load cases.

Potation applied on free and Detation increased in with equal stone ave

3.3.3 Results Moment

Moment in beam plotted over loadcases, see figure below.

LC	LC-title	Number	phi-Y
101	NONLINEAR	102	-6.998
102	NONLINEAR		-5.793
103	NONLINEAR		-4.588
104	NONLINEAR		-3.433
105	NONLINEAR	0	-2.283
106	NONLINEAR		-1.138
107	NONLINEAR		0.000
108	NONLINEAR	1	1.138
109	NONLINEAR	1	2.283
110	NONLINEAR		3.433
111	NONLINEAR		4.588
112	NONLINEAR		5.793
113	NONLINEAR		6.998
LC LC-tit Number phi-Y	Load Case le Load case Node (Filt Nodal Disp	descriptio er: -102) lacements	n

The moment curve shows maximum moment of 16.8 kNm. This is correct with respect to the defined displacement law. Moment is constant 16.8 kNm for load cases 101-103 and 111-113. For these load cases the hinge rotation is larger than 4.36mrad (see table above). With respect to the defined displacement law the moment plot is reasonable.

3.4 Conclusion

Modelling of geometry, Crossection properties and hinge works as required. Basic model verified.

20