

Concept development, floating bridge E39 Bjørnafjorden

Appendix N – Enclosure 1

10205546-13-NOT-185 Finite element analysis of locking joint

MEMO

PROJECT	Concept development, floating bridge E39 Bjørnafjorden	DOCUMENT CODE	10205546-13-NOT-185
CLIENT	Statens vegvesen	ACCESSIBILITY	Restricted
SUBJECT	Finite element analysis of locking joint	PROJECT MANAGER	Svein Erik Jakobsen
ТО	Statens vegvesen	PREPARED BY	Espen Tuveng
СОРҮ ТО		RESPONSIBLE UNIT	AMC

SUMMARY

This memo summarizes the finite element analysis performed on a local model of a locking joint proposed to be used during the assembly of the bridge on Bjørnafjorden. The locking joint will fix two ends of the bridge girder close together so that the ends can be welded. During assembly there will be dynamic global forces going through the bridge girder. The locking joint is able to transfer the forces between the two ends and at the same time restrain the skin plate ends from displacing much over the small gap between the two girder ends. Observed stress and strain in the first weld beads that are applied are acceptable.

The locking joint can by making small geometrical changes be tuned so that the stress and strain for the weld between the two bridge girder ends is at a specified level for a given dynamic load.

0	15.08.2019	Final issue	E. Tuveng	P. N. Larsen	S. E. Jakobsen
REV.	DATE	DESCRIPTION	PREPARED BY	CHECKED BY	APPROVED BY

TABLE OF CONTENTS

1	Intro	oduction	3
2	FEM	model	3
	2.1	Weld	5
	2.2	Symmetry	6
	2.3	Mesh	6
	2.4	Material properties	8
	2.5	Coordinate system	8
3	Load	Is and boundary conditions	9
	3.1	Loads	9
	3.2	Boundary conditions 1	0
	3.3	Bolt pretension 1	1
	3.4	Contacts 1	1
4	Resu	ılts 1	2
	4.1	No weld1	2
	4.2	3 mm weld, 100 mm length 1	3
	4.3	3 mm weld, full width 1	5
	4.4	6 mm weld, full width 1	7
	4.5	3 mm weld, 100 mm width. Extra thick flatbars 1	9

1 Introduction

The purpose of this analysis is to check the locking joint to be used during the assembly of the bridge on Bjørnafjorden. During assembly there will be dynamic global forces going through the bridge girder. The locking joint must transfer the forces between the two ends and at the same time fix the skin plate ends with a set distance between them so that they can be welded.

2 FEM model

The modelled part has dimensions of the top plate of a S1 cross-section. The top plate location is chosen for this analysis since it is furthest away from the horizontal neutral axis of the bridge girder. This leads to the maximum stress transferred through the locking joint when applying a weak axis bending moment.

The local model of the locking joint consists of a 600 mm wide part of the outer skin with trapezoidal stiffener of the bridge girder. This is based on a center distance between trapezoidal stiffeners of 600 mm. Symmetry conditions are used to simulate that the locking joint detail has been added along the whole circumference of the bridge girder. To ensure an even stress distribution from the skin plate and trapezoidal stiffener to the locking joint, the total length of the FE model is 1500 mm. Only half of the locking joint is modelled. A symmetry plane in the middle between the two joining bridge girder sections have been used.

Figure 2-1 Part selected for local model

Figure 2-2 Local model dimensions

Figure 2-3 Local model, ISO view

The locking joint consists of shimming plates that are 150 mm thick and 150 mm high. For this symmetric FEM, the modelled shimming plates are 75 mm thick.

Flat bars are 750 mm long, 150 mm high and 15 mm thick. The flat bars are welded to the bridge girder skin plates with fillet welds.

Tension rods have a diameter of 36 mm.

The RHS has dimensions 120 x 120 x 10 mm.

A gap of 5 mm between the girder ends is assumed. Due to the symmetry in the local model, the modelled gap is 2.5 mm. See Figure 2-4.

Figure 2-4 Modelled gap

2.1 Weld

A weld is introduced stepwise to evaluate how the behavior of a partially welded connection will be. For this analysis, the following steps are run:

- 3 mm throat thickness, 100 mm long weld. Results presented in section 4.2.
- 3 mm throat thickness, full width of weld. Results presented in section 4.3.
- 6 mm throat thickness, full width of weld. Results presented in section 4.4.

The purpose is to show that as the weld is built, the stress and strain in the weld is acceptable throughout the assembly. And also that the forces from dynamic weak axis bending moments are transferred more and more from the locking joint and to the weld.

An additional analysis with 3 mm throat thickness and 100 mm length is run with increased thickness of the flat bars. See section 4.5. This is done to show that small geometrical changes to the locking joint can increase the stiffness and reduce the stress and strain in the weld.

2.2 Symmetry

Symmetry conditions are shown on Figure 2-5 and Figure 2-6.

Figure 2-6 Symmetry at mid-plane between two joining beam girder sections

2.3 Mesh

The FE model is meshed with 3D solid elements with midside nodes (quadratic). The element mesh size is approximately 15 mm by 15 mm. Refinements have been made where the flatbars touch the shimming plates, and near the modelled weld. The mesh size here is approximately 3 mm by 3 mm. The mesh and refinements can be seen on the following figures.

Concept development, floating bridge E39 Bjørnafjorden

Finite element analysis of locking joint

Figure 2-8 Mesh refinement near shim plates

Concept development, floating bridge E39 Bjørnafjorden

Finite element analysis of locking joint

Figure 2-9 Mesh refinement near modelled weld

2.4 Material properties

Linear material has been utilized.

Table 2-1 Linear material properties

Property	Value
Modulus of elasticity	E = 210 000 MPa
Poison ratio	v = 0.3
Density	ρ= 7850 kg/m³

2.5 Coordinate system

The global coordinate system is defined as follows:

Table 2-2 Coordinate system definition

Axis	Direction
Х	North / South
Y	Up
Z	East / West

3 Loads and boundary conditions

3.1 Loads

Bridge girder weak axis dynamic moment creates the maximum stress for the local model. A weak axis moment of 14 MNm has been used as specified in Appendix N, table 10.3 (Analysis results for 0.5m Hs and 8m/s wind conditions).

Static model and section properties

S1 section properties:

Area moment of inertia:

 $I_{y,S1} = 4.821 \ m^4$

Neutral axis from UK bottom plate: $z_{0,S1} = 1.959 \ m$ Distance from neutral axis:

Point
$$\begin{bmatrix} A \\ B \\ B^* \end{bmatrix} z_{S1} \coloneqq \begin{bmatrix} 0 \\ 3.672 \\ 4.022 \end{bmatrix} m - z_{0.S1} = \begin{bmatrix} -1.959 \\ 1.713 \\ 2.063 \end{bmatrix} m$$

Calculated bending resistance (full section, no reductions):

Calculated stress

Weak axis moment: $M_w = 14 MNm$

Calculated stress at point A, B and B`: Point $\begin{bmatrix} A \\ B \\ B^{*} \end{bmatrix} \sigma \coloneqq \frac{M_{w}}{W_{S1}} = \begin{bmatrix} -5.689 \\ 4.974 \\ 5.991 \end{bmatrix} MPa$

Calculated force to apply to FEM

FEM section area: $A_{FEM} = 17306.4 \ mm^2$

Force: $F_{FEM} \coloneqq \sigma \cdot A_{FEM} = \begin{bmatrix} -98454 \\ 86090 \\ 103680 \end{bmatrix} N$

Point B' is furthest from the girder neutral axis and will experience highest stress from a weak axis bending. The force is applied in two steps:

- 1. Fx = 103.68 kN
- 2. Fx = 103.68 kN

Figure 3-1 Force applied to top plate end

3.2 Boundary conditions

Boundary conditions and axis definitions are shown on Figure 3-2. Only half of the locking joint is modelled. There is a symmetry plane at the end of the shimming plates, thus fixed boundary conditions for shimming and rods are applied. In addition, the top plate end is restricted from translating in y-direction. This is done so that no artificial bending effects are introduced into the local model.

Figure 3-2 Boundary conditions

3.3 Bolt pretension

The bolts are pretensioned so that the shim plates will always be in compression. Since the pretensioning occurs before welding, and stress in the weld is only affected by the dynamic weak axis bending moment only, the pretension force is omitted in the analysis. This is valid when the analysis is linear.

3.4 Contacts

Contact is applied as listed in Table 3-1.

Table 3-1 Contact formulations

Part 1	Part 2	Contact type
Top plate	Flatbars	Bounded
Top plate	Shimming	Frictionless
Top plate	RHS with endplate	Frictionless
Flatbar	RHS with endplate	Bounded ¹
Flatbar	Shimming	Bounded ¹
Anchor rod and washer	RHS	Bounded ¹

¹ The pretensioning force will restrict the parts from separating. Since the bolt pretension forces are omitted, the contact is set to bounded.

4 Results

4.1 No weld

The analysis is first run without a weld to observe the behaviour of the skin plate end.

Figure 4-1 X-direction deformation of plate end. Deformations are greatly exaggerated

One can observe that the deformation is not equal over the width due to the flat bars and trapezoidal stiffener welded to the skin plate. An optimal behavior of the locking joint would be to restrain the the skin plate from any x-direction deformations.

As shown in table Table 4-1, the forces are transferred by the rods and shimming.

Table 4-1 Force resultants

	Resultant [kN]						
Global							
force	Rods	Shimming	Weld	SUM			
-104	8	96	0	0			
104	-8	-96	0	0			

4.2 3 mm weld, 100 mm length

The beginning of a weld is simulated with a short weld, 100 mm long. The throat thickness is set to 3 mm.

Figure 4-2 3 mm throat thickness, 100 mm long weld

Figure 4-3 Strain over with of the weld

Figure 4-4 Stress in in 100 mm long weld with 3 mm throat thickness. Positive weak axis bending moment

Observed stress in the weld is below yield stress.

Resultants are presented in the table below. The weld carry some of the dynamic load, but the locking joint take the majority of the loads. The average stress in the weld is 81 MPa for a positive weak axis moment and 93 MPa for a negative weak axis moment.

Table 4-2 Force resultants

Resultant [kN]							
Global							
force	Rods	Shimming	Weld	SUM			
-104	7	73	24	0			
104	-7	-69	-28	0			

4.3 3 mm weld, full width

Figure 4-5 Strain along weld

Figure 4-6 Strain for weld, contour plot. Positive weak axis bending moment

Concept development, floating bridge E39 Bjørnafjorden

Finite element analysis of locking joint

Figure 4-7 Stress in weld with 3 mm weld bead. Positive weak axis bending moment

Resultants are presented in Table 4-3. The weld now carry more than half of the dynamic load. The average stress in the weld is 31 MPa for a positive weak axis moment and -33 MPa for a negative weak axis moment.

Table 4-3 Force resultants

Resultant [kN]							
Global	Global						
force	Rods	Shimming	Weld	SUM			
-104	5	42	56	0			
104	-5	-39	-60	0			

4.4 6 mm weld, full width

Further weld beads around the circumference of the bridge girder skin plate is simulated with a weld with 6 mm throat thickness.

Figure 4-8 Strain along weld

Figure 4-9 Strain for weld, contour plot. Positive weak axis bending moment

Figure 4-10 Stress in weld with 6 mm weld bead. Positive weak axis bending moment

Compared to a 3 mm weld, the strain and stress is reduced when increasing the weld size.

Resultants are presented in Table 4-4. The weld now carry even more of the load, but the increase from a 3 mm weld is moderate. This is due to the relationship between stiffness of the topplate/weld and locking joint. The average stress in the weld is 16.7 MPa for a positive weak axis moment and -17.1 MPa for a negative weak axis moment.

Resultant [kN]							
Global	Global						
force	Rods	Shimming	Weld	SUM			
-104	5	39	60	0			
104	-5	-37	-62	0			

Table 4-4 Force resultants

4.5 3 mm weld, 100 mm width. Extra thick flatbars

Due to small contact area between the flatbars welded to skin plate and shimming, high stress and deformations can be observed for local areas. The areas are encircled on the figure below. The behavior and stiffness of the locking joint can be improved with relatively small design changes.

Figure 4-11 Local high stress and deformations between flatbars and shimming

One possibility is to increase the with of the flatbars near the shimming. An analysis where the flatbars are inceased to 45 mm width near the shimming have been run. The geometry is shown on Figure 4-12.

Figure 4-12 Extra wide flatbars near shimming

Figure 4-13

For a negative weak axis moment, the strain is reduced from \sim 0.35 ‰ to \sim 0.23 ‰ with extra plate width for the flatbars.

For a positive weak axis moment, the strain is reduced from ~0.30 ‰ to ~0.18 ‰.

Table 4-5 Force resultants

Resultant [kN]							
Global	Global						
force	Rods	Shimming	Weld	SUM			
-104	6	83	15	0			
104	-5	-81	-18	0			

When comparing resultants for this analysis with those presented in section 4.2, one can observe that the shimming carries more of the load and that the weld is offloaded.

Figure 4-14

The stress is reduced to approximately 50 % by adding the extra plate width to the flatbars.

The locking joint can be tuned/optimized with small geometrical changes that will reduce the stress and strain in the weld during assembly.

Concept development, floating bridge E39 Bjørnafjorden

Appendix N – Enclosure 2

CAL-AB016101-001

Feasibility Study for Jacking of Bridge Sections

FEASIBILITY STUDY

for

Jacking of Bridge Sections

for

Bjørnafjord Prosjektet, Norway

Title		Feasibility Study						
Project			Bjørnafj	ord Prosjekte	et			
Client			Aker Sc	Aker Solutions				
Document Number			CAL-AE	8016101-001				
А	07/08/2019	Issued for Review		RM	KC	KC		
Revision	Date	Description		Prepared	Checked	Approved	Approved	
			ALE				Client	

REVISIONS

Client: Aker Solutions Project: Bjørnafjord Prosjektet Doc Number: Revision Status: CAL-AB016101-001 A (First Issue)

Revision	Revision date	Description
А	07/08/2019	Issued for Review.

CONTENTS

1.	INTRODUCTION	. 5
1.1.	GENERAL	. 5
1.2.		. 5
1.3.	SCOPE OF CALCULATIONS	. 6
2.	CONCLUSION AND RECOMMENDATIONS	. 7
3.	DEFINITIONS AND ABBREVIATIONS	. 8
4.	UNITS	. 9
5.	EXECUTION OF WORKS	10
51	SKIDDING	10
5.2.	JACKING	11
5.2	2.1. MEGA JACK SYSTEM PARAMETERS	11
5.2	2.2. WORKING LOAD LIMITS OF MAIN COMPONENTS	12
5.2	2.3. OPERATION BOUNDARIES FOR JACKING	12
5.2	2.4. STABILITY MAST PROPERTIES	13
5.3.	BALLASTING.	14
5.4.	FENDERING AND MOORING	14
5.5.	(WEIGHING)	14
6.	GENERAL SPECIFICATIONS FOR CALCULATIONS	15
6.1.	GENERAL	15
6.2.	DESIGN CODES AND STANDARDS	15
6.2	2.1. STEEL STRUCTURES	15
6.2	2.2. SKIDDING AND JACKING	15
6.2	2.3. DETAILED DESIGN	16
6.3.	MATERIAL	16
6.4.	FRICTION	17
6.5.	LOAD FACTORS AND COMBINATIONS	17
6.6.	WEATHER FORECASTING AND MONITORING	18
6.7.	WEATHER CONDITIONS	18
6.8.		18
6.9.	WIND LOAD – PHASE 01 – BRIDGE ASSEMBLY / INITIAL JACK UP	19
6.10	. WIND LOAD - PHASE 01- BRIDGE AT FINAL HEIGHT	20
6.11	. OBLIQUE FACTOR	20
7.	BARGE STABILITY	21
7.1.	BARGE DATA	21
7.	1.1. BARGE ARRANGEMENT	21
7.	1.2. BARGE DETAILS	22
7.2.	BARGE LOADS	23
7.2	2.1. VERTICAL LOADS	23
7.2	2.2. HORIZONTAL LOADS	23
7.3.		24
7.4.	RESOLTING STATIC LIST AND TRIM	24
•		
0.		20
8.1.	JACKING CONFIGURATION	26
8.3.	LOADS	27
8.4.	RESULTS	28
8.5.	RECOMMENDATIONS	29
8.6.	MJS CALCULATION SHEET OVERVIEW	30
9.	CONCLUSION	31
9.1.	OVERALL RECOMMENDATIONS	31
9.2.	LOOKAHEAD DETAILED ENGINEERING	31
9.2	2.1. SKIDDING	31

CAL-AB016101-001 A (First Issue)

9.2.2. JACKING 9.2.3. BALLASTING 9.2.4. FENDERING AND MOORING	
10. Reference document list	
10.1. ALE REFERENCE DOCUMENT LIST	
11. APPENDICES	
APPENDIX A - BARGE STABILITY CALCULATION – LC1	
APPENDIX B - BARGE STABILITY CALCULATION – LC2	
APPENDIX C - BARGE STABILITY CALCULATION – LC3	
APPENDIX D - BARGE STABILITY CALCULATION – LC4	
APPENDIX E – MEGA JACK STABILITY CALCULATION – LC1 WITHOU	T STRAND JACKS
APPENDIX F – MEGA JACK STABILITY CALCULATION – LC2 WITH 4X	200T STRAND JACK 40

CAL-AB016101-001 A (First Issue)

1. INTRODUCTION

1.1. GENERAL

Aker Solutions is tasked with engineering study to design the bridge for the Fjord Crossing Project, along the coastal route E39. The Bjørnefjorden crossing will be 5000 m, located in 500 m deep water, with the possibility to bypass with 1300 m crossing.

Figure 1-1 The Coastal Route E39, Fjord Crossing Project

Due to environmental conditions, water depths and span of the water, traditional bridge designs need to be adapted to fit the local requirements. The concept of assembling and installing a Floating Bridge is generated.

The concept is concerned with the assembly of 10 Bridge spans at low level, after which each Bridge section is jacked up to allow installation of the vertical columns with floaters/pontoons and coupling to the main Bridge. To limit the area required, assembly and installation of the bridge sections will require one floating working platform, constructed of three North Sea type barges. The barges will be coupled by a steel grillage & skidding structure. During the assembly of each Bridge section, intermediate lifting and skidding of smaller pre-fabricated bridge sections is carried out.

ALE Heavylift is requested to provide an engineering study to investigate the feasibility and methodologies for assembly and installation of the bridge.

1.2. DETAILS OF TRANSPORT

Preliminary details of the items:

- Name/description of piece Bridge Section (10 pcs to be assembled and installed)
- Dimensions:
- Weight:

Doc ALE-IMS-02-ENG-TEM-001

- 150m length / 32m width / 3.5m height
- 2100t including support columns/pontoons
- Jacking height: approx. 50m from water level
 - Rev. 4 0

CAL-AB016101-001 A (First Issue)

1.3. SCOPE OF CALCULATIONS

The scope of this document is to identify the engineering requirements for the jack-up and float-in of the Bridge Sections and identify potential issues and challenges of this methodology.

Following subjects are within this document:

- General specifications for engineering
- Basic Wind load calculations on bridge and jacking system
- Supply predicted jacking loads
- Basic barge stability checks

2. CONCLUSION AND RECOMMENDATIONS

Subject to the identified assumptions and starting points, the working methodology is considered as viable and realistic. Basic calculations show that loads are within equipment capacity and stability is sufficient.

Starting points and assumptions:

- Barges connection structure

With the jacking of the bridge is on 4 separate positions, it is vital that these positions remain fixed relative to each other during the process. Also the inclination of the 'foundations' under the jacking towers needs to be identical. This is to prevent displacements and horizontal loads on top of the jacking towers.

Difference in level between 'foundations' can be accommodated to a certain level, however this will result in different loads on the bridge deck and potential torsional deflections.

In effect this means the barge spanning structure that is used to assemble the bridge needs to be designed for connecting the three barges fixed to each other in such a way it can be considered as one item. The conceptual 'Yokohama' fenders are considered not workable.

As the operation is to take place in sheltered water (details not known) where wave loads are limited, it is considered realistic to design such a frame/structure.

- Environmental loads

For the operational calculations, we have considered operational wind only and made some assumptions while calculating these. As we have no info on sea state conditions etc, we have not considered these at the moment.

Recommendations

- Overall stability

Due to the relative low weight of the bridge structure, own stability of the jacking towers on full height is low on redundancy. To provide additional stability we have considered two stability mast, which provides guidance to the bridge and towers via a support/stability frame. The interactions with the towers (stiffness relation) and loads during out of service winds and barge motions is to be engineered further in detail, where a computer model needs to be created. This has not been included in this study.

- Positioning and connecting of the bridge legs (with/without pontoon) has not been included in this study. We recommend that attention is paid to the floating stability of these items.
- To prevent lateral movements of the barges, especially with jackup operation and with bridge deck at height, fixed mooring is recommended (hard fenders)
- More detailed engineering is required, a basic lookahead can be found in paragraph chapter 9.2.

3. DEFINITIONS AND ABBREVIATIONS

Term	Definition Of Term
+ve	Positive
-ve	Negative
AFT	After
ALE	Abnormal Load Engineering
COF	Centre of Floatation
COG	Center of Gravity
COW	Centre of Wind
DAF	Dynamic Amplification Factor
DNV	Det Norske Veritas
ER	Emergency Response
FP	Forward Perpendicular
FWD	Forward
GBP	Ground Bearing Pressure
GMt	Transversal Metacentric height
GZ	Righting arm
HAZID	Hazard identification
Hs	Significant wave height
HTV	Heavy Transport Vessel
HSQE	Health safety quality and environment
LCG	Longitudinal centre of gravity
ISO	International standards organization
ITP	Inspection and test plan
LAT	Lowest astronomical tide
LRFD	Load and resistance factor design
MOSES	Multi-Operational Structural Engineering Simulator
MS	Method statement
MWS	Marine Warranty Surveyor
NTE	Not to Exceed
ND	Noble Denton
PEP	Project execution plan
PPE	Personnel protective equipment
PTW	Permit to work
RA	Risk analysis
SI	International System of Units
SIMOP	Simultaneous operation
SOW	Scope of Work
SJA	Safe Job Analysis
STBD	Starboard
TBN	To be nominated
TBT	Toolbox talk
TCG	Transverse center of gravity
TRA	Task Risk Assessment
Tm	Mean period
Тр	Peak period
VCG	Vertical center of gravity
WCR	Weight Control Report
WLL	Work Load Limit (in metric tonnes)

4. UNITS

Quantity	Unity	Abbreviation
Accelerations	Meters per second squared	m/s²
Angular	Degree	o deg
Area	Squared meter Squared millimetre	m² mm²
Distance	Millimeter Centimeter Meter Inch Foot Nautical Mile	mm cm m in" (1 inch = 25.4mm) ft' (1 foot = 12 inches) NM
Load	Kilo Newton	kN
Pressure	Bar	Bar
Speed	Meters per second	m/s
Time	Hours Minutes Seconds	hrs min s
Volume	Cubic meters Litres	m ³ L
Weight	Metric tonnes Kilograms	te kg

5. EXECUTION OF WORKS

In this section, a brief description of the equipment and corresponding sequences are presented.

5.1. SKIDDING

For positioning and assembling of the Bridge Sections, a hydraulic skid shoe arrangement may be used. The skidding system is designed and developed by ALE, in which hydraulic skid shoes with stainless steel bottom move over P.T.F.E. (Teflon) blocks which are laid into steel skid tracks.

The skid system is designed with a range of 150-800t skid shoes incorporating a corresponding vertical cylinder with a working stroke of 150-600 mm. On top of this cylinder, a pivot arrangement allows for movement in the longitudinal axis. The forward movement is intermittent, following an extend/retract sequence of cylinders. The motive force required for displacing the structure is generated by hydraulic push-pull cylinders, which are an integral part of the skid system. The units are directly coupled to the skid shoes by means of pin-construction. Centralised diesel-driven powerpacks will generate the hydraulic power required for operation of the hydraulic cylinders of the skid shoes and the push-pull units. The skid shoe stability is designed on a side-force up to a maximum of 10% of the vertical load on the skid shoe involved.

A combination of a number of skid shoes creates a flexible system to move complicated and heavy loads. Configurations of different types of skid shoes can be made up whereby the same hydraulic pressure in the system groups gives individual jacking forces.

A typical hydraulic skidding arrangement will provide a three-point suspension for each bridge section, allowing for relative height corrections of individual bridge sections during the assembly on top of the barge grillage. Ideally, after fitting of the sections, temporary supports + shimming are installed underneath the sections. This provides the opportunity to remove the load from the hydraulic skid shoes during the welding period.

5.2. JACKING

The parameters as displayed below will be used as basic parameters for the calculations. The start of the jacking operation will be the initial pick-up, whereby the bridge deck will be tilted. During this phase, one layer of beams will be inserted. Due to the possible foundation settlement, sliding pads can be installed prior initial pick-up. These sliding pads ensure that maximum 5% of horizontal load due to deflections will be locked within the MJS (max. 5% friction is achieved by using Teflon/Teclite).

5.2.1. MEGA JACK SYSTEM PARAMETERS

Parameter	Quantity	
Foundation points (number of jacking points)	4	
Distance between jacking points in x-direction	60,000	mm
Distance between jacking points in y-direction	8,000	mm
Number of jacks at a foundation point	4	
Foot structure height (jacking base)	2,085	mm
Misalignment factor for height* (maximum misalignment due to fabrication tolerances and clearances barge movement)	0.010	m/m
Misalignment factor for width* (maximum misalignment due to fabrication tolerances and clearances)	0.001	m/m
Stability base in x-direction (2,5 meter jacking beam)	2,500	mm
Stability base in y-direction (5 meter jacking beam)	5,000	mm
Amount of jacking layers total	35 /37	
Height of each layer (= height of jacking beam)	1,100	mm
Weight of jacking mast (Excl. starter beam)	175	t
Weight of jacking beams 2,5m (5m)	2.3 (2.57)	t
Weight of jacking bases (each)	15.5	t

*) These factors will be used for the determination of the maximum misalignment that needs to be considered in FEM calculations, procedures and dimension control during the installation of the equipment and jack-up.

5.2.2. WORKING LOAD LIMITS OF MAIN COMPONENTS

In the table below the working load limits are listed for the main components of the Mega Jack System. The in-service and out-of-service values show the values which can be applicable for this project. The extreme values are displayed to show the allowable load on the MJS without plastic deformations and maintaining a marginal safety factor. The extreme load conditions are determined to have usable values for extreme storm conditions.

Design loads	In service	Out of service	Extreme
WLL Jacking beams (each corner profile)			
Vertical	13,000 kN	15,000 kN	19,000 kN
Horizontal	650 kN	650 kN	650 kN
WLL Temporary (Rotation) support			
Vertical	13,000 kN	15,000 kN	19,000 * kN
Horizontal	650 kN	650 kN	650 kN
WLL Jacking base			
Vertical	13,000 kN	15,000 kN	19,000 kN
Horizontal	650 kN	650 kN	650 kN
WLL 13,000kN Jack (extended)			
Vertical	13,000 kN	13,000 kN	13,000 kN
Horizontal	650 kN	650 kN	650 kN

*) In these conditions, a total of 4,000kN of the vertical load is to be taken into account by the hydraulic jack. The remaining 15,000kN and horizontal load will be transferred via the rotation supports.

5.2.3. OPERATION BOUNDARIES FOR JACKING

In the next table the operational conditions are stated. It states the governing limiting factors for jacking; maximum load deviations and maximum height deviations of the different supports.

Operational Boundaries	Value
Operational maximum jack load (85%)	11,050 kN
Load tolerance between jacks at a jacking point	± 10 [%]
Maximum level deviation between jacking points compared to the as build situation	25 [mm]
Maximum foundation settlement:	
For nominal load conditions [SLSa – excl. safety factors]	12 [mm]
For worst case load conditions [SLSb – excl. safety factors]	25 [mm]

In case displacements/deformations between the barges/jacking points are to be expected, a shimming procedure can be set up to carry out correction during jack up, to stay within allowable limits of the system. Eg. barge displacements/deformations can be corrected up to a certain level. The operational limit of the Mega Jack System will be designed for 40mm of maximum settlement.

5.2.4. STABILITY MAST PROPERTIES

As per DRW-AB016101-001, stability mast sections are sketched for the jack up of the Bridge sections. Actuals loading of the stability mast is not checked in this document. To be considered in a later stage.

Basic mast properties can be found below:

Wide assembly LxBxH = 11.400*4.090*4.500 m (outer dimensions). Cornerprofiles 400x280 Vy-brace system Vz-braces system Pin connections in braces with eyeplates Coupling blocks

5.3. BALLASTING

At all times during the normal operations, the vessel is maintained with minimal heel, and minimal trim. For each step in the skidding and jacking procedure, an analysis of the pumping requirements for the barge arrangement will be set up.

Ideally, ballasting will be carried out by an external ballast system providing full controls and monitoring over the ballast status, including real time reading of the tank content and barge trim and heel. Having submerged pumps in each barge tank will give optimum control over the ballast conditions.

5.4. FENDERING AND MOORING

The working platform is created by connecting three North Seay type barges. Due to the parameters and working boundaries of the skidding and jacking equipment, the barges are expected to be fixed with rigid connections. The spacings and possible movements between the barges are to be eliminated by hard fenders between the barges, and with rigid grillage frames connecting the three barges.

During the entire operation, station keeping of the barge is achieved by mooring. Pending on the availability of existing bollards in the surrounding, additional anchors can be opted. The mooring should be calculated for environmental conditions such as currents, waves and wind.

5.5. (WEIGHING)

Optionally to the above scopes, the ALE Mega Jack System can be utilised to provide accurate weight details of the Bridge Section assembly.

After the initial pick up, the Weighing operation will be executed. In the table below the operational conditions and parameters are stated.

Parameter	Quantity		
Maximum wind speed during operation ¹	5	m/s	
Accuracy of load cell Weighing ²	± 0.5	%	
Max. capacity per load cell	750	t	

Other weighing requirements:

- The choice of the cell and quantity shall be such that each cell works within a range of 10% to 90% of its rated (or calibrated) capacity.
- For weighing operation, the Bridge shall be raised 3 times. When in the raised position the Bridge shall be checked for level and the load cell readings taken, then the Bridge is lowered. When the load cell readings have returned to zero the process may be repeated. Should there be a difference of more than 0.5% between the readings, the reason shall be determined and if necessary faulty equipment replaced or repaired and the operation repeated until three readings are achieved to the satisfaction of the CONTRACTOR.

¹ The wind speed affects the accuracy of the Weighing. ALE uses a maximum wind speed of 5 m/s to maintain the guaranteed accuracy.

² Provided accuracy is common for ALE weighing on solid ground. Influence of barge movements/accelerations to be investigated in later stage.

6. GENERAL SPECIFICATIONS FOR CALCULATIONS

The objective of the calculations is to prove theoretically that the equipment, considering the service conditions agreed between the user, designer and/or manufacturer, as well as the states during erection, dismantling and transport, has been designed in conformance to the safety requirements to prevent mechanical hazards with a margin of safety.

6.1. GENERAL

The general starting points are:

- All values are in Metric system
- X = Longitudinal, perpendicular to Bridge
- Y = Transverse, parallel to bridge
- Z = Height from water level upwards

6.2. DESIGN CODES AND STANDARDS

Below standards will be applied during detailed engineering phases. For this feasibility study, a more basic approach can be applied.

6.2.1. STEEL STRUCTURES

The steel structure for the skidding and jacking will be checked and designed according the following standards. The wind load applicable on these structures is determined using the same standards.

No.	Title	European Standard
1	General rules and rules for buildings 1	NEN-EN 1993-1-1 (2007)
2	Design of steel structures for strength and stability 2	NEN-EN 1993-1-6 (2007)
3	Design of steel structures and design of joints 3	NEN-EN 1993-1-8 (2007)
4	Cranes – General design – Part 1	NEN-EN 13001-1 (2009)
5	Crane safety – General design – Part 2	NEN-EN 13001-2 (2011)

6.2.2. SKIDDING AND JACKING

Skidding, jacking and vessel handling operations will be prepared and executed according the provided standards.

Ар	Approved Codes of Practice							
No.	Title	Standard						
1	DNV GL Marine Operation and Marine Warranty	DNVGL-ST-N001						
2	DNV GL General Guidelines for Load-out Operations	0013/ND Rev 8						
3	DNV GL General Guidelines for Moorings Operations	0032/ND Rev2.1						
10	Load Transfer Operations.	DNV-OS-H201						
11	Marine Operations, Design and Fabrication	DNV-OS-H102						
12	Marine Operations General	DNV-OS-H101						
13	Buckling Strength of Plated Structures	DNV-RP-C201						

6.2.3. DETAILED DESIGN

Detailed design and calculations in later stage.

The following approach is used to determine the loads on the systems and for the detailed design of the equipment:

Global Calculations						
Ballast Calculations	Microsoft Office 365 Pro - Excel 64-bit					
Mooring Calculations	OPTIMOOR					
Strength and Stability Calculations	Bentley MOSES Rev.7					

Detailed Calculations	
Pin-hole calculations	ALE in-house calculation according standards (European Standard)
Weld design	ALE in-house calculation according standards (European Standard)
Detailed local design	FEM-program "DLUBAL RFEM 5.18" or "SCIA ESA 2013".
Bolted connections	ALE in-house calculation according standards.

Note: Validation of the spreadsheets is done according the ALE QA/ QC system.

6.3. MATERIAL

Table 6-1 Used materials for calculations

code : EN 1993 & 10025-2 S235		code :	EN 1993 & S3	& 10025-3 55	
t _{max}	fy	f _u	t _{max}	fy	f _u
16,0	235,0	360,0	16,0	355,0	470,0
40,0	225,0	360,0	40,0	345,0	470,0
63,0	215,0	360,0	63,0	335,0	470,0
80,0	215,0	360,0	80,0	325,0	470,0
100,0	215,0	360,0	100,0	315,0	470,0
150,0	195,0	350,0	150,0	295,0	470,0
200,0	185,0	340,0	200,0	285,0	450,0
250,0	175,0	340,0	250,0	275,0	450,0

6.4. FRICTION

Standard practice friction coefficients, as used per ALE standard;

Steel-steel contact	-	0.1	
Steel-wood contact	-	0.Z	
Steel-neoprene contact	-	0.3	(high friction rubber)
Rubber-gravel contact	-	0.3	(semi-wet, rolling resistance 8%)
Rubber-gravel contact	-	0.4	(semi-dry, rolling resistance 8%)
Rubber-tarmac	-	0.6	(normal conditions, rolling resistance 2%)
Skidding ALE system (Teflon –	stainle	ess ste	el interface, lubricated):
Break-out percentage	-	0.07	
Skidding percentage	-	0.03-0	0.05 (upper bound to be incorporated)

Note: During barge movements, sea-fastening of the Bridge Section is required during towage, as the load is positioned onto a low friction skid system.

6.5. LOAD FACTORS AND COMBINATIONS

The standards as used by ALE will be applicable for steel design (support beams, lifting lugs, strength calculation, etc). This includes applying load factors as such. The load factors comply with the ALE internal standard, EN13001-2 (crane standard) and EN1993-1-1.

Table 6-2 Overview of load factors for steel design

						ALE Heavylift				Material factor (Y _m)				
						Load fac	tors (Y _f)	DAF-fa	ctor (φ)	5	Steel m	aterials	Welds	Bolts
						Unfavourable	Favourable	Unfavourable	Favourable		σγ	σ_u	σ_u	σ_u
			Selfweight					1.15	0.90					
	Salety group A	Regular loads	Payload			1.35	0.90	1.15	0.90		1.1	1.25	1.25	1.25
	(020)		Horizontal load:	Oblique load				1.15	0.90					
s			Selfweight					1.15	0.90					
tio	Safaty group P		Payload					1.15	0.90					
ina	Salety group B	ULS) Occassional loads	Horizontal load:	Oblique load		1.35 0.90		1.15	0.90		1.1	1.25	1.25	1.25
a E	(010)		Skidding accelleration (X) 3%				1.00	1.00						
2				Wind in-service				1.00	1.00					
oac														
-			Selfweight					1.00	1.00					
	Safety group C	Exceptional loads	Payload			1 20	0.90	1.00	1.00		11	1 25	1 25	1 25
	(ULS)	(Out-of-service wind)	Horizontal load:	Oblique load		1.20	0.30	1.00	1.00			1.25	1.25	1.25
				Wind out-of-serv.				1.00	1.00					
Example 1	: Operational wind spe	ed, resulting total safety	/ factor in Unity Chec	k (Fmax) (Safety gr	roup B)	Y _f * Y _m * q	p =	1.35 * 1.1	* 1.15	=		1.71		
Example 2	: Out-of-service wind s	peed, resulting total saf	ety factor in Unity Ch	eck (Fmax): (Safety gr	roup C)	Y _f * Y _m * q	p =	1.20 * 1.1	* 1.0	=		1.32		

6.6. WEATHER FORECASTING AND MONITORING

Weather forecasting and monitoring will be applicable prior to, during, and after the jack-up operation. Client is to supply the weather forecasting. The environmental conditions and restrictions will be stated in the deliciated procedures.

Weather forecasting shall contain at least:

- Mean and gust wind speed for next 48/72 hours
- Mean and guest wind speed for next 24 hours
- Wind direction
- Sea State / Surge
- Potential lightning
- Precipitation

6.7. WEATHER CONDITIONS

Skidding, (weighing), and jacking operations will be executed in suitable weather window. The weather window shall contain wind speeds and environmental conditions according the 'in-service' conditions. As these conditions contain dynamic movements, an additional dynamic amplification factor is to be considered.

The weather window is determined using weather forecasting. These forecasts can be reliable up to 48-hours (experience based). Because the duration of the heavy lifting phases is longer than 48-hours, higher environmental conditions are to be taken into account into the calculations. To be determined in a later stage.

6.8. WIND LOAD DATA

For this study, the calculation of the wind loads is based on following assumptions:

- 1. The total surface will be determined by outlining the complete structure in a CAD-program. The CAD-program will determine the actual COW (= Center of Wind) of the complete area
- The steel parts of the bridge will be taken into account as closed surfaces, Shape factor Cw = 2,0.
- 3. Truss like structures (Stability mast / Mega Jack Tower) will be taken into account as closed surfaces, Shape factor Cw = 2,0 to compensate for multiple towers & members in combination with open areas.
- 4. The steel parts of the grillage frame (longitudinal wind) will be taken into account as closed surface, Shape factor Cw = 1,0 to compensate for multiple members in combination with open areas.
- 5. The wind speed for the wind load calculation is based on an assumed wind speed of 16 m/s, independent from height.
- 6. Basic Wind pressure per area is calculated as follows:

$F_w = 1/2 \cdot \rho \cdot v^2 \cdot C_w \cdot A$ where $F_w = wind \text{ force } (N)$	
A = surface area $[m^2]$	as per (2)
ρ = density of air $[kg/m^3]$	= 1.25 kg/m ³
v = wind speed (m/s)	= 16 m/s
C_{w-} shape factor	as per (2), (3), (4)

To be determined in later stage:

- 1. Height compensated wind speed (wind profile power law to be considered).
- 2. Actual shape factors to be determined according the applicable codes, in later stage.
- 3. Gust factor for in-service wind is factored for the maximum jacking height.
- 4. >48h / Out of service conditions are not taken into consideration within this study, to be determined in later stage.

Following wind speeds are taken into account for the installation operations:

Mean wind speed (m/s)			
In-service v(avg)	16.0 m/s		
Out-of-service v(ref)	TBD, not considered		

6.9. WIND LOAD - PHASE 01 - BRIDGE ASSEMBLY / INITIAL JACK UP

Figure 6-1 Determination of wind areas- phase 01

PHASE 01 - BRIDGE ASSEMBLY -TRANSVERSE WIND LOAD

	ITEM	DEFINED AREA Cw H _{cow}		WIND LOAD	WINDMOMENT	
	DESCRIPTION	[m2]	[-]	[m]	[t]	[t·m]
1	Bridge deck section + stability frame	150	2,0	11,7	4,9	57,2
2	Stability mast	210	2,0	26,5	6,9	181,5
3	MJS jacking tower + grillage frame	80	2,0	5,5	2,6	14,4
Inter	grated wind load	14,4	253,1			

PHASE 01 - BRIDGE ASSEMBLY - LONGIDINAL WIND LOAD

ITEM	DEFINED AREA	Cw	H _{cow}	WIND LOAD	WINDMOMENT			
DESCRIPTION	[m2]	[-]	[m]	[t]	[t·m]			
1 Bridge deck section	525	2,0	12,8	17,1	219,2			
2 Grillage frame	880	1,0	7	14,4	100,5			
3 Stability mast +MJS jacking tower	420	2,0	26,5	13,7	363,1			
ntergrated wind load 45,2 682,7								

6.10. WIND LOAD - PHASE 01- BRIDGE AT FINAL HEIGHT

PHASE 04 - JACK-UP TO FULL HEIGHT - TRANSVERSE WIND LOAD

ITEM		DEFINED AREA	Cw	H _{cow}	WIND LOAD	WINDMOMENT
DESCRIPTION		[m2]	[-]	[m]	[t]	[t·m]
1	Bridge deck section + stability frame	150	2,0	50,2	4,9	245,6
2	Stability mast	210	2,0	26,5	6,9	181,5
3 MJS jacking tower + grillage frame		305	2,0	22,4	9,9	222,9
Intergrated wind load 21,7					21,7	650,0

PHASE 04 - JACK-UP TO FULL HEIGHT - LONGIDINAL WIND LOAD

ITEM		DEFINED AREA	Cw	H _{COW}	WIND LOAD	WINDMOMENT
DESCRIPTION		[m2]	[-]	[m]	[t]	[t·m]
1 Bridge deck section + columns		825	2,0	40,3	26,9	1084,5
2	Grillage frame	880	1,0	7	14,4	100,5
3 Stability mast + MJS jacking tower		420	2,0	26,5	13,7	363,1
Intergrated wind load 55,0 154					1548,1	

6.11. OBLIQUE FACTOR

The horizontal load due to the imperfection of the foundation or other external factors is taken into account as maximum 1.0% of the total vertical load applied on the jacking system. These horizontal loads are considered to incorporate the assembly tolerances. The value is based on previous experiences.

Client: Aker Solutions Project: Bjørnafjord Prosjektet CAL-AB016101-001 A (First Issue)

7. BARGE STABILITY

In this chapter, the assumed barge arrangement is checked for stability.

7.1. BARGE DATA

7.1.1.BARGE ARRANGEMENT

For calculation purposes, the following barge arrangement is applied:

Notes:

- To ease initial calculations, spacing between barges is neglected.
- Adding spacing between barges in a later stage will provide an increased stability base.
- To ease initial calculations, multiple tanks are considered connected with each other.

7.1.2.BARGE DETAILS

Ugland UR 96 / 97 Cargo Barge (single)

7.2. BARGE LOADS

7.2.1. VERTICAL LOADS

To calculated barge stability, the assumed arrangement is checked for the applied vertical loads (self-weight of (jacking) equipment and bridge section). Below item weights are considered:

Bridge assembly / initial jack up with MJS:

Item	ASSUMED WEIGHT (t)	ASSUMED COG POS. ON BARGE (X,Y)	ASSUMED COG HEIGHT ABOVE BARGE DECK (Z)
Bridge section (assembled)	2100,0	Centre, symmetrical	11.5 m
Grillage / skidding beam	1000,0	Centre, symmetrical	4.0 m
Mast / MJS load spreading	500,0	Centre, symmetrical	1.0 m
Stability mast (2 pcs, eccentric in Long.)	250,0	Longitud. shift -18.75m	25.0 m
Mega jack system (2 jacking beam layers)	400,0	Centre, symmetrical	3.5 m
Ballast equipment	50,0	Centre, symmetrical	1.0 m
Other equipment / etc.	250,0	Centre, symmetrical	1.0 m

Jacking to final height:

Item	ASSUMED WEIGHT (t)	ASSUMED COG POS. ON BARGE (X,Y)	ASSUMED COG HEIGHT ABOVE BARGE DECK (Z)
Bridge section (assembled)	2100,0	Centre, symmetrical	50.0 m
Grillage / skidding beam	1000,0	Centre, symmetrical	4.0 m
Mast / MJS load spreading	500,0	Centre, symmetrical	1.0 m
Stability mast (2 pcs, eccentric in Long.)	250,0	Longitud. shift -18.75m	25.0 m
Mega jack system (36 jacking beam layers)	1150,0	Centre, symmetrical	25.0 m
Ballast equipment	50,0	Centre, symmetrical	1.0 m
Other equipment / etc.	250,0	Centre, symmetrical	1.0 m

7.2.2. HORIZONTAL LOADS

Applied wind loads on the barge stability calculations as per section 5.9 and section 5.10.

7.3. BARGE LOAD CASES

In order to check the impact on the barge condition (resulting static list and trim) of wind loads, the barge stability calculation is conducted excluding and including horizontal wind loads for four conditions. Wind loads resulting in wind moments are considered in longitudinal and transverse direction, acting at the same instance (conservative consideration). Ballast tank contents are kept unchanged during the four load cases, to simulate the static reactions by the wind moments. The ballast calculation sheets can be found in the appendices A-D.

Before jack-up:

- LC1 Phase 01 assembly of bridge section, pre-ballast condition, no wind load [Appendix A]
- LC2 Phase 01 assembly of bridge section, pre-ballast condition, including wind load X/Y [Appendix B]

After jack-up:

- LC3 Phase 04 jack-up of bridge to final height, pre, pre-ballast condition, no wind load [Appendix C]
- LC4 Phase 04 jack-up of bridge to final height, pre-ballast condition, including wind load X/Y [Appendix D]

7.4. RESULTING STATIC LIST AND TRIM

Below results are extracts from the appendices (A-D).

LC1										
	LIST=	0,00	m SB			TRIM=		0,00	m FORWARDS	
	LIST in degrees=	0,00	degr SB			TRIM in degrees=		0,00	degr FORWARDS	
	MIN FREEBOARD IS :	<u>2,0042</u>	<u>m</u>			DRAUGHT FORE	=	4,09 m	<mark>AFT =</mark> 4,09 m	
										_
	INCL LIST & TRIM					FREEBOARD FORE	=	2,00 m	AFT = 2,00 m	
LC2										
	LIST=	0,01	m SB			TRIM=		0,01	m FORWARDS	٦
	LIST in degrees=	0,00	degr SB			TRIM in degrees=		0,01	degr FORWARDS	
	MIN FREEBOARD IS :	<u>1,9950</u>	<u>m</u>			DRAUGHT FORE	=	4,10 m	AFT= 4,09 m	
	INCL LIST & TRIM					FREEBOARD FORE	=	2,00 m	<mark>AFT=</mark> 2,01 m	
LC3										
	LIST=	0.00	m SB			TRIM=		0.00	m FORWARDS	
	LIST in degrees=	0,00	degr SB			TRIM in degrees=		0,00	degr FORWARDS	
		- /	5	I		<u>y</u>		- ,		
	MIN FREEBOARD IS :	<u>1,9045</u>	<u>m</u>			DRAUGHT FORE	=	4,19 m	AFT = 4,19 m	
	INCL LIST & TRIM					FREEBOARD FORE	=	1,90 m	<mark>AFT =</mark> 1,90 m	
1 C4										
LOT	LIST=	0.01	m SB			TRIM=		0.03		
	LIST in degrees=	0,01	dear SB			TRIM in degrees=		0,00	dear FORWARDS	
		0,01	degi ob			Inthin degrees-		0,02		
	MIN FREEBOARD IS :	1.8823	m			DRAUGHT FORE	=	4.21 m	AFT = 4.18 m	
								.,		
	INCL LIST & TRIM					FREEBOARD FORE	=	1,89 m	AFT = 1,92 m	
										_
Li										
			- 00		0.00					
M	aximum static trim	aue to wind	= 30mm	=	0.02	aegree				
М	aximum static list d	ue to wind	= 14 mm	=	0.01	dearee				
						0				

7.5. RECOMMENDATIONS

The calculated static barge heel/trim due to wind loads is within the assumed 1% oblique limit as per section 6.11. Stability of the towers is checked in section 8.4. However, this does not consider additional displacement and accelerations induced by waves, dynamic (gust) winds, etc.

To get more accurate understanding of the motions induced by the environment, detailed calculations of are to be conducted (eg. MOSES). These calculate include:

-(dynamic) wind loads

-wave heights

-wave periods

-currents

-accelerations

8. MEGA JACK CALCULATION

8.1. JACKING CONFIGURATION

This calculation is concerned with the jack up operations of the Bridge Section by using ALE's Mega Jack System. The purpose of this calculation is to determine and check the following items:

- Approximation of Mega Jack System (MJS) loadings
- Approximation of the occurring ground bearing pressure (G.B.P.) during jacking directly underneath the jacking bases. (loads will be spread by steel load spreading onto barge deck/grillage, t.b.d.).

The bridge is to be assembled on a skidding system to allow translation, correction and assembly of the Bridge Sections. The maximum required jacking height is determined by the installation height at its final supporting pillars (the final jacking heights). ALE will perform the jack-up operation using the ALE Mega Jack System (MJS) with a nominal capacity of 5.200t per jacking tower.

For the jack up ALE will use the following set-up:

4 No. single jacking tower in 5,0 x 2,5m configuration (4 x 4 pcs = 16 bases)

Dimensions based on DRW-AB016101-001 [Ref.B01]

8.3. LOADS

These calculations present the loads that may occur during the jack up operation, depending on the weight of the Bridge, position of COG, COG envelope and the horizontal forces, occurring during the jack up operation.

Gravity load

Load case : Bridge weight = 2100t (base case, provided weight)

Additional COG envelope (2000 x 1000 mm)

For additional contingency within this feasibility calculation, an COG envelope is introduced by ALE, dimensions: ±1000mm in X-direction and ±500mm in Y-direction The envelope is considered for both load cases.

Horizontal loads

Wind loads as per §6.10. Misalignment as per §6.11.

Vertical Strand Jack within jacking tower

Optionally, the vertical load on the jacking towers can be increased by installing strand jacks, one in each tower. The vertically installed strand jacks generate additional vertical load on the system, which leads to increased stability of the system.

The strand jacks that can be used by ALE have capacities of 70t, 200t, 500t and 850t.

Since operation of the MJS jacking system and strand jack are fully computerised, it is possible to obtain constant additional tension by the strand jack during jack up.

The strand jack is connected from a steel structure connected to the jacking bases of the MJS system to the starter beam (interface beam between jacking beams and bridge). It only generates internal loads in the jacking system. Therefore, no additional loads are generated on the barge deck.

8.4. RESULTS

Stability of the jacking system is calculated per:

Appendix E: MJS calculation - Load case 1 - 2100t (no strand jack) Appendix F: MJS calculation - Load case 2 – 2100+ 800t (additional 200t strand jack per jacking tower)

For content of the MJS calculation sheet, see §7.6.

Jack loads

Each MJS tower comprises of 4 jacking bases.

The calculations that have been conducted check for minimum and maximum reaction corner loads.

Maximum loads:

Max. allowable corner stresses (jack loads)

In service:	1300	[t]
Out of service:	1900	[t]

Minimum loads:

Negative jack loads

Not allowed without additional technical measures Indicate instability of the jacking system (=uplift of the jacking beams within the jacking towers).

A summary of the minimum and maximum jack loads within the jacking towers is provided below:

Load case 1

		P1	P2	P3	P4	
		Rv1 [t]	Rv2 [t]	Rv3 [t]	Rv4 [t]	
Operation	Maximum	229	229	229	299	<1300t
	Minimum	70	70	70	70	

Maximum utility of jack capacity:

Operational 0.18 OK

Load case 2

		P1	P2	P3	P4	
		Rv1 [t]	Rv2 [t]	Rv3 [t]	Rv [t]	
Operation	Maximum	297	297	297	297	<1300t
	Minimum	98	98	98	98	

Maximum utility of jack capacity:

Operational 0.25 OK

In the summary tables on the previous page, the minimum and maximum jack loads are listed. These are the net. calculated loads, thus without safety or dynamic factors. Note that there is more capacity present in the system. If the weight is likely to in-/decrease, it is necessary to re-check MJS stability and foundation loads.

Load case 1

By calculation, the system has marginal own stability (16m/s wind speeds).

Load case 2

By calculation, the system has increased stability but this situation is not yet calculated for stand-by / out-of-service conditions, TBD.

8.5. RECOMMENDATIONS

Stability of the towers is checked in section 8.4, taking into account the stated max. oblique factor as per section 6.11. As proposed, additional vertical loads by strand jacks is preferred; minimum of 200t capacity strand jack for each MJS jacking tower.

To get more accurate understanding of the tower loads and reactions induced by the environment, detailed calculations of are to be conducted (eg. MOSES in combination with RFEM). These calculate include: -accurate in- and out-of-service conditions.

-(dynamic) wind loads

-wave heights

-wave periods

-accelerations

-requirements for stability mast and vertical strand jack bracings (for in- and out-of service conditions)

8.6. MJS CALCULATION SHEET OVERVIEW

Regarding the MJS calculation sheet in the appendices (E-F), the following overview applies:

Page 1 of 6

- Deck geometries
- Jacking geometries
- COG envelope
- COW (center of wind)
- Wind loads
- General loads
- Summary of tower loads based on net. Weight

Page 2 of 6 – Loadings on P1

- Wind loadings
- Foundation loads
- Mega Jack system loads
- Mega Jack system corner loadings
- Mega Jack system dimensions/weights

Page 3 of 6 – Loadings on P2

- Wind loadings
- Foundation loads
- Mega Jack system loads
- Mega Jack system corner loadings
- Mega Jack system dimensions/weights

Page 4 of 6 – Loadings on P3

- Wind loadings
- Foundation loads
- Mega Jack system loads
- Mega Jack system corner loadings
- Mega Jack system dimensions/weights

Page 5 of 6 - Loadings on P4

- Wind loadings
- Foundation loads
- Mega Jack system loads
- Mega Jack system corner loadings
- Mega Jack system dimensions/weights

Page 6 of 6 - Loadings on P4

- Summary of single jack loads

9. CONCLUSION

Subject to the identified assumptions and starting points, the working methodology is considered as viable and realistic. Basic calculations show that loads are within equipment capacity and stability is sufficient.

Optimisation of the jacking and barge stability requirements are to be achieved during detailed engineering phase, considering the following:

-environmental conditions (eg. wind loads, sea state)

-combined COG of bridge and columns; potentially lower COG position

-approximation of item weights (eg. grillage)

-detailed stability check of jacking system in combination with stability mast system and vertical strand bracings

9.1. OVERALL RECOMMENDATIONS

- Stability

Due to the relative low weight of the bridge structure, own stability of the jacking towers on full height is low on redundancy. To provide additional stability we have considered two stability mast, which provides guidance to the bridge and towers via a support/stability frame. The interactions with the towers (stiffness relation) and loads during out of service winds and barge motions is to be engineered further in detail, where a computer model needs to be created. This has not been included in this study.

- Positioning and connecting of the bridge legs (with/without pontoon) has not been included in this study. We recommend that attention is paid to the floating stability of these items.
- To prevent lateral movements of the barges, especially with jackup operation and with bridge deck at height, fixed mooring is recommended (hard fenders).

9.2. LOOKAHEAD DETAILED ENGINEERING

Below tables provide an overview of the expected scopes during the detailed engineering phases.

9.2.1. SKIDDING

No.	Description
1	To determine the required skid shoe arrangement for the handling and assembly of Bridge Sections
2	To calculate the predicted skid shoe loads during the skidding operation (GBP)
3	To calculate the required push pull capacity (propulsion system)
4	To determine skid track arrangement
5	To calculate reaction loads due to environmental conditions during the skidding operation

9.2.2. JACKING

No.	Description
1	Design and structural integrity check of Bridge Sections (local loading and global integrity).
2	Deflections / Displacements / Rotations of the Bridge section during various load cases (at support points)
3	To determine jacking arrangement, including stability masts / vertical strand jack requirements

4	Grillage design and integrity check based on skid shoe loads, barge loads, environmental loads, etc.
5	Structural integrity of provided vessels/barges during skidding and jacking
6	Determination and analysis of out of service conditions / stand by time during assembly of bridge sections / installation of vertical columns etc.
7	To determine maximum Trim / Heel of the barge during the operations
8	To determine maximum site environment conditions (in- and out-of-service)

9.2.3.BALLASTING

No.	Description
1	To calculate the required ballast for each stage of the skidding and jacking operations
2	To determine the requirement of temporary ballast system
3	To maintain minimal trim and heel throughout the skidding and jacking stages
4	To determine Quay Datum Levels and Water (Tide) Levels.
5	To investigate barge intact stability during the operation.
6	To calculate global bending moment and shear force checks of barge during the ballast stages
7	To determine required pump flow rate in every stage of operations

9.2.4.FENDERING AND MOORING

No.	Description
1	To perform quasi-static mooring analysis of the barge arrangement during the operations
2	To design mooring arrangement for each step of the operation
3	To determine requirements for mooring of floater (underneath vertical columns) and other related equipment
4	To calculate maximum line tensions and fender loads based provided environment forces
5	To determine Barge Fender Details (hard fender required).
6	To demine Mooring criteria and Bollard capacities

10. REFERENCE DOCUMENT LIST

10.1. ALE REFERENCE DOCUMENT LIST

REF.	CALCULATIONS	
A01	CAL-AB016101-002	Ballast Calculation
A02	CAL-AB016101-003	Mega Jack system Calculation – 2100t excl. vertical strand jack
A03	CAL-AB016101-004	Mega Jack system Calculation – 2100t incl. vertical strand jack
	DRAWINGS	
B01	DRW-AB016101-001	Jacking of bridge sections

11. APPENDICES

Documents attached for important references:

ALE Documents:

- [Appendix A] Barge stability calculation - LC1
- Barge stability calculation LC2 Barge stability calculation LC3 Barge stability calculation LC4 [Appendix B]
- [Appendix C]
- [Appendix D]
- MJS calculation Load case 1 2100t (no strand jack) [Appendix E]
- [Appendix F] MJS calculation - Load case 2 - 2100+ 800t (additional 200t strand jack per jacking tower)

APPENDIX A - BARGE STABILITY CALCULATION - LC1

	STABILITY OF PONTOONS DATE 15/Aug/1 TIME 11:39:16	S 19 3			PROJECTNR. : AB CLIENT : Ak PROJECT : Jac	016101 er Solutions cking of Bridg	e Sections]	ALE Heavylift B.V. Konijnenberg 68 4825 BD Breda The Netherlands		Phone Fax E-mail Internet	: + 31 (0) 76 57 : + 31 (0) 76 58 : info@ale-hea : www.ale-hea	15 240 75 084 vylift.com vylift.com
PARTICULARS OF THE PONTOON LENGTH BEAM DEPTH EMPTV DRAUGHT OWN WEIGHT MAX.LOAD CAPACITY NR.OF L.BULKHDS NR.OF TR.BULKHDS	: <u>91,44</u> m <u>82,30</u> m <u>6,10</u> m <u>1,01</u> m <u>7002</u> ton <u>27282</u> ton <u>27282</u> ton <u>4</u> nr <u>6</u> nr	[SITUATION LC1 Pre	l e ballast - ph	NAME OF PONTOON ase 01 - low level (with	: out wind loads)	UR98	TOTAL CARGO+R. WAT COMB.C.O.G CARGO+F COMB.C.O.G CARGO+F COMB.C.O.G CARGO+F MEAN SUBMERSION MEAN DRAUGHT MEAN FREEBOARD DISPLACEMENT	TER R.WATER R.WATER R.WATER R.WATER R.WATER 0.00 m FO 3.08 m 4.09 m 2.00 m 30192 m^3	DW DECK B W5 L		INFO DIS STABILITY = 1 LIST = 0,00 TRIM = 0,00	PLAY DK !! m SB m IN BOW
NAME CARGO Bridge section Grillage / skidding beam (assumed) Mast / MJS load spreading Stability mast (2 pcs. eccentric in Long	CARGO (TON) C.O.G 2100.0 1000.0 500.0	5. (Trnsvr) +=SB in m -=PS in m 0,00 0,00 0,00	C.O.G.(Lngtdni) +=forw.5L in m -=aft.5L in m 0.00 0.00 -18.75	C.O.G. (H) DVE DECK OW DECK 11,50 4,00 1,00 25,00	C.O.G. (FULL) BALLAST TANKS BELOW DECK	% FILLED	CAPACITY (T) BALLAST TANKS	MF= FK= MK= GK= MG= MG red.free water MG reduced EXCEN.CARGMOM.=	133,64 m 2,17 m 135,80 m 4,37 m 131,43 m 5,35 m 126,09 m 0 t*m	MFIO FK MKIO GK MGI MGI MGI EXCI	ng= ng= red.free water reduced EN.CARGMOI	164,98 2,17 167,15 4,37 162,78 2,60 160,18 <i>A.=</i> 12,3	m m m m m m
Mega lack system (assumed symmetri Ballast equipment (assumed symmetri Other equipment / etc.	cal) 400.0 cal) 50.0 250.0	0,00	0.00 0.00 0.00	3,50 1,00 1,00				WINDMOMENT= TAN @= LIST= LIST in degrees= MIN FREEBOARD IS : INCL LIST & TRIM	0,00 t*m 0,00 rad 0,00 m SB 0,00 degr SB 2,0042 m		DMOMENT= ls= l= lin degrees= UGHT FORE EBOARD FOR	0,00 0,00 0,00 0,00 = 4,09 m E = 2,00 m	t*m rad m FORWARDS degr FORWARDS AFT = 4,09 m AFT = 2,00 m
Tank No. 1 (PS) Tank No. 1 (C) Tank No. 1 (SB) Tank No. 2 (PS) Tank No. 2 (C) Tank No. 2 (SB) Tank No. 3 (PS) Tank No. 3 (SB) Tank No. 3 (C) Tank No. 3 (SB) Tank No. 4 (PS) Tank No. 4 (SB) Tank No. 4 (SB) Tank No. 5 (PS) Tank No. 5 (SB) Tank No. 5 (SB) Tank No. 5 (SB) Tank No. 5 (SB) Pump room	1090.0 1090.0 2300.0 650.0 650.0 650.0 650.0 650.0 650.0 2500.0 2525.0 2500.0 645.0	-27,50 0,00 27,50 -27,50 0,00 27,50 -27,50 -27,50 -27,50 -27,50 -27,50 -27,50 -27,50 -27,50 -27,50 0,00 27,50 -27,50 0,00	40.17 40.17 40.17 26.25 26.25 26.25 5.70 5.70 5.70 -14.86 -14.86 -14.86 -14.86 -34.22 -34.22 -34.22 -34.22 -34.22	-3,05 -3,05 -3,05 -4,09 -6,10 -4,09 -5,53 -5,53 -5,53 -5,53 -5,53 -5,53 -5,53 -5,53 -3,51 -3,51	-2.92 -2.92 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -2.92 -2.92 -2.92	100.00% 100.00% 65,94% 0.00% 68,94% 0.00% 18,64% 0.00% 18,64% 0.00% 18,64% 9.00% 18,64% 9.00% 18,64% 9.00% 18,64% 9.00% 18,64% 9.00% 18,64% 9.00% 18,64%18,64% 18,64% 18,64% 18,64% 18,64%18,64% 18,64% 18,64% 18,64%18,64% 18,64% 18,64% 18,64%14,75%	1090,0 1090,0 3488,0 3488,0 3488,0 3488,0 3488,0 3488,0 3488,0 3488,0 3488,0 3488,0 3488,0 3488,0 2950,0 2950,0 2950,0	5FS 558	4PS 3PS 4 4C 3C 4 4SB 3SB 4	PS 1PS 00922			
TOTAL OF CARGO RESTWATER IN TANKS WINDFORCE WINDSPEED LENGTH OF CARGO HEIGHT OF CARGO BEAM OF CARGO HEIGHT OF SUPPORT SHAPE FACTOR WINDAREA CARGO TRANS WINDAREA CARGO LONG WINDF.ON CARGO LONG	23190,0 0,0 Bf 16,00 m/sec 31,60 m 3,50 m 150,00 m 50,00 m 2,00 150,00 m ² 2 TON 525,00 m ² 2 TON	0,10						Draught: Freeboard: Freeboard load-out: Deviation:	AFT 4092 mm 2004 mm 2030 mm -26 mm Phase			FWD 4092 mr 2004 mr 2030 mr -26 mr	n n n

APPENDIX B - BARGE STABILITY CALCULATION - LC2

	STABILITY OF PONTOONS DATE : 15/Aug/1 TIME : 11:39:16	3 9			PROJECT NR. : / CLIENT : / PROJECT : \	AB016101 Aker Solutions Jacking of Bridg	e Sections		ALE Heavylift B.V. Konijnenberg 68 4825 BD Breda The Netherlands		Phone Fax E-mail Internet	: + 31 (0) 76 57 : + 31 (0) 76 58 : info@ale-hea : www.ale-hea	15 240 75 084 vylift.com vylift.com
PARTICULARS OF THE PONTOON LENGTH BEAM DEPTH EMPTV DRAUGHT OWN WEIGHT MAXLOAD CAPACITY NR.OF L.BULKHDS NR.OF TR.BULKHDS	: <u>91,44</u> m <u>82,30</u> m <u>6,10</u> m <u>1,01</u> m <u>7002</u> ton <u>27282</u> ton <u>27282</u> ton <u>4</u> nr <u>6</u> nr	[SITUATION	Pre ballast - ph	NAME OF PONTOOI	thout wind loads)	UR98	TOTAL CARGO+R. WA' COMB.C.O.G CARGO+I COMB.C.O.G CARGO+I COMB.C.O.G CARGO+I MEAN SUBMERSION MEAN DRAUGHT MEAN FREEBOARD DISPLACEMENT	TER 23190 ton R.WATER -1,42 m BELOW D R.WATER 0,00 m TO SB R.WATER 0,00 m FORW.51 3,08 m 4,09 m 2,00 m 3,0192 m^3	ECK _		INFO DIS STABILITY = LIST = 0,01 TRIM = 0,01	PLAY OK !! m SB m IN BOW
NAME CARGO Bridge section Grillage / skidding beam (assumed)	CARGO (TON) C.O.G 2100.0 1000.0	. (Trnsvr) ⊧=SB in m .=PS in m 0,00	C.O.G.(Lngtdnl) +=forw.5L in m -=aft.5L in m 0,00	C.O.G. (H) ABOVE DECK BELOW DECK 11,50 4.00	C.O.G. (FULL) BALLAST TANKS E BELOW DECK	% FILLED	CAPACITY (T) BALLAST TANKS	MF= FK= MK= GK= MG red.free water	133,64 m 2,17 m 135,80 m 4,37 m 131,43 m 5,35 m	MFlon FK MKlon GK MGlon MGl re	g= g= g= d.free water	164,98 2,17 167,15 4,37 162,78 2,60	m m m m m
Mast / MJS load spreading Stability mast (2 pcs, eccentric in Long Mega jack system (assumed symmetri Ballast equipment (assumed symmetri	500.0 250.0 cal) 400.0 cal) 50.0	0,00 0,00 0,00 0,00	0,00 -18,75 0,00 0,00	1,00 25,00 3,50 1,00				MG reduced EXCEN.CARGMOM.= WINDMOMENT= TAN @= LIST= LIST in degrees=	0 t*m 253,10 t*m 0,00 rad 0,01 m SB 0,00 degr SB	MG I r EXCEI WINDI TAN Is TRIM= TRIM=	educed N.CARGMON MOMENT= = n degrees=	160,18 12,3 682,70 0,00 0,01 0,01 0,01	m t*m t*m rad m FORWARDS degr FORWARDS
Tank No. 1 (PS) Tank No. 1 (C) Tank No. 1 (SB) Tank No. 2 (PS) Tank No. 2 (PS) Tank No. 2 (PS) Tank No. 2 (PS) Tank No. 2 (SB) Tank No. 3 (PS) Tank No. 4 (PS) Tank No. 4 (PS) Tank No. 5 (PS) Tank No. 5 (SB) Pump room Pump room	1090.0 1090.0 1090.0 2300.0 2300.0 650.	-27.50 0.00 27.50 -27.5	40,17 40,17 40,17 26,25 26,25 26,25 5,70 5,70 5,70 -14,86 -14,86 -14,86 -14,86 -14,86 -34,22 -34,22 -34,22 -34,22 -34,22	-3,05 -3,05 -3,05 -4,09 -6,10 -5,53 -6,53 -6,53 -6,53 -5,53 -5,53 -3,51 -3,49 -3,51	2.92 2.92 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05	100,00% 100,00% 100,00% 65,94% 0,00% 65,94% 18,64% 0,00% 18,64% 18,64% 18,64% 18,64% 84,75% 84,75%	1090,0 1099,0 1099,0 3488,0 34	MIN FREEBOARD IS : INCL LIST & TRIM	1.9950 m 4PS - 3PS - 2PS - 4C - 3C - 2C - 4SB - 3SB - 2SB -		GHT FORE	= 4,10 m E = 2,00 m	AFT = 4.09 m
TOTAL OF CARGO RESTWATER IN TANKS WINDFORCE WINDSPEED LENGTH OF CARGO HEIGHT OF CARGO HEIGHT OF SUPPORT SHAPE FACTOR WINDAREA CARGO TRANS WINDAREA CARGO LONG WINDF.ON CARGO LONG	23190,0 0,0 Bf 16,00 m/sec 31,60 m 3,50 m 150,00 m 50,00 m 2,00 150,00 m 2,00 150,00 m 2,00 TON 525,00 m ² 2 TON	0,10						Draught: Freeboard: Freeboard load-out: Deviation:	AFT 4085 mm 2011 mm 2030 mm -19 mm Phase			FWD 4098 mi 1998 mi 2030 mi -32 mi	n n <u>n</u>

APPENDIX C - BARGE STABILITY CALCULATION - LC3

	STABILITY OF PONTOO DATE 15/Au TIME 11:39:	DNS 1g/19 :16			PROJECT NR. CLIENT PROJECT	: AB016101 : Aker Solutions : Jacking of Bridg	ge Sections]	ALE Heavylift B.V. Konijnenberg 68 4825 BD Breda The Netherlands		Phone Fax E-mail Internet	: + 31 (0) 76 57 : + 31 (0) 76 57 : info@ale-hea : www.ale-hea	7 15 240 3 75 084 avylift.com vvylift.com
PARTICULARS OF THE PONTOON LENGTH BEAM DEPTH EMPTY DRAUGHT OWN WEIGHT MAXLOAD CAPACITY NR.OF L.BULKHDS NR.OF TR.BULKHDS	: <u>91.44</u> m <u>82.30</u> m <u>6.10</u> m <u>1.01</u> m <u>7002</u> ton <u>27282</u> ton <u>4</u> nr	[SITUATION	C3 Jack up - excl	NAME OF PONTO	ON :	UR98	TOTAL CARGO+R. WA' COMB.C.O.G CARGO+I COMB.C.O.G CARGO+I COMB.C.O.G CARGO+I MEAN SUBMERSION MEAN DRAUGHT MEAN FREEBOARD DISPLACEMENT	TER 23940 ton R.WATER 3,15 m ABOVE D R.WATER 0,00 m TO SB R.WATER 0,00 m FORW5 3,18 m 4,19 m 1,90 m 30942 m^3	ECK		INFO DIS STABILITY = LIST = 0,00 TRIM = 0,00	OK !! m SB m IN BOW
NAME CARGO Bridge section Grillage / skidding beam (assumed) Mast / MJS load spreading	CARGO (TON) C.O 2100,0 1000,0 500,0	D.G. (Trnsvr) +=SB in m -=PS in m 0,00 0,00 0,00	C.O.G.(Lngtdni) +=forw.5L in m -=aft.5L in m 0,00	C.O.G. (H) ►=ABOVE DECK =BELOW DECK 50,00 4,00 1,00	C.O.G. (FULL) BALLAST TANKS BELOW DECK	% FILLED BALLAST TANKS	CAPACITY (T) BALLAST TANKS	MF= FK= GK= MG= MG red.free water MG reduced	130,40 m 2,22 m 132,62 m 7,91 m 124,71 m 5,22 m 119,49 m	MFlon FK MKlon GK MGlor MGl r	g= ng= ed.free water	160,98 2,22 163,20 7,91 155,30 2,54 152,75	m m m m m m
Stability mast (2 pcs, eccentric in Long Mega jack system (assumed symmetr Ballast equipment (assumed symmetr Other equipment / etc.	cal) 250.0 cal) 1150.0 cal) 50.0 250.0	0,00 0,00 0,00 0,00	-18.75 0.00 0.00 0.00	25,00 25,00 1,00				EXCEN.CARCMOM.= WINDMOMENT= TAN @= LIST= LIST in degrees= MIN FREEBOARD IS : INCL LIST & TRIM	0 t'm 0,00 t'm 0,00 rad 0,00 m SB 0,00 degr SB <u>1.9045 m</u>	TAN IS TAN IS TRIM TRIM TRIM TRIM FREE	N.CARGMON MOMENT= = = in degrees= GHT FORE BOARD FOR	A.= 12,3 0,00 0,00 0,00 0,00 0,00 0,00 = 4,19 m E 1,90 m	t*m rad m FORWARDS degr FORWARDS AFT = 4,19 m AFT = 1,90 m
Tank No. 1 (PS) Tank No. 1 (C) Tank No. 2 (PS) Tank No. 2 (C) Tank No. 2 (SB) Tank No. 2 (SB) Tank No. 3 (PS) Tank No. 3 (SB) Tank No. 3 (C) Tank No. 4 (PS) Tank No. 4 (SB) Tank No. 5 (C) Tank No. 5 (SB) Pump room	1090,0 1090,0 1090,0 2300,0 0,0 2300,0 650,0 0,0 650,0 650,0 0,0 650,0 0,0 650,0 0,0 650,0 2525,0 2525,0 2525,0 2525,0 2500,0 645,0	-27,50 0,00 27,50 -27,50 -27,50 -27,50 -27,50 -27,50 -27,50 -27,50 -27,50 0,00 27,50 -27,50 0,00	40,17 40,17 40,17 26,25 26,25 5,70 5,70 -14,86 -14,86 -14,86 -14,86 -34,22 -34,22 -34,22 -34,22 -34,22 -34,22	-3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -5.53 -5.53 -5.53 -5.53 -5.53 -5.53 -5.53 -3.51 -3.49 -3.51	-2.92 -2.92 -2.92 -3.05	100,00% 100,00% 100,00% 65,94% 0,00% 65,94% 18,64% 0,00% 18,64% 0,00% 18,64% 0,00% 18,64% 8,4,75%	1090.0 1090.0 1090.0 3488.0 3488.0 3488.0 3488.0 3488.0 3488.0 3488.0 3488.0 3488.0 2489.0 2489.0 2950.0 2950.0	5 FFS	4PS 3PS 2PS 4PS 4PS 4PS 4PS 4PS 4PS 4PS 4PS 4PS 4				
TOTAL OF CARGO RESTWATER IN TANKS WINDFORCE WINDSPEED LENGTH OF CARGO HEIGHT OF CARGO BEAM OF CARGO HEIGHT OF SUPPORT SHAPE FACTOR WINDAREA CARGO TRANS WINDAREA CARGO LONG WINDF.ON CARGO LONG	23940,0 0,0 8f 16,00 m/sec 31,60 m 3,50 m 50,00 m 2,00 150,00 m ² TON 525,00 m ² TON	0,10						Draught: Freeboard: Freeboard load-out: Deviation:	AFT 4191 mm 1905 mm 2030 mm -125 mm Phase			FWD 4191 m 1905 m 2030 m -125 m	m m m

APPENDIX D - BARGE STABILITY CALCULATION – LC4

	STABILITY OF PONTO DATE : 15/Au TIME : 11:39	ONS ug/19 9:16			PROJECT NR. : / CLIENT : / PROJECT : \	AB016101 Aker Solutions Jacking of Bridg	e Sections]	ALE Heavylift B.V. Konijnenberg 68 4825 BD Breda The Netherlands		Phone Fax E-mail Internet	: + 31 (0) 76 57 : + 31 (0) 76 58 : info@ale-hea : www.ale-hea	15 240 75 084 vylift.com vylift.com
PARTICULARS OF THE PONTOON LENGTH BEAM DEPTH EMPTY DRAUGHT OWN WEIGHT MAX.LOAD CAPACITY NR.OF LBULKHDS NR.OF TR.BULKHDS	: <u>91,44</u> m <u>82,30</u> m <u>6,10</u> m <u>1,01</u> m <u>7002</u> ton <u>27282</u> ton <u>4</u> nr <u>6</u> nr	[SITUATION LO	C4 Jack up - excl	NAME OF PONTOOI	N :	UR98	TOTAL CARGO+R. WA COMB.C.O.G CARGO+I COMB.C.O.G CARGO+I COMB.C.O.G CARGO+I MEAN SUBMERSION MEAN RAUGHT MEAN FREEBOARD DISPLACEMENT	TER 23940 ton R.WATER 3,15 m ABOVE DE R.WATER 0,00 m TO SB R.WATER 0,00 m FORW5 L 3,18 m 4,19 m 1,90 m 30942 m^3	ck		INFO DIS STABILITY = LIST = 0,01 TRIM = 0,03	PLAY OK !! m SB m IN BOW
NAME CARGO Bridge section Grillage / skidding beam (assumed)	CARGO (TON) C.(2100.0 1000.0	O.G. (Trnsvr) +=SB in m -=PS in m 0,00	C.O.G.(Lngtdnl) +=forw.5L in m -=aft.5L in m 0,00	C.O.G. (H) =ABOVE DECK =BELOW DECK 50,00 4,00	C.O.G. (FULL) BALLAST TANKS BELOW DECK	% FILLED	CAPACITY (T BALLAST TANKS	MF= FK= MK= GK= MG= MG red.free water	130,40 m 2,22 m 132,62 m 7,91 m 124,71 m 5,22 m	MFlong: FK MKlong: GK MGlong MGI red	= = .free water	160,98 2,22 163,20 7,91 155,30 2,54	m m m m m
Stability mast (2 pcs, eccentric in Long Mega lack system (assumed symmetr Ballast equipment (assumed symmetr Other equipment/ etc.) 2500 cal) 1150,0 cal) 50,0 250,0	0,00 0,00 0,00 0,00 0,00	-18,75 0,00 0,00 0,00	25,00 25,00 1,00 1,00				EXCEN.CARGMOM.= WINDMOMENT= TAN @= LIST= LIST in degrees= MIN FREEBOARD IS :	0 t*m 650,00 t*m 0,00 rad 0,014 m SB 0,01 degr SB 1,8823 m	EXCEN WINDM TAN IS= TRIM= TRIM in DRAUG	CARGMOM OMENT= degrees= HT FORE	122,70 12 12,3 1548,10 0,00 0,03 0,02 = 4,21 m	t'm t'm rad m FORWARDS degr FORWARDS AFT = 4,18 m
Tank No. 1 (PS) Tank No. 1 (C) Tank No. 1 (SB) Tank No. 2 (PS) Tank No. 2 (C) Tank No. 2 (SB) Tank No. 2 (SB) Tank No. 3 (PS) Tank No. 3 (SB) Tank No. 3 (SB) Tank No. 4 (PS) Tank No. 4 (SB) Tank No. 4 (SB) Tank No. 5 (SB) Tank No. 5 (SB) Pump room Pump room	1090.0 1090.0 2300.0 0.0 2300.0 650.0 650.0 650.0 650.0 6550.0 2500.0 2500.0 2525.0 2500.0 645.0	-27,50 0,00 27,50 -27,50 0,00 27,50 -27,50 -27,50 -27,50 -27,50 -27,50 -27,50 -27,50 -27,50 0,00 0,00 27,50 -27,50 0,00	40,17 40,17 40,17 26,25 26,25 26,25 26,25 5,70 5,70 5,70 -14,86 -14,86 -14,86 -14,86 -34,22 -34,22 -34,22 -34,22 -34,22	-3.05 -3.05 -3.05 -4.09 -5.53 -6.10 -5.53 -6.53 -5.53 -3.51 -3.49 -3.51	-2.92 -2.92 -2.92 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -3.05 -2.92 -2.92 -2.92	100,00% 100,00% 100,00% 65,94% 0,00% 18,64% 18,64% 18,64% 18,64% 84,75%	1090.0 1090.0 1090.0 3488.0 3488.0 3488.0 3488.0 3488.0 3488.0 3488.0 3488.0 2950.0 2950.0	5FS 5C	4PS 3PS 2PS - 4C 3C 2C - 4SB 3SB 2SB -				
TOTAL OF CARGO RESTWATER IN TANKS WINDFORCE WINDSPEED LENGTH OF CARGO HEIGHT OF CARGO BEAM OF CARGO HEIGHT OF SUPPORT SHAPE FACTOR WINDAREA CARGO TRANS WINDAREA CARGO LONG WINDF.ON CARGO LONG	23940,0 0,0 Bf 16,00 m/sea 31,60 m 3,50 m 150,00 m 2,00 150,00 m ² TON 525,00 m ² TON	0,10 c						Draught: Freeboard: Freeboard load-out: Deviation:	AFT 4176 mm 1920 mm 2030 mm -110 mm Phase			FWD 4206 mi 1890 mi 2030 mi -140 mi	n n <u>n</u>

APPENDIX E – MEGA JACK STABILITY CALCULATION – LC1 WITHOUT STRAND JACKS

	F	Project : Jacking of Bridge Sections		No:	: AB016101		Dept :	ALE Heavylift			
ALE A	Projec	ct Title : Bjørnafjord Prosjektet					Initials :	RM			
		Mega Jack System General loadings -	 without vertical 	strand jacks	S		Date :	15/aug/19			
SMARTER, SAFER, STRONGER		Jacking to 46 mtrs.					Rev	A		based on rev 2.4	4
							,				1
Bridge geometries	0100	Vertical loads per jacking point [t]:		COG envel	lope with loadin	ig on top of each jack	ang point:				
Bridge weight [t]	2100	depending on the given envelope						т	[1	-
Width				610	571	591	591	_	571	61	0
x1 [mm]	60000	COG envelope		475	444	459	459)	444	47	'5
x2 [mm] to CoG	30000	P2 X3	P3		·			7		1	_
Length				543	508	525	525	5	508	54	13
y1 [mm]	8000		<u>Fwx</u>	543	508	525	525	5	508	54	3
y2 [mm] to CoG	4000							-		-	_
Envelope			╞═╌╹┤╹┍╴	475	444	459	459)	444	47	'5
x3 [mm]	2000		P4	610	571	591	591		571	61	0
y3 [mm]	1000	×2									
Overal dimensions lxwxh						Numbering	g of corners	_			
x4 [mm]	150000	B G				B4	G4				
y4 [mm]	31600	P1	P2 P3	P4	Extreme	B1	G1	1			
z1 [mm]	3500	B1	B4 G4	G1				-			
Dimensions to CoW		Fv1	Fv2 Fv3	Fv4	Fv						
x5 [mm]	30000	Maximum 610	610 610	610	610						
v5 [mm]	4000	Minimum 444	444 444	444	444			Weights / Loa	ads are in metri	c tonnes [t]	1
z2 [mm]	1750		I	1				0			
z3 [mm]	47750										
	47730										
Jacking geometries	47750										
Jacking geometries	3535	Wind Loads Bo	oundary conditions			General loa	ds	Per foundation	on		
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height	3535	Wind Loads Bo	oundary conditions	: ers absorb		General loa Moment on	ds foundation c	Per foundation	on		
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#]	3535 46000 4	Wind Loads Bo Estimation of the surfaces Right of the surfaces Aside [m2] 111	oundary conditions gid structure, Tow equal amount of	: ers absorb wind		General loa Moment on	ds foundation c	Per foundation lue to wind Operational	on Out of service	Extreme	
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#]	3535 46000 4	Wind LoadsBoEstimation of the surfacesRigAside [m2]111Afront [m2]525	oundary conditions gid structure, Tow equal amount of	s: ers absorb wind		General loa Moment on Mw-x	ds foundation c	Per foundation lue to wind Operational	on Out of service	Extreme	[tm]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points	3535 46000 4	Wind LoadsBoEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [c]100	oundary conditions gid structure, Tow equal amount of ⇔	s: ers absorb wind		General loa Moment on Mw-x Mw-v	ds foundation c (x-direction)	Per foundation lue to wind Operational 56 309	on Out of service 0	Extreme 0	[tm]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points	47750 3535 46000 4 25 2050	Wind LoadsBoEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition	pundary conditions gid structure, Tow equal amount of	ers absorb wind		General loa Moment on Mw-x Mw-y	ds foundation c (x-direction) (y-direction)	Per foundation lue to wind Operational 56 309	on Out of service 0 0	Extreme 0 0	[tm] [tm]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height lacking heams	47750 3535 46000 4 25 2050 22000	Wind LoadsBoEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition110/20children237	pundary conditions gid structure, Tow equal amount of	s: ers absorb wind		General loa Moment on Mw-x Mw-y	ds foundation o (x-direction) (y-direction)	Per foundation due to wind Operational 56 309	on Out of service 0 0	Extreme 0 0	[tm] [tm]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. L avers	47750 3535 46000 4 25 2050 22000 36	Wind LoadsBoEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition110q1 [N/m2]operational237q2 [N/m2]aut of service1352	oundary conditions gid structure, Tow equal amount of	s: ers absorb wind	Cog Cow	General loa Moment on Mw-x Mw-y Additional I	ds foundation o (x-direction) (y-direction) oad effect du	Per foundation due to wind Operational 56 309 ue to wind	Out of service 0 0	Extreme 0 0	[tm] [tm]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t]	47730 3535 46000 4 25 2050 22000 36 102	Wind LoadsBoEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1100q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]out for serviceq3 [N/m2]out for service	oundary conditions gid structure, Tow equal amount of cow cow cow	s: ers absorb wind	Y5	General loa Moment on Mw-x Mw-y Additional I	ds foundation o (x-direction) (y-direction) oad effect du	Per foundation due to wind Operational 56 309 ue to wind Operational	Out of service 0 0 Out of service	Extreme 0 0 Extreme	[tm] [tm]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2	47730 3535 46000 4 25 2050 22000 36 192	Wind LoadsBcEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition110q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]extremeq3 [N/m2]extremeq3 [N/m2]extremeq1 [N/m2]extremeq3 [N/m2]extremeq3 [N/m2]extremeq1 [N/m2]extremeq3 [N/m3]extremeq3 [N/m3]extreme	w Cov Cov Cov Cov Cov Cov Cov Cov	s: ers absorb wind	Y5	General loa Moment on Mw-x Mw-y Additional I Rwx Rwx	ds foundation o (x-direction) (y-direction) oad effect du (x-direction)	Per foundation due to wind Operational 56 309 due to wind Operational 2 20	Out of service 0 0 Out of service 0 0	Extreme 0 0 Extreme 0	[tm] [tm] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t]	47730 3535 46000 4 25 2050 22000 36 192	Wind LoadsBcEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1,00q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]extremeq1 [m]16	oundary conditions gid structure, Tow equal amount of cow cow cost cov cov cost cost cost cost cost cost cost cost	s: ers absorb wind	Y5 Y4	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy	ds foundation o (x-direction) (y-direction) oad effect du (x-direction) (y-direction)	Per foundation due to wind Operational 56 309 de to wind Operational 2 80	Out of service 0 0 0 Out of service 0 0	Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points Height starterbeam 2 [t]	47730 3535 46000 4 25 2050 22000 36 192 25 2050	Wind LoadsBcEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition100q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]operationalcorresponding windspeedsv1 [m/s]operational16v2 [m/c]and forming	oundary conditions gid structure, Tow equal amount of the cover of the structure cover of t	s: ers absorb wind	Y5 Y5 Y4	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy	ds foundation of (x-direction) (y-direction) oad effect du (x-direction) (y-direction)	Per foundational due to wind Operational 56 309 ue to wind Operational 2 80	Out of service 0 0 0 Out of service 0 0	Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points Height starterbeam 2 [t] 4 points Height starterbeam 2 [t] 4 points	47730 3535 46000 4 25 2050 22000 36 192 25 2050 22000	Wind LoadsBcEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition100q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]operationalcorresponding windspeedsv1 [m/s]operational16v2 [m/s]v2 [m/s]out of servicena	oundary conditions gid structure, Tow equal amount of the cover of the structure cover of t	s: ers absorb wind	Y5 Y5 Y4	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy Horizontal I	ds foundation of (x-direction) (y-direction) oad effect du (x-direction) (y-direction) oad on found	Per foundational fue to wind Operational 56 309 Le to wind Operational 2 80 dation due to v	Out of service 0 0 0 Out of service 0 0 wind	Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] Height starterbeam 2 [mm] z5 [mm] Height jacking beams	47730 3535 46000 4 25 2050 22000 36 192 25 2050 22000 22000 22000	Wind LoadsBcEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]operational16v2 [m/s]v2 [m/s]out of servicenav3 [m/s]valuevalue	pundary conditions gid structure, Tow equal amount of r	s: ers absorb wind	Y5 Y5 Y1 Y4	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy Horizontal I	ds foundation of (x-direction) (y-direction) oad effect du (x-direction) (y-direction) oad on found	Per foundation due to wind Operational 56 309 due to wind Operational 2 80 dation due to v Operational	Out of service 0 0 Out of service 0 0 wind Out of service	Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points Height starterbeam 2 [t] Height jacking beams No. Layers Weight tower type 1 [t]	47730 3535 46000 4 25 2050 22000 36 192 25 2050 22000 36 192	Wind LoadsBcEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extreme1352Corresponding windspeedsv1 [m/s]operational16v2 [m/s]out of servicenav3 [m/s]extremenaWind forces*	pundary conditions gid structure, Tow equal amount of the covert of the structure covert of the structure the structure of the structure the structure of the s	s: ers absorb wind	Y5 Y5 Y5 Y1 Y4	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy Horizontal I	ds foundation of (x-direction) (y-direction) oad effect du (x-direction) (y-direction) oad on found (x-direction)	Per foundation due to wind Operational 56 309 ue to wind Operational 2 80 dation due to v Operational 1	Out of service 0 0 Out of service 0 0 wind Out of service 0 0	Extreme 0 0 Extreme 0 0 Extreme 0	[tm] [tm] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points Height starterbeam 2 [t] Height jacking beams No. Layers Weight tower type 2 [t] z5 [mm] Height jacking beams No. Layers Weight tower type 2 [t]	47730 3535 46000 4 25 2050 22000 36 192 25 2050 22000 36 192	Wind LoadsBcEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]operational16v2 [m/s]v2 [m/s]out of servicenav3 [m/s]Wind forces*Fw1x [kN]Fw1x [kN]operational480,2	pundary conditions gid structure, Tow equal amount of the second structure of the second structure of	s: ers absorb wind	Y5 Y5 Y5 Y1 Y4	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy Horizontal I Fx Fy	ds foundation of (x-direction) (y-direction) oad effect du (x-direction) (y-direction) oad on found (x-direction) (y-direction)	Per foundation due to wind Operational 56 309 due to wind Operational 2 80 dation due to 0perational 1 7	Out of service 0 0 Out of service 0 0 wind Out of service 0 0 0	Extreme 0 0 Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points Height starterbeam 2 [t] 4 points Height starterbeam 2 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 2 [t] Missalligment	47730 3535 46000 4 25 2050 22000 36 192 25 2050 22000 36 192 0.000	Wind LoadsBoEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1,00q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]operationalto responding windspeedsv1 [m/s]operational16v2 [m/s]out of servicenav3 [m/s]extrememaxMind forces*Fw1x [kN]operational480,2Fw1y [kN]operational2641,3	pundary conditions gid structure, Tow equal amount of the second structure of the second structure, Tow equal amount of the second structure, Tow equal amou	s: ers absorb wind	Y5 Y5 Y5 Y1 Y4 Y1 Y4 Y4 Y2 Y2 Y2 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy Horizontal I Fx Fy	ds foundation of (x-direction) (y-direction) oad effect du (x-direction) (y-direction) oad on found (x-direction) (y-direction)	Per foundation due to wind Operational 56 309 due to wind Operational 2 80 dation due to v Operational 1 7	Out of service 0 0 Out of service 0 0 wind Out of service 0 0	Extreme 0 0 Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points Height starterbeam 2 [t] 4 points Height starterbeam 2 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 2 [t] Missalligment misalignment factor height [m/m]	47730 3535 46000 4 25 2050 22000 36 192 25 2050 22000 36 192 0,010	Wind LoadsBoEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1,00q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]operationalto responding windspeedsv1 [m/s]operational16v2 [m/s]out of servicenav3 [m/s]extrememaxmaxWind forces*Fw1x [kN]operationalFw2x [kN]out of service0,0	pundary conditions gid structure, Tow equal amount of the structure of the structure, Tow equal amount of the structure, Tow	s: ers absorb wind	Y5 Y5 Y5 Y1 Y4 Y1 Y4 Y1 Y4	General loa Moment on Mw-x Mw-y Additional l Rwx Rwy Horizontal l Fx Fy Correction f	ds foundation of (x-direction) (y-direction) oad effect du (x-direction) (y-direction) oad on found (x-direction) (y-direction)	Per foundation due to wind Operational 56 309 de to wind Operational 2 80 dation due to o Operational 1 7	Out of service 0 0 Out of service 0 0 wind Out of service 0 0	Extreme 0 0 Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points Height starterbeam 2 [t] 4 points Height starterbeam 2 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 2 [t] Missalligment misalignment factor height [m/m] misalignment factor width [m/m]	47730 3535 46000 4 25 2050 22000 36 192 25 2050 22000 36 192 0,010 0,001	Wind LoadsBoEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]operationalcorresponding windspeedsv1 [m/s]operational16v2 [m/s]out of servicenav3 [m/s]extrememaxMind forces*Fw1x [kN]operationalFw1y [kN]operational2641,3Fw2x [kN]out of service0,0Fw2y [kN]out of service0,0Fw2y [kN]out of service0,0	pundary conditions gid structure, Tow equal amount of the cover of the structure to the structure, Tow the s	s: ers absorb wind	Y5 Y5 Y5 Y5 Y5 Y1 Y4 Y4	General loa Moment on Mw-x Mw-y Additional l Rwx Rwy Horizontal l Fx Fy Correction f	ds foundation of (x-direction) (y-direction) oad effect du (x-direction) (y-direction) oad on found (x-direction) (y-direction) factor per lin for	Per foundation due to wind Operational 56 309 de to wind Operational 2 80 dation due to o Operational 1 7 me due to CoW	Out of service 0 0 Out of service 0 0 wind Out of service 0 0 0 0	Extreme 0 0 Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points Height starterbeam 2 [t] S [mm] Height jacking beams No. Layers Weight tower type 2 [t] Weight tower type 2 [t] Missalligment misalignment factor height [m/m] misalignment factor width [m/m] Maximum Load per Jacking Point	47730 3535 46000 4 25 2050 22000 36 192 25 2050 22000 36 192 0,010 0,001	Wind LoadsBoEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1352q1 [N/m2]operationalq2 [N/m2]out of service1352Corresponding windspeedsv1 [m/s]operational16v2 [m/s]out of servicenav3 [m/s]extremeextremenaWind forces*Fw1x [kN]Fw1x [kN]operationalFw2x [kN]out of service0,0Fw2y [kN]out of service00,0Fw2x [kN]out of service00,0Fw2x [kN]out of service00,0Fw3x [kN]extreme00,0	pundary conditions gid structure, Tow equal amount of $\frac{1}{2}$	s: ers absorb wind	Y5 Y5 Y1 Y4 Y2 Y1 Y1 Y4	General loa Moment on Mw-x Mw-y Additional l Rwx Rwy Horizontal l Fx Fy Correction f	ds foundation of (x-direction) (y-direction) oad effect du (x-direction) (y-direction) oad on found (x-direction) (y-direction) (y-direction) factor per lin for A	Per foundation due to wind Operational 56 309 de to wind Operational 2 80 dation due to o Operational 1 7 he due to CoW	Out of service 0 0 Out of service 0 0 wind Out of service 0 0 0 vind 0 0	Extreme 0 0 Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points Height starterbeam 2 [t] S [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] Height jacking beams No. Layers Weight tower type 2 [t] Missalligment misalignment factor height [m/m] misalignment factor width [m/m] Maximum Load per Jacking Point Max load operational [t]	47730 3535 46000 4 25 2050 22000 36 192 25 2050 22000 36 192 0,010 0,001 1300	Wind LoadsBoEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1352q1 [N/m2]operationalq2 [N/m2]out of service13521352Corresponding windspeedsv1 [m/s]operational16v2 [m/s]out of servicenav3 [m/s]extremeextremenaWind forces*Fw1x [kN]operationalFw2x [kN]out of service0,0Fw2y [kN]out of service0Fw3x [kN]extreme0,0Fw3y [kN]extreme00,0Fw3y [kN]extreme00,0	pundary conditions gid structure, Tow equal amount of the second structu	s: ers absorb wind	Y5 Y5 Y5 Y5 Y5 Y1 Y4 Y4	General loa Moment on Mw-x Mw-y Additional l Rwx Rwy Horizontal l Fx Fy Correction f line percentage	ds foundation of (x-direction) (y-direction) oad effect du (x-direction) (y-direction) oad on found (x-direction) (y-direction) factor per lin for A 100%	Per foundation due to wind Operational 56 309 de to wind Operational 2 80 dation due to o Operational 1 7 he due to CoW Fwx D 100%	Out of service 0 0 0 0 0 0 0 0 0 0 0 0 0	Extreme 0 0 Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points Height starterbeam 2 [t] 4 points Height starterbeam 2 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 2 [t] Missalligment misalignment factor height [m/m] misalignment factor width [m/m] Maximum Load per Jacking Point Max load out-of-service [t]	47730 3535 46000 4 25 2050 22000 36 192 25 2050 22000 36 192 0,010 0,010 0,001 1300 1500	Wind LoadsBoEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1352q1 [N/m2]operationalq2 [N/m2]out of service13521352Corresponding windspeedsv1 [m/s]operationalv2 [m/s]out of servicemax16v2 [m/s]out of servicemax16v3 [m/s]extrememax0.0Fw1x [kN]operationalfw2x [kN]out of service00.0Fw2x [kN]out of service00.0Fw3x [kN]extreme00.0Fw3y [kN]extreme00.0Gravity acceleration*/max	pundary conditions gid structure, Tow equal amount of the equal am	s: ers absorb wind	Y5 Y5 Y1 Y1 Y1 Y4 Coo Cow Cow Coo Y1 Y1 Y4 Coo Cow Cow Cow Cow Cow Cow Cow	General loa Moment on Mw-x Mw-y Additional l Rwx Rwy Horizontal l Fx Fy Correction f line percentage	ds foundation of (x-direction) (y-direction) oad effect du (x-direction) (y-direction) oad on found (x-direction) (y-direction) (y-direction) factor per lin for A 100%	Per foundation due to wind Operational 56 309 de to wind Operational 2 80 dation due to o Operational 1 7 he due to CoW	Out of service 0 0 Out of service 0 0 wind Out of service 0 0 vind 0 vind 0 0 vind 0 0 vind 0 0 vind 0 0 0 vind 0 0 0 0 0 0 0 0 0 0 0 0 0	Extreme 0 0 Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t] [t]

\\ale.local\fileshare\Data\NL\Dept\Projects\Projects AB\AB01xxxx\AB016101-Aker Solutions-Bjørnafjordprosjektet\Calculations\Technical\CAL-AB016101-001-A Feasibility study\CAL-AB016101-003-A MJS Stability without strand jacks Page 1 of 7 Copyright ALE Heavylift

				Project : Jacking of B	ridge Secti	ons			No:	AB01610	1		Dept :	ALE Heavylift		
A	LE 🖊	-	Proje	ct Title : Bjørnafjord F	Prosjektet					•			Initials :	RM		
				Mega Jack S	ystem Gen	eral loadin	gs - withou	It vertical s	strand jacks				Date :	15/aug/19		
SMARTE	ER, SAFER, STRO	INGER		Jacking to 46	Jacking to 46 mtrs.								Rev :	Α		based on rev 2.
la akina n	aint D4 / D4															
Jacking p	officer of the second															
buen poin				Maxima per .	Jacking Po	int										
	Type of towe	er	1	Max. vertical	load		303	[t]		· .			Correction fa	actors Jacking	point P1 / B1	T
	Number of jac	cks	4	Max. foundati	Max. foundation pressure 63 [t/m ²]		In	iterface to o	аеск		for Fwx	for Fwy				
S	tability base x-di	rection	5000	Max horizonta	Max horizontal load in x-direction 0 [t]				X	5000	2,00	line	Α	2]	
S	tability base y-di	rection	2500	Max horizonta	Max horizontal load in y-direction 0 [t]				Y	2500	2,00	percentage	100%	100%]	
N	/lin Jacks/stabilit	y point	2													
			<u> </u>													
Noments	[tm]	(correc	cted)	Maximum Ve	rtical Load											
Aisalignm	ient	Mm-x	Mm-y		Overall maximum jacking point foundation loads								Maximum single jackload			
		252	258	Wind			Loads [t]			Mome	ent [tm]		(Wind X-	direction)	(Wind Y-c	lirection)
Wind		Mw-x	Mw-y		Fv1	Fm	Rwx	Rwy	Max	Mx	My		Max	Min	Max	Min
	Operational	56	309	Operational	610	192	2	80	883	280	413		229	173	303	138
	Out of service	0	0	Out of service	610	192	0	0	802	252	258		226	175	252	149
	Extreme	0	0	Extreme	610	192	0	0	802	252	258		226	175	252	149
	Operational Out of service Extreme	56 0 0	309 0 0	Operational Out of service Extreme	610 610 610	192 192 192	2 0 0	80 0 0	883 802 802	280 252 252	413 258 258		229 226 226	173 175 175	303 252 252	
				Minimum Ve	rtical Load											
Misalignm	ient	Mm-x	Mm-y		Ove	rall minim	um jacking	point four	dation load	s				Minimum sin	gle jackload	
č	184 188 Wind Loads [t]						Mome	ent [tm]	(Wind X-direc		direction)	(Wind Y-c	lirection)			
			<u> </u>		Fv1	Fm	Rwx	Rwy	Min	Mx	Му		Max	Min	Max	Min
				Operational	444	192	2	80	556	212	342		180	137	207	70
				Out of service	444	192	0	0	636	184	188		177	141	197	121

Jacking point P1	/ B1 Maximum	n single jackloa	b	(Wind X-direction)				
Operation		173	173		804			
		229	229					
Out of service		175	175		802			
		226	226					
Extreme		175	175		802			
		226	226					

Extreme

Jacking point P1 / B1	Minimum single jackload		(Wind X-direction)			
Operation	137	137		634		
	180	180				
Out of service	141	141		636		
	177	177				
Extreme	141	141		636		
	177	177				

Jacking point P1 / B1	Maximum single jackload
-----------------------	-------------------------

(Wind Y-direction)

. 01		0,		1	/	
Operation		138	303			883
		138	303			
Out of service		149	252			802
		149	252			
Extreme		149	252			802
		149	252			Ī

Jacking point P1 / B1	Minimum single jackload
-----------------------	-------------------------

(Wind Y-direction)	
--------------------	--

Operation		70	207		556
		70	207		
Out of service		121	197		636
		121	197		
Extreme		121	197		636
		121	197		

ALE 🔥	Project : Jacking of Bridge Sections						No:	AB01610 ⁻	1		Dept :	ALE Heavylift			
		Project	Title : Bjørnafjord P	e Bjørnafjord Prosjektet									RM		
			Mega Jack S	lega Jack System General loadings - without vertical strand jacks									15/aug/19		
SMARTER, SAFER, STRON	NGER		Jacking to 46	Jacking to 46 mtrs.								Rev :	Α		based on rev 2.4
lacking point P2 / P4															
Jack point/foundation															
P			Maxima per J	Jacking Poi	nt										
Type of tower	r	1	Max. vertical I	oad		303	[t]					Correction f	actors Jacking	point P2 / B4	Т
Number of jack	ks	4	Max. foundati	Max. foundation pressure			[t/m²]		In	iterrace to	аеск		for Fwx	for Fwy	
Stability base x-dire	ection	5000	Max horizontal load in x-direction			0	[t]		Х	5000	2,00	line	D	2	1
Stability base y-dire	ection	2500	Max horizontal load in y-direction		0	[t]		Y	2500	2,00	percentage	100%	100%	1	
Min Jacks/stability	point	2												- -	
		<u> </u>													
Noments [tm]	(correc	ted)	Maximum Ve	rtical Load											
<i>lisalignment</i>	Mars as				Overall maximum jacking point foundation loads										
<i>I</i> isalignment	ivim-x	Mm-y		Over	all maximu	ım jacking	point foun	dation load	s		Ţ		Maximum sin	ngle jackload	
Misalignment	252	Mm-y 258	Wind	Over	all maximu	im jacking Loads [t]	point foun	dation load	s Mome	ent [tm]	1	(Wind X-	Maximum sin direction)	ngle jackload (Wind Y-o	direction)
/isalignment	252 Mw-x	Mm-y 258 Mw-y	Wind	Over Fv2	Fm	Im jacking Loads [t] Rwx	point foun Rwy	dation load Max	s Mome Mx	ent [tm] My		(Wind X- Max	Maximum sin direction) Min	ngle jackload (Wind Y-o Max	direction) Min
Aisalignment	Mm-x 252 Mw-x 56	Mm-y 258 Mw-y 309	Wind Operational	Over Fv2 610	Fm 192	Im jacking Loads [t] Rwx 2	point foun Rwy 80	dation load Max 883	s Mome Mx 280	ent [tm] My 413		(Wind X- Max 229	Maximum sin direction) Min 173	igle jackload (Wind Y-o Max 303	direction) Min 138
Visalignment Vind Operational Out of service	Mm-x 252 Mw-x 56 0	Mm-y 258 Mw-y 309 0	Wind Operational Out of service	Over Fv2 610 610	Fm Fm 192 192	Im jacking Loads [t] Rwx 2 0	Point foun Rwy 80 0	dation load Max 883 802	s Mome Mx 280 252	ent [tm] My 413 258		(Wind X- Max 229 226	Maximum sin direction) Min 173 175	gle jackload (Wind Y-o Max 303 252	direction) Min 138 149

Jacking point P2 / E	Maximum single jackloa	ld	(Wind X-direction)			
Operation	17:	3 173		804		
	229	9 229				
Out of service	17	5 175		802		
	220	6 226				
Extreme	175	5 175		802		
	220	6 226				

Extreme

Jacking point P2 /	34 Minimum single jackload		(Wind X-direction)	
Operation	137	137		634
	180	180		
Out of service	141	141		636
	177	177		
Extreme	141	141		636
	177	177		

Jacking	point P2	/ B4	Maximum	sinale	iackload
Jacking		104	IVIAXIIIIUIII	Siliule	lackiuau

(Wind Y-direction)

		<u> </u>		1	/	
Operation		138	303			883
		138	303			
Out of service		149	252			802
		149	252			
Extreme		149	252			802
		149	252			r.

Jacking point P2 / B4	Minimum single jackload
-----------------------	-------------------------

(Wind	Y-direction)	
-------	--------------	--

Operation		70	207		556
		70	207		
Out of service		121	197		636
		121	197		
Extreme		121	197		636
		121	197		

Long Sec.				oject : Jacking of B	: Jacking of Bridge Sections No: AB016101								Dept :	ALE Heavylift			
AL	E 🖊	-	Project	Title : Bjørnafjord F	: Bjørnafjord Prosjektet								Initials :	RM			
				Mega Jack S	ystem Gen	eral loading	gs - withou	it vertical s	strand jacks	1			Date :	15/aug/19			
SMARTER,	SAFER, STRO	INGER		Jacking to 46	Jacking to 46 mtrs.								Rev :	Α		based on rev 2.4	
Jacking poin	1t P3 / G4																
ласк роппло	bundation			Maxima nan	laakina Dai												
	Type of tour	or .	1	Maxima per	Jacking Pol	Int	202	[+]		<u> </u>			Correction fo	otore locking	point P2 / C4	Т	
•	Type of lowe			Max. Vertical	load		303	[L]		In	terface to o	deck	Correction la		for Fire	-	
	ility booo y di	raction	4	Max. Ioundau Max barizante	Max. loundation pressure 05 [t/lin]					5000	2.00	line			-		
Stabi	ility base x-di	rection	3000	Max horizonta	Max horizontal load in x-direction 0 [t]				X	3000	2,00		100%	1000/	-		
Stabl	looko/stobilit		2500	Max nonzonia	ai ioad in y-d	lifection	0	լւյ		T	2500	2,00	percentage	100%	100%		
	Jacks/stadiiit	y point	Z														
Vomonte Itm	-1	(correc	ted)	Maximum Va	rtical Load												
Visalianment		Mm-x	Mm-v		Overall maximum jacking point foundation loads									Maximum single jackload			
moungriment	•	252	258	Wind	Wind Loads [t]							Moment [tm]			(Wind X-direction) (Wind Y-dir		
Nind		Mw-x	Mw-v	Wind	Ev3	Fm	Rwx	Rwy	Max	Mx	Mv		Max	Min	Max	Min	
	Operational	56	309	Operational	610	192	2	80	883	280	413		229	173	303	138	
	Out of service	0	0	Out of service	610	192	0	0	802	252	258		226	175	252	149	
	Extreme	0	0	Extreme	610	192	0	0	802	252	258		226	175	252	149	
I:		~			0.0		Ĩ										
				Minimum Ve	rtical Load												
Misalignment		Mm-x	Mm-y		Ove	rall minimu	m jacking	point foun	dation load	s				Minimum sin	gle jackload		
•		184	188	Wind			Loads [t]	-		Mome	ent [tm]		(Wind X-direction)		(Wind Y-o	lirection)	
	I		· · ·		Fv3	Fm	Rwx	Rwy	Min	Mx	Му		Max	Min	Max	Min	
				Operational	444	192	2	80	556	212	342		180	137	207	70	
				Out of service	444	192	0	0	636	184	188		177	141	197	121	
				Extromo	111	100	0	0	626	101	100		177	111	107	101	

Jacking point P3 / G	Maximum single jackloa	im single jackload (Wind X-dire				
Operation	17:	3 173		804		
	22	9 229				
Out of service	17	5 175		802		
	22	6 226				
Extreme	17	5 175		802		
	22	6 226				

.... ...

Jacking point P3 / G4	Minimum single jackload		(Wind X-direction)		
Operation	137	137		634	
	180	180			
Out of service	141	141		636	
	177	177			
Extreme	141	141		636	
	177	177			

Jacking point P3 / G4 - Maximum single lack	load	
---	------	--

(Wind Y-direction)

- 31		3 3		1	/	
Operation		138	303			883
		138	303			
Out of service		149	252			802
		149	252			
Extreme		149	252			802
		149	252			Ī

Jacking point P3 / G4	Minimum single jackload
-----------------------	-------------------------

(Wind Y-direction)

U 1					
Operation		70	207		556
		70	207		
Out of service		121	197		636
		121	197		
Extreme		121	197		636
		121	197		

			Pr	oject : Jacking of B	ridge Section	ons			No:	AB016101	: AB016101			ALE Heavylift		
AL	EA		Project	Title : Bjørnafjord F	Prosjektet								Initials :	RM		
				Mega Jack S	Mega Jack System General loadings - without vertical strand jacks						Date :	15/aug/19				
SMARTER, S	SAFER, STROM	NGER		Jacking to 40	6 mtrs.								Rev :	Α		based on rev 2.4
Jacking point	t P4 / G1															
Jack point/fou	undation			M												
	Type of tower	r	1	Max vertical	Jacking Pol	int	303	[+]					Correction fa	actors lacking	noint P/ / G1	Т
Ni	umber of jack	r ks	1	Max foundati	on pressure		505	[L] [t/m²]		In	terface to c	leck	Correction la	for Fwy	for Fwy	-
Stabili	litv base x-dir	rection	5000	Max horizonta	al load in x-c	lirection	0	[0111] [t]		x	5000	2.00	line	A	7	1
Stabili	lity base y-dir	rection	2500	Max horizonta	al load in y-c	lirection	0	[t]		Y	2500	2,00	percentage	100%	100%	1
Min Ja	lacks/stabilitv	v point	2		,							,	1 3			1
	·····,	F														
Moments [tm]	1	(correc	ted)	Maximum Ve	rtical Load											
/isalignment	-	Mm-x	Mm-y		Over	rall maximu	um jacking	point foun	dation load	s				Maximum sing	gle jackload	
		252	258	Wind			Loads [t]			Mome	ent [tm]		(Wind X-	direction)	(Wind Y-c	lirection)
		Mw-x	Mw-v		Fv4	Fm	Rwx	Rwy	Max	Mx	Му		Max	Min	Max	Min
Vind						400	2	80	883	280	413		229	173	303	138
Vind	Operational	56	309	Operational	610	192	2									
Vind O	Dperational Dut of service	56 0	309 0	Operational Out of service	610 610	192	0	0	802	252	258		226	175	252	149
Vind O E	Dperational Dut of service Extreme	56 0 0	309 0 0	Operational Out of service Extreme	610 610 610	192 192 192	0	0 0	802 802	252 252	258 258		226 226	175 175	252 252	149 149
Vind O E	Dperational Dut of service Extreme	56 0 0	309 0 0	Operational Out of service Extreme	610 610 610	192 192 192	0	0	802 802	252 252	258 258		226 226	175 175	252 252	149 149
Vind O E	Dperational Dut of service Extreme	56 0 0	309 0 0	Operational Out of service Extreme Minimum Ve	610 610 610 rtical Load	192 192 192	0	0	802 802	252 252	258 258		226 226	175 175	252 252	149 149
Vind 0 E Visalignment	Dperational Dut of service Extreme	56 0 0 Mm-x	309 0 0 Mm-y	Operational Out of service Extreme Minimum Ve	610 610 610 rtical Load Ove	192 192 192 rall minimu	0 0 um jacking	0 0 point found	802 802 dation loads	252 252 s	258 258		226 226	175 175 Minimum sing	252 252 gle jackload	149 149
Wind O E Misalignment	Derational Dut of service Extreme	56 0 0 Mm-x 184	309 0 0 Mm-y 188	Operational Out of service Extreme Minimum Ve Wind	610 610 610 rtical Load Ove	192 192 192	0 0 um jacking Loads [t]	0 0 point found	802 802 dation load	252 252 s Mome	258 258		226 226 (Wind X-	175 175 Minimum sing direction)	252 252 gle jackload (Wind Y-c	149 149
Wind O E Misalignment	Dperational Dut of service Extreme	56 0 0 Mm-x 184	309 0 0 Mm-y 188	Operational Out of service Extreme Minimum Ve Wind	610 610 610 rtical Load Ove	192 192 192 rall minimu	0 0 um jacking Loads [t] Rwx	0 0 point found Rwy	802 802 dation load	252 252 s Mome Mx	258 258 ent [tm] My		226 226 (Wind X- Max	175 175 Minimum sing direction) Min	252 252 gle jackload (Wind Y-c Max	149 149 lirection) Min
Wind O E Misalignment	Dperational Dut of service Extreme	56 0 0 <u>Mm-x</u> 184	309 0 0 Mm-y 188	Operational Out of service Extreme Minimum Ve Wind Operational	610 610 610 rtical Load Ove Fv4 444	192 192 192 rall minimu Fm 192	0 0 um jacking Loads [t] Rwx 2	0 0 point found Rwy 80	802 802 dation load: Min 556	252 252 s Mome Mx 212	258 258 ent [tm] My 342		226 226 (Wind X- Max 180	175 175 Minimum sing direction) Min 137	252 252 gle jackload (Wind Y-c Max 207	149 149 lirection) Min 70
Wind O E Misalignment	Dperational Dut of service Extreme	56 0 0 <u>Mm-x</u> 184	309 0 0 Mm-y 188	Operational Out of service Extreme Minimum Ve Wind Operational Out of service	610 610 610 rtical Load Ove Fv4 444 444	192 192 192 rall minimu Fm 192 192	0 0 Loads [t] Rwx 2 0	0 0 point found Rwy 80 0	802 802 dation load Min 556 636	252 252 s Mome Mx 212 184	258 258 ent [tm] My 342 188		226 226 (Wind X- Max 180 177	175 175 Minimum sing direction) Min 137 141	252 252 gle jackload (Wind Y-c Max 207 197	149 149 149 lirection) Min 70 121

Jacking point P	1	(Wind X-dire	ection)			
Operation		173	173			804
		229	229			
Out of service		175	175			802
		226	226			
Extreme		175	175			802
		226	226			

Jacking point P4 / G1	Minimum single jackload		(Wind X-direction)		
Operation	137	137		634	
	180	180			
Out of service	141	141		636	
	177	177			
Extreme	141	141		636	
	177	177			

Jacking point P4 / G1	Maximum	sinale	iackload
-----------------------	---------	--------	----------

(Wind Y-direction)

		<u> </u>		1	/	
Operation		138	303			883
		138	303			
Out of service		149	252			802
		149	252			
Extreme		149	252			802
		149	252			r.

Jacking point P4 / G1	Minimum single jackload

(Wind Y-direction)

Operation		70	207		556
		70	207		
Out of service		121	197		636
		121	197		
Extreme		121	197		636
		121	197		

\\ale.local\fileshare\Data\NL\Dept\Projects\Projects AB\AB01xxxx\AB016101-Aker Solutions-Bjørnafjordprosjektet\Calculations\Technical\CAL-AB016101-001-A Feasibility study\CAL-AB016101-003-A MJS Stability without strand jacks Copyright ALE Heavylift

	Project : Jacking of Bridge Sect	tions No: AB016101	Dept : ALE Heavylift
ALE A	Project Title : Bjørnafjord Prosjektet		Initials : RM
	Mega Jack System Ger	neral loadings - without vertical strand jacks	Date : 15/aug/19
SMARTER, SAFER, STRONGER	Jacking to 46 mtrs.		Rev: A based on rev 2.4
Summary		P1 P2 P3 P4 Extreme	Load on foundation, COG in centre envelope, no wind
		Rv1 Rv2 Rv3 Rv4 Rv	Point P2 Point P3
	Operation Maximum	303 303 303 303 303	4 jacks 179 4 jacks 179
	Minimum	70 70 70 70 70	total 717 total 717
	Out of service Maximum	252 252 252 252 252	Total load incl weight towers 2868
	Minimum	121 121 121 121 121	Point P1 Point P4
	Extreme Maximum	<u> </u>	4 jacks 179 4 jacks 179
		10 10 10 10	
		looking point D2 / D4	looking point P2 / P4
Operation	Direction	Out of service	Jacking point P2 / B4 Jacking point P3 / G4
	Operation		
229 173	229 173	226 175 226 175	226 175 226 175
229 173	229 173	226 175 226 175	226 175 226 175
total 804	total 804	total 802 total 802	total 802 total 802
Operation Wi	nd 16 m/s	Out of service Wind na	Extreme Wind na
WIND IN X-DI	IRECTION	WIND IN X-DIRECTION	WIND IN X-DIRECTION
Jacking point P1 / B1	Jacking point P4 / G1	Jacking point P1 / B1 Jacking point P4 / G1	Jacking point P1 / B1 Jacking point P4 / G1
Operation	Operation	Out of service Out of service	Extreme Extreme
220 173	220 173	226 175 226 175	226 175 226 175
229 173	229 173	226 175 226 175	226 175 226 175
total 804	total 804	total 802 total 802	total 802 total 802
Jacking point P2 / B4	Jacking point P3 / G4	Jacking point P2 / B4 Jacking point P3 / G4	Jacking point P2 / B4 Jacking point P3 / G4
Operation	Operation	Out of service Out of service	Extreme Extreme
138 138	138 138	149 149 149 149	149 149 149 149
303 303	303 303	252 252 252 252	252 252 252 252
883	883	802 802	802 802
Operation Wi	nd 16 m/s	Out of service Wind na	Extreme Wind na
WIND IN Y-DI	IRECTION	WIND IN Y-DIRECTION	WIND IN Y-DIRECTION
Jacking point P1 / B1	Jacking point P4 / G1	Jacking point P1 / B1 Jacking point P4 / G1	Jacking point P1 / B1 Jacking point P4 / G1
Operation	Operation	Out of service Out of service	Extreme Extreme
139 129	138 120		
303 303	303 303	252 252 252 252	252 252 252 252
883			
	883	802 802	802 802

APPENDIX F - MEGA JACK STABILITY CALCULATION - LC2 WITH 4X 200T STRAND JACK

		Project : Jacking of Bridge Sections		No: AB016101		Dept :	ALE Heavylift			
ALE A	Pro	oject Title : Bjørnafjord Prosjektet				Initials :	RM			
		Mega Jack System General loadings -	with vertical strand jack	s (4x 200t)		Date : 15/aug/19				
SMARTER, SAFER, STRONGER		Jacking to 46 mtrs.				Rev :	Α		based on rev 2.4	.4
	1		202							
Bridge geometries	0000	Vertical loads per jacking point [t]:	COG e	nvelope with load	ing on top of each jack	king point:				
Bridge weight [t]	2900	depending on the given envelope	0.40	700	040	040	ľ	700		-
vvlatn	00000		843	/88	816	816		788	84	+3
	60000			613	634	634	L	613	65	56
x2 [mm] to CoG	30000		P3	704	705	705	ľ	704	74	10
	0000		1 1 1 1 1 1 1 1 1 1	701	725	725		701	74	19
y1 [mm]	8000		Fwx 5 749	701	725	725	L	701	74	19
	4000			040	604	0.04	ľ	010	05	
Envelope	0000		656	613	634	634		613	60	00
x3 [mm]	2000		843	788	816	816	L	788	84	13
ys [mm]	1000	×2 X1			Nie werden en wiere					
	450000					g of corners	ľ			
x4 [mm]	150000				B4	G4				
y4 [mm]	31600	P1	P2 P3 P4	Extreme	B1	G1	l			
	3500	B1	B4 G4 G ⁴							
	00000	FV1	FV2 FV3 FV	4 FV						
x5 [mm]	30000	Maximum 843	843 843 843	3 843						
y5 [mm]	4000	Minimum 613	613 613 613	3 613			Weights / Loa	ads are in metri	c tonnes [t]	tj
z2 [mm]	1750									
z3 [mm]	47750									
Jacking geometries	0505						<u> </u>			
Jacking geometries Footstructure height [mm]	3535	Wind Loads Bou	undary conditions:		General loa	ids	Per foundati	on		
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height	3535 46000	Wind Loads Bot Estimation of the surfaces Rig	undary conditions: id structure, Towers abso	rb	General loa Moment on	ids foundation di	Per foundation	on		
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#]	3535 46000 4	Wind LoadsBotEstimation of the surfacesRigAside [m2]111111111	undary conditions: id structure, Towers abso equal amount of wind	rb	General loa Moment on	ids foundation du	Per foundation ue to wind Operational	on Out of service	Extreme	
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1	3535 46000 4	Wind LoadsBotEstimation of the surfacesRigAside [m2]111Afront [m2]525Fw	undary conditions: id structure, Towers abso equal amount of wind	rb	General loa Moment on Mw-x	ids foundation du (x-direction)	Per foundation ue to wind Operational	on Out of service	Extreme 0	[tm]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points	3535 46000 4 25	Wind LoadsBouEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00	undary conditions: id structure, Towers abso equal amount of wind	rb	General loa Moment on Mw-x Mw-y	nds foundation du (x-direction) (y-direction)	Per foundation ue to wind Operational 56 309	on Out of service 0 0	Extreme 0 0	[tm] [tm]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm]	3535 46000 4 25 2050	Wind LoadsBouEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather conditionImage: second secon	undary conditions: id structure, Towers abso equal amount of wind	rb	General loa Moment on Mw-x Mw-y	ids foundation du (x-direction) (y-direction)	Per foundation ue to wind Operational 56 309	on Out of service 0 0	Extreme 0 0	[tm] [tm]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams	3535 46000 4 25 2050 22000	Wind LoadsBouEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1q1 [N/m2]operational237	undary conditions: id structure, Towers abso equal amount of wind	rb	General loa Moment on Mw-x Mw-y Additional I	ids foundation du (x-direction) (y-direction)	Per foundati ue to wind Operational 56 309 e to wind	on Out of service 0 0	Extreme 0 0	[tm] [tm]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers	3535 46000 4 25 2050 22000 36	Wind LoadsBouEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition41 [N/m2]q1 [N/m2]operationalq2 [N/m2]out of service1352	undary conditions: id structure, Towers abso equal amount of wind	rb	General loa Moment on Mw-x Mw-y Additional I	ds foundation du (x-direction) (y-direction) load effect due	Per foundati ue to wind Operational 56 309 e to wind Operational	Out of service 0 0 0	Extreme 0 0 Extreme	[tm] [tm]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t]	3535 46000 4 25 2050 22000 36 192	Wind LoadsBouEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1,00q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extreme1352	undary conditions: id structure, Towers abso equal amount of wind	rb	General loa Moment on Mw-x Mw-y Additional I	ds foundation du (x-direction) (y-direction) load effect due (x-direction)	Per foundati ue to wind Operational 56 309 e to wind Operational 2	on Out of service 0 0 Out of service 0	Extreme 0 0 Extreme 0	[tm] [tm]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2	3535 46000 4 25 2050 22000 36 192	Wind LoadsBouEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremecorresponding windspeeds	undary conditions: id structure, Towers abso equal amount of wind	rb	General loa Moment on Mw-x Mw-y Additional I	ds foundation du (x-direction) (y-direction) load effect due (x-direction) (y-direction)	Per foundati ue to wind Operational 56 309 e to wind Operational 2 80	on Out of service 0 0 0 Out of service 0 0	Extreme 0 0 Extreme 0 0	[tm] [tm] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points	3535 46000 4 25 2050 22000 36 192 25	Wind LoadsBouEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1,00q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]operational16	undary conditions: id structure, Towers abso equal amount of wind C_{0}^{0}	rb	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy	ds foundation du (x-direction) (y-direction) load effect due (x-direction) (y-direction)	Per foundation ue to wind Operational 56 309 e to wind Operational 2 80	on Out of service 0 0 Out of service 0 0	Extreme 0 0 0 Extreme 0 0	[tm] [tm] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points Height starterbeam 2 [mm]	3535 46000 4 25 2050 22000 36 192 25 2050	Wind LoadsBouEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1,00q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]extremecorresponding windspeedsv1 [m/s]operational16v2 [m/s]out of servicena	undary conditions: id structure, Towers abso equal amount of wind $\begin{pmatrix} & & \\ & & \\ & & \\ & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ &$	rb	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy Horizontal I	ids foundation du (x-direction) (y-direction) load effect due (x-direction) (y-direction)	Per foundati ue to wind Operational 56 309 e to wind Operational 2 80 ation due to	on Out of service 0 0 Out of service 0 0 wind	Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points Height starterbeam 2 [tmm] z5 [mm] Height jacking beams	3535 46000 4 25 2050 22000 36 192 25 2050 22000 22000	Wind LoadsBouEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition110q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]operational1352Corresponding windspeedsv1 [m/s]operational16v2 [m/s]out of servicenav3 [m/s]extremena	undary conditions: id structure, Towers abso equal amount of wind $\begin{pmatrix} & & \\ & & \\ & & \\ & & \\ & & & & \\ & & & \\ & &$	rb	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy Horizontal I	ids foundation du (x-direction) (y-direction) load effect due (x-direction) (y-direction)	Per foundati ue to wind Operational 56 309 e to wind Operational 2 80 ation due to Operational	Out of service 0 0 Out of service 0 0 wind Out of service	Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points Height starterbeam 2 [tmm] z5 [mm] Height jacking beams No. Layers Woight starterbeam 2 [tmm] z5 [mm] Height jacking beams No. Layers	3535 46000 4 25 2050 22000 36 192 25 2050 22000 36	Wind LoadsBouEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition1,00q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]operational16v2 [m/s]v2 [m/s]out of servicenav3 [m/s]wind forces*	undary conditions: id structure, Towers absord equal amount of wind $\begin{pmatrix} & & \\ & & \\ & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\$	rb	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy Horizontal I	ids foundation du (x-direction) (y-direction) load effect due (x-direction) (y-direction) load on foundation (x-direction)	Per foundati ue to wind Operational 56 309 e to wind Operational 2 80 ation due to Operational 1	Out of service 0 0 0 Out of service 0 0 wind Out of service 0	Extreme 0 0 Extreme 0 0 Extreme 0	[tm] [tm] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points Height starterbeam 2 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 2 [t]	3535 46000 4 25 2050 22000 36 192 25 2050 22000 36 192	Wind LoadsBouEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition110q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]operational16v2 [m/s]out of servicenav3 [m/s]extremenaWind forces*Fw1x [kN]Fw1x [kN]operational480.2%	undary conditions: id structure, Towers abso equal amount of wind	rb	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy Horizontal I Fx Fy	ids foundation du (x-direction) (y-direction) load effect due (x-direction) (y-direction) load on founda (x-direction) (y-direction)	Per foundati ue to wind Operational 56 309 e to wind Operational 2 80 ation due to Operational 1 7	on Out of service 0 0 Out of service 0 0 wind Out of service 0 0 0	Extreme 0 0 Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points Height starterbeam 2 [mm] z5 [mm] Height jacking beams No. Layers Weight tower type 2 [t] Missalligment	3535 46000 4 25 2050 22000 36 192 25 2050 22000 36 192	Wind LoadsBouEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition111q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]extremev1 [m/s]operationalv2 [m/s]out of servicenaVind forces*Fw1x [kN]operational480.2%Fw1y [kN]operational2640.9%	undary conditions: id structure, Towers absored equal amount of wind	rb	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy Horizontal I Fx Fy	ids foundation du (x-direction) (y-direction) load effect due (x-direction) (y-direction) load on foundation (x-direction) (y-direction)	Per foundati ue to wind Operational 56 309 e to wind Operational 2 80 ation due to 0perational 1 7	on Out of service 0 0 Out of service 0 0 wind Out of service 0 0	Extreme 0 0 Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [tm] z5 [mm] Height jacking beams No. Layers Weight starterbeam 2 [t] 4 points Height tower type 2 [t] 1000000000000000000000000000000000000	3535 46000 4 25 2050 22000 36 192 25 2050 22000 36 192 0,010	Wind LoadsBouEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition111q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]operationalv1 [m/s]operationalv3 [m/s]extrememaxmaxWind forces*Fw1x [kN]Fw1x [kN]operationalq2 [k]0.0%Fw2x [kN]out of service0 0.0%	undary conditions: id structure, Towers absored equal amount of wind	rb	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy Horizontal I Fx Fy Correction	ids foundation du (x-direction) (y-direction) load effect due (x-direction) (y-direction) load on founda (x-direction) (y-direction) (y-direction)	Per foundati ue to wind Operational 56 309 e to wind Operational 2 80 ation due to 0perational 1 7 e due to CoW	on Out of service 0 0 Out of service 0 0 wind Out of service 0 0	Extreme 0 0 Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight starterbeam 2 [t] 4 points Height tower type 1 [t] 5 [mm] Weight tower type 2 [t] 4 points No. Layers Weight tower type 2 [t] Missalligment misalignment factor height [m/m] misalignment factor width [m/m] 1 (m/m)	3535 46000 4 25 2050 22000 36 192 25 2050 22000 36 192 0,010 0,001	Wind LoadsBouEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition111q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]extremev1 [m/s]operationalv3 [m/s]extremewind forces*Fw1x [kN]operationalFw2x [kN]out of service0,0%Fw2y [kN]out of service0,0%	undary conditions: id structure, Towers absor- equal amount of wind $ \begin{array}{c} $	rb	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy Horizontal I Fx Fy Correction	Ids foundation du (x-direction) (y-direction) load effect due (x-direction) (y-direction) load on found (x-direction) (y-direction) factor per line	Per foundati ue to wind Operational 56 309 e to wind Operational 2 80 ation due to Operational 1 7 e due to CoW	on Out of service 0 0 Out of service 0 0 wind Out of service 0 0 V	Extreme 0 0 Extreme 0 0 0	[tm] [tm] (t] (t] (t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Height jacking beams No. Layers Weight starterbeam 2 [t] 4 points Height starterbeam 2 [t] Tower type 2 Weight tower type 2 [t] Missalligment misalignment factor height [m/m] misalignment factor width [m/m] Maximum Load per Jacking Point	3535 46000 4 25 2050 22000 36 192 25 2050 22000 36 192 0,010 0,001	Wind LoadsBouEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition111q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]extremev1 [m/s]operationalv3 [m/s]extremewind forces*Fw1x [kN]operationalFw2x [kN]out of service0,0%Fw3x [kN]extreme0,0%	undary conditions: id structure, Towers abso equal amount of wind $ \begin{array}{c} $	rb	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy Horizontal I Fx Fy Correction	Ids foundation du (x-direction) (y-direction) load effect due (x-direction) (y-direction) load on found (x-direction) (y-direction) factor per line A	Per foundati ue to wind Operational 56 309 e to wind Operational 2 80 ation due to Operational 1 7 e due to CoW Fwx D	on Out of service 0 0 Out of service 0 0 wind Out of service 0 0 V for F 2	Extreme 0 0 Extreme 0 0 Extreme 0 0 	[tm] [tm] [t] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [mm] z5 [mm] Z5 [mm] Height jacking beams No. Layers Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] Weight starterbeam 2 [t] 4 points Height starterbeam 2 [t] 4 points Height starterbeam 2 [t] Missalligment misalignment factor height [m/m] misalignment factor width [m/m] Maxinum Load per Jacking Point Max load operational [t]	3535 46000 4 25 2050 22000 36 192 25 2050 22000 36 192 0,010 0,001 0,001 1300	Wind LoadsBouEstimation of the surfacesRigAside [m2]111Afront [m2]525cw [-]1,00weather condition111q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]extremev1 [m/s]operationalv2 [m/s]out of servicemaxmaxWind forces*Fw1x [kN]operationalFw2x [kN]out of service0,0%Fw3x [kN]extreme0,0%Fw3y [kN]extreme0,0%Fw3y [kN]extreme0,0%Fw3y [kN]extreme0,0%Fw3y [kN]extreme0,0%Fw3y [kN]extreme0,0%Fw3y [kN]extreme0,0%Fw3y [kN]extreme0,0%Fw3y [kN]extreme0,0%Fw3y [kN]Fw1Fw3<	undary conditions: id structure, Towers abso equal amount of wind $ \begin{array}{c} $	rb	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy Horizontal I Fx Fy Correction	Ids foundation du (x-direction) (y-direction) load effect due (x-direction) (y-direction) load on found (x-direction) (y-direction) factor per line for A 100%	Per foundati ue to wind Operational 56 309 e to wind Operational 2 80 dation due to o Operational 1 7 e due to CoW Fwx D 100%	on Out of service 0 0 Out of service 0 0 wind Out of service 0 0 V for F 2 100%	Extreme 0 0 Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t] [t]
Jacking geometries Footstructure height [mm] z4 [mm] Jacking height Foundation points [#] Tower type 1 Tower type 1 Weight starterbeam 1 [t] 4 points Height starterbeam 1 [t] 4 points Height starterbeam 1 [t] 4 points Keight tower type 1 [t] Tower type 2 Weight tower type 1 [t] Tower type 2 Weight starterbeam 2 [t] 4 points Height starterbeam 2 [t] 4 points Height starterbeam 2 [t] Missalligment No. Layers Weight tower type 2 [t] Missalligment misalignment factor height [m/m] misalignment factor width [m/m] Maxinum Load per Jacking Point Max load out-of-service [t] Max load out-of-service [t]	3535 46000 4 25 2050 22000 36 192 25 2050 22000 36 192 0,010 0,001 0,001 1300 1500	Wind LoadsBouEstimation of the surfacesRigAside [m2]1111Afront [m2]525cw [-]1,00weather condition110q1 [N/m2]operationalq2 [N/m2]out of serviceq3 [N/m2]extremeq3 [N/m2]extremev1 [m/s]operationalv2 [m/s]out of servicemaxmaxWind forces*Fw1x [kN]operationalFw2x [kN]out of service0 0,0%Fw3x [kN]extreme0 0,0%Fw3y [kn]extreme0 0,0%Fravity acceleration	undary conditions: id structure, Towers abso equal amount of wind	rb Y_5 Y_5 Y_4 Y_4 Y_2 Y_2 Y_1 Y_4 Y_4 Y_2 Y_1 Y_4	General loa Moment on Mw-x Mw-y Additional I Rwx Rwy Horizontal I Fx Fy Correction iline percentage	Ids foundation du (x-direction) (y-direction) load effect due (x-direction) (y-direction) load on found (x-direction) (y-direction) factor per line A 100%	Per foundati ue to wind Operational 56 309 e to wind Operational 2 80 ation due to o Operational 1 7 e due to CoW Fwx D 100%	on Out of service 0 0 Out of service 0 0 wind Out of service 0 0 V for F 2 100%	Extreme 0 0 Extreme 0 0 Extreme 0 0	[tm] [tm] [t] [t] [t]

\\ale.local\fileshare\Data\NL\Dept\Projects\Projects AB\AB01xxxx\AB016101-Aker Solutions-Bjørnafjordprosjektet\Calculations\Technical\CAL-AB016101-001-A Feasibility study\CAL-AB016101-004-A MJS Stability including strand jacks

and the state	6			Project : Ja	acking of Br	ridge Sectio	ons			No:	AB01610	1		Dept :	ALE Heavylift		
ALE		-	Pro	ject Title : B	jørnafjord P	rosjektet								Initials :	RM		
				м	lega Jack S	ystem Gene	eral loadin	gs - with ve	ertical stra	nd jacks (4x	200t)			Date :	15/aug/19		
SMARTER, SA	AFER, STRO	NGER		Ja	acking to 46	6 mtrs.								Rev :	Α		based on rev 2.4
acking point I	P1 / B1																
ack point/four	ndation																
				м	laxima per J	Jacking Poi	nt										
T	ype of towe	r	1	М	lax. vertical l	oad		381	[t]				la ali	Correction f	actors Jacking	point P1 / B1	Ţ
Nu	mber of jac	ks	4	М	lax. foundation	on pressure		79	[t/m²]		in	terrace to c	IECK		for Fwx	for Fwy	
Stabilit	y base x-dir	rection	5000	М	lax horizonta	I load in x-d	irection	0	[t]		Х	5000	2,00	line	А	2	1
Stabilit	y base y-dir	rection	2500	М	lax horizonta	l load in y-d	irection	0	[t]		Y	2500	2,00	percentage	100%	100%	1
Min Ja	cks/stability	/ point	2														-
			• •														
loments [tm]		(correc	ted)	М	laximum Ve	rtical Load											
lisalignment		Mm-x	Mm-y			Over	all maxim	um jacking	point foun	dation load	s				Maximum sing	jle jackload	
		348	356	W	/ind			Loads [t]			Mome	ent [tm]		(Wind X-	direction)	(Wind Y-d	irection)
Vind		Mw-x	Mw-y			Fv1	Fm	Rwx	Rwy	Max	Mx	My		Max	Min	Max	Min
Op	perational	56	309	0	perational	843	192	2	80	1115	377	511		297	222	381	177
Ou	t of service	0	0	Ou	ut of service	843	192	0	0	1035	348	356		294	224	330	187
Ex	treme	0	0	E	xtreme	843	192	0	0	1035	348	356		294	224	330	187
			· ł	L										L	I		
				м	linimum Ver	rtical Load											
lisalignment		Mm-x	Mm-y	м	linimum Ver	rtical Load Over	all minimu	ım jacking	point foun	dation loads	s				Minimum sing	le jackload	_

Rwy

Min

Jacking point P1 / B1	Maximum single jackload		(Wind X-direction)			
Operation	222	222			1037	
	297	297				
Out of service	224	224			1035	
	294	294				
Extreme	224	224			1035	
	294	294				

Operational

Out of service

Extreme

Fv1

Fm

Rwx

Jacking point	P1 / B1	Minimum sir	ngle jackload		(Wind X-direction)				
Operation			173	173			803		
			229	229					
Out of service			176	176			805		
			227	227					
Extreme			176	176			805		
			227	227					

lacking point P1 /	R1	Maximum	single iackload	
Jacking doine $PT/$	ы	waximum	sindle lackload	

Му

Мx

(Wind Y-direction)

Min

Max

Min

- 31		5 5		1	/	
Operation		177	381			1115
		177	381			
Out of service		187	330			1035
		187	330			
Extreme		187	330			1035
		187	330			

Max

Jacking point P1 / B1	Minimum single jackload
-----------------------	-------------------------

Operation		98	264		725
		98	264		
Out of service		149	253		805
		149	253		
Extreme		149	253		805
		149	253		

and the second			F	Project : Jacking of B	ridge Secti	ions			No:	AB01610	1		Dept :	ALE Heavylift		
ALE	A		Proje	ct Title : Bjørnafjord P	Prosjektet								Initials :	RM		
				Mega Jack S	ystem Gen	eral loadin	gs - with ve	ertical stra	nd jacks (4x	200t)			Date :	15/aug/19		
SMARTER, SAFER,	STRONGER			Jacking to 46	6 mtrs.								Rev :	Α		based on rev 2.4
acking point P2 / F	A															
ck point/foundati	4)n															
				Maxima per .	Jacking Po	oint										
Туре с	tower		1	Max. vertical l	oad		381	[t]			to afree to	de els	Correction f	actors Jacking	point P2 / B4	1
Number	of jacks		4	Max. foundati	on pressure	e	79	[t/m²]		In	literrace to	ueck		for Fwx	for Fwy	
Stability bas	e x-direction		5000	Max horizonta	al load in x-o	direction	0	[t]		Х	5000	2,00	line	D	2	
Stability bas	e y-direction		2500	Max horizonta	al load in y-o	direction	0	[t]		Y	2500	2,00	percentage	100%	100%	
Min Jacks/s	ability point		2													
			I													
oments [tm]	(corrected	d)	Maximum Ve	rtical Load	ł										
salignment	Mm-	-x	Mm-y		Ove	rall maxim	um jacking	point four	dation load	s		ľ		Maximum sin	gle jackload	
	348	3	356	Wind			Loads [t]			Mome	ent [tm]		(Wind X-	-direction)	(Wind Y-	lirection)
ind	Mw-	x	Mw-y		Fv2	Fm	Rwx	Rwy	Max	Mx	My		Max	Min	Max	Min
Operati	onal 56		309	Operational	843	192	2	80	1115	377	511		297	222	381	177
Out of se	vice 0		0	Out of service	843	192	0	0	1035	348	356		294	224	330	187
Extrem	• 0		0	Extreme	843	192	0	0	1035	348	356		294	224	330	187
				·												
				Minimum Ver	rtical Load											
isalignment	Mm-	-x	Mm-y		Ove	erall minimu	um jacking	point foun	dation load	s				Minimum sing	gle jackload	
	253	3	259	Wind			Loads [t]			Mome	ent [tm]		(Wind X-	-direction)	(Wind Y-	lirection)
			•		Fv2	Fm	Rwx	Rwy	Min	Mx	My		Max	Min	Max	Min

Jacking point P2 / B4	Maximum single jackload	(Wind 2	K-direction)	
Operation	222	222		1037
	297	297		
Out of service	224	224		1035
	294	294		
Extreme	224	224		1035
	294	294		

Operational

Out of service

Extreme

Jacking poin	t P2 / B4	Minimum sir	ngle jackload		(Wind X-dired	ction)	
Operation			173	173			803
			229	229			
Out of service			176	176			805
			227	227			
Extreme			176	176			805
			227	227			

Jacking	point P2	/ R4	Maximum	single	iackload
Jacking			IVIAAIIIIUIII	Sinuic	lacilloau

(Wind Y-direction)

P =	 			(
Operation		177	381		1115
		177	381		
Out of service		187	330		1035
		187	330		
Extreme		187	330		1035
I [187	330		r.

Operation	98	264	725
	98	264	
Out of service	149	253	805
	149	253	
Extreme	149	253	805
	149	253	

1.00	-			Project : Jacking of Bridge Sections					No:	: AB016101			Dept :	ALE Heavylift			
AL		-	Pro	oject Title : Bjørnafjord F	Prosjektet								Initials :	RM			
				Mega Jack S	ystem Gen	eral loadin	gs - with ve	ertical stra	nd jacks (4x	200t)			Date :	15/aug/19			
SMARTER, S	AFER, STRO	NGER		Jacking to 4	6 mtrs.								Rev :	Α		based on rev 2.4	
acking point	P3 / G4																
ack point/fou	Indation																
-				Maxima per	Jacking Po	int											
Т	Type of towe	r	1	Max. vertical	load		381	[t]		Interface to deck		Correction f	actors Jacking	point P3 / G4			
Nu	umber of jac	ks	4	Max. foundati	ion pressure	e	79	[t/m²]					for Fwx	for Fwy			
Stabili	ty base x-di	rection	5000	Max horizonta	al load in x-o	direction	0	[t]		X	5000	2,00	line	D	7		
Stabili	ty base y-dii	rection	2500	Max horizonta	al load in y-o	direction	0	[t]		Y	2500	2,00	percentage	100%	100%		
Min Ja	acks/stability	/ point	2														
oments [tm]		(correc	cted)	Maximum Ve	ertical Load												
salignment		Mm-x	Mm-y		Ove	rall maxim	um jacking	point four	ndation load	s				Maximum single jackload			
		348	356	Wind			Loads [t]			Mome	ent [tm]		(Wind X	-direction)	(Wind Y-o	direction)	
ind		Mw-x	Mw-y		Fv3	Fm	Rwx	Rwy	Max	Mx	My		Max	Min	Max	Min	
0	perational	56	309	Operational	843	192	2	80	1115	377	511		297	222	381	177	
Ou	ut of service	0	0	Out of service	843	192	0	0	1035	348	356		294	224	330	187	
E	xtreme	0	0	Extreme	843	192	0	0	1035	348	356		294	224	330	187	
				Minimum Ve	rtical Load												
isalignment		Mm-x	Mm-y		Ove	rall minimu	um jacking	point four	dation loads	S				Minimum sing	jle jackload		
		253	259	Wind			Loads [t]			Mome	ent [tm]		(Wind X	direction)	(Wind Y-o	lirection)	
					Fv3	Fm	Rwx	Rwy	Min	Mx	My		Max	Min	Max	Min	
				Operational	613	192	2	80	725	282	414		229	173	264	98	

Jacking point P3 / G4	Maximum single jackload	ł	(Wind X-direction)			
Operation	222	222		1037		
	297	297				
Out of service	224	224		1035		
	294	294				
Extreme	224	224		1035		
	294	294				

Out of service

Extreme

Jacking point P3 /	G4 Minimum	n single jackload			
Operation		173	173		803
		229	229		
Out of service		176	176		805
		227	227		
Extreme		176	176		805
		227	227		

lacking	noint PR	/(:/	Maximim	einala	lackload	
JUCINITIC			IVICIAIIIUUIII	SILIUIC	lacitoau	

(Wind Y-direction)

. 01		0,		1	/	
Operation		177	381			1115
		177	381			
Out of service		187	330			1035
		187	330			
Extreme		187	330			1035
		187	330			r.

Jacking point P3 / G4	Minimum single jackload
-----------------------	-------------------------

Operation	98	264		725
	98	264		
Out of service	149	253		805
	149	253		
Extreme	149	253		805
	149	253		

		F	Project : Jacking of B	Jacking of Bridge Sections				No:	o: AB016101			Dept :	ALE Heavylift			
ALE /	-	Projec	t Title : Bjørnafjord F	Prosjektet								Initials :	RM			
			Mega Jack S	ystem Gen	eral loadin	gs - with ve	ertical stra	nd jacks (4x	c 200t)			Date :	15/aug/19			
SMARTER, SAFER, STR	DNGER		Jacking to 46	6 mtrs.								Rev :	Α		based on rev 2.4	
acking point P4 / G1																
ack point/foundation																
•			Maxima per .	Jacking Poi	int											
Type of tow	er	1	Max. vertical	load		381 [t]			Correction fa	actors Jacking	point P4 / G1					
Number of ja	cks	4	Max. foundati	on pressure	;	79	[t/m²]		Interface to deck			for Fwx	for Fwy			
Stability base x-d	irection	5000	Max horizonta	al load in x-c	lirection	0	[t]		Х	5000	2,00	line	А	7	1	
Stability base y-d	irection	2500	Max horizonta	al load in y-c	lirection	0	[t]		Y	2500	2,00	percentage	100%	100%	1	
Min Jacks/stabili	ty point	2								-						
lisalignment	Mm-x	Mm-y	waxinuni ve	Over	rall maxim	um jacking	point four	dation load	S		I		Maximum single jackload			
Ū	348	356	Wind			Loads [t]	-		Mome	ent [tm]		(Wind X-	direction)	(Wind Y-	direction)	
'ind	Mw-x	Mw-y		Fv4	Fm	Rwx	Rwy	Max	Mx	My	İ	Max	Min	Max	Min	
Operational	56	309	Operational	843	192	2	80	1115	377	511	İ	297	222	381	177	
Out of service	0	0	Out of service	843	192	0	0	1035	348	356		294	224	330	187	
Extreme	0	0	Extreme	843	192	0	0	1035	348	356		294	224	330	187	
· ·		<u>. </u>	. <u></u>				•	•	•	•	•				•	
			Minimum Ve	rtical Load							_					
isalignment	Mm-x	Mm-y		Ove	rall minimu	ım jacking	point foun	dation load	s				Minimum sing	gle jackload		
	253	259	Wind			Loads [t]	_		Mome	ent [tm]		(Wind X-	(Wind X-direction) (W		d Y-direction)	
				Fv4	Fm	Rwx	Rwy	Min	Mx	My		Max	Min	Max	Min	
			Operational	613	192	2	80	725	282	414		229	173	264	98	

Jacking point P4 / G1	Maximum single jackload	1	(Wind X-direction)	
Operation	222	222		1037
	297	297		
Out of service	224	224		1035
	294	294		
Extreme	224	224		1035
	294	294		

Out of service

Extreme

Jacking point P4 / G1	Minimum single jackload			
Operation	173	173		803
	229	229		
Out of service	176	176		805
	227	227		
Extreme	176	176		805
	227	227		

Jacking point P4 / G1	Maximum single jackload
	Maximum single Jackleau

(Wind Y-direction)

_easing pen		enigie jaeinee		(
Operation		177	381		1115
		177	381		
Out of service		187	330		1035
		187	330		
Extreme		187	330		1035
		187	330		r.

Jacking point P4 / G1	Minimum single jackload

Operation		98	264		725
		98	264		
Out of service		149	253		805
		149	253		
Extreme		149	253		805
		149	253		

	ons No: AB016101					Dept	ALE Heavylift			
ALE A	Project Title : Bjørnafjord Prosjektet						Initials :	RM		
	Mega Jack System Ger	neral loadings - with ve	ertical stra	nd jacks (4x	200t)		Date :	15/aug/19		
SMARTER, SAFER, STRONGER	Jacking to 46 mtrs.						Rev	Α		based on rev 2.4
Summary		P1 P2	P3	P4	Extreme	Load	on foundatior	n, COG in centr	e envelope, no	wind
		Rv1 Rv2	Rv3	Rv4	Rv	Poi	nt P2		Point	P3
	Operation Maximum	381 381	381	381	381	4 jacks	229)	4 jacks	229
	Minimum	98 98	98	98	98	total	917	'	total	917
	Out of service Maximum	330 330	330	330	330	Total load incl	weight towers	3668		
	Minimum	149 149	149	149	149	Poi	nt P1	_	Point	P4
	Extreme Maximum	381 381	381	381	381	4 jacks	229		4 jacks	229
		98 98	98	98	98	total	917		total	917
MAXIMUM SINGLE	JACKLOADS			-				-		
Jacking point P2 / B4	Jacking point P3 / G4	Jacking point P2 / B4		Jacking poi	int P3 / G4	Jacking p	oint P2 / B4	1	Jacking poir	nt P3 / G4
Operation	Operation	Out of service		Out of s	service	Ext	reme	1	Extrer	ne
								4		
207 222	207 222	204 224		204	224	204	224	4	204	224
297 222	297 222	294 224		294	224	294	224	-	294	224
291 222	297 222	294 224		294	224	294	224	· 	294	224
								+		
total 1037	7 total 1037	total 1035		total	1035	total	1035	-	total	1035
Operation	Wind 16 m/s	Out of service	Wind	na	1000	lotar	Extreme	Wind	na	1000
				FOTION						
VIND	IN X-DIRECTION			ECTION			WIND			1.511.01
Jacking point P1 / B1	Jacking point P4 / G1	Jacking point P1 / B1		Jacking poi	int P4 / G1	Jacking p	oint P1 / B1	1	Jacking poir	nt P4 / G1
Operation	Operation	Out of service		Out of s	service	Ext	reme	4	Extrer	ne
								4		
207 222	207 222	204 224		204	224	204	224	4	204	224
297 222	297 222	294 224		294	224	294	224		294	224
231 222	297 222	234 224		234	224	234	224	-	234	224
								1		
total 1037	total 1037	total 1035		total	1035	total	1035	1	total	1035
								8 .		
Jacking point P2 / B4	Jacking point P3 / G4	Jacking point P2 / B4		Jacking poi	int P3 / G4	Jacking p	oint P2 / B4		Jacking poir	nt P3 / G4
Operation	Operation	Out of service		Out of s	service	Ext	reme]	Extrer	ne
]		
]		
177 177	7 177 177	187 187		187	187	187	187	1	187	187
381 381	381 381	330 330		330	330	330	330	<u>1</u>	330	330
								4		
		4005			1005		4005	1		1005
		1035	M/Les al		1035		1035			1035
Operation		Out of service	wina	na			Extreme	vvina	na	
WIND IN Y-DIRECTION		WIND II	NY-DIR	ECTION			WIND IN Y-DIRECTION			
Jacking point P1 / B1	Jacking point P4 / G1	Jacking point P1 / B1		Jacking poi	int P4 / G1	Jacking p	oint P1 / B1]	Jacking poir	nt P4 / G1
Operation	Operation	Out of service		Out of s	ervice	Ext	reme		Extrer	me
	┥ ┝───┤							4		ļ
								4		
177 177		187 187		187	187	187	187	4	187	187
381 381	381 381	330 330		330	330	330	330	4	330	330
	┥ ┝──┼───┨				ļ			+		
		4005			4005		4005	+		1025
\\ale.iocai\fijeshare\Data\NL\Debi	1115 Prolects\Prolects AB\ABU 1xxxx\ABU16101-Aker S	1035 Solutions-Biømafiordbros	iektet\Caic	uiations\Tech	1035 Inical\CAL-A	B016101-001-A Feasi	1035 Dility study C/	<u>-AB016101-0</u>	04-A MJS Stat	TU35
including strand jacks		,			Page 6 of 7				Copyright ALE	Heavylift

Concept development, floating bridge E39 Bjørnafjorden

Appendix N – Enclosure 3

DRW-AB016101-001 Jacking of bridge sections

AB016101 DRW-AB016101-001 0