BACHELOROPPGAVE:

TITTEL
Etablering av fastmerker med statiske målinger til Kartverkets permanente geodetiske basestasjoner.

FORFATTER: EMILIE HEEN FLADBY

Antall ord: 8449

Dato: 18.05.2016
Sammendrag

<table>
<thead>
<tr>
<th>Oppgavens tittel:</th>
<th>Etablering av fastmerker med statiske målinger til Kartverkets permanente geodetiske basestasjoner.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fagområde:</td>
<td>Avdeling for teknologi, økonomi og ledelse – Geomatikk.</td>
</tr>
<tr>
<td>Student(er):</td>
<td>Emilie Heen Fladby</td>
</tr>
<tr>
<td>Veileder:</td>
<td>Vilma Zubinaite</td>
</tr>
</tbody>
</table>

Kort sammendrag av oppgaven:

Denne bacheloroppgaven omhandler etablering av fastmerker ved hjelp av ettertidsdata fra Kartverkets basestasjoner (ETPOS) som alternativ til oppstilling og observasjoner i landsnett-/stamnettpunkter. Det jeg ønsker å finne ut av er om denne metoden kan være tidsbesparende og i tillegg gi resultater som tilfredsstiller standard for grunnlagsnett på bygg- og anlegg.

Oppgaven gjøres som oppdrag for Statens vegvesen hvor jeg har etablert to fastmerker på Lena i Oppland. Jeg har hentet data fra de tre nærmeste av Kartverkets basestasjoner, på Skreia, Løten og Moelv. Sammen med mine egne målinger har jeg prosessert vektorer i Trimble’s beregningsprogram, TBC. Videre har jeg brukt Gisline for utjevning og pålitelighetsanalyse.

Oppgaven består av teori om storparten av det som omhandler satellitter og målinger mot disse, i tillegg til planlegging, målinger og beregninger samt forklaringer og dokumentasjon av dette.
Abstract

Title:	Establishing benchmarks with static measurements to the permanent geodetic base stations of the Norwegian mapping authority.
Discipline:	Department for technology, economy and leadership – Geomatics.
Participant(s):	Emilie Heen Fladby
Supervisor:	Vilma Zubinaite
Employer:	Statens vegvesen region øst, Eiendom – landmålingsseksjonen w/ Einar Gladhaug.

Short description of the bachelor thesis:

This bachelor thesis deals with establishment of benchmarks using data from the permanent geodetic base stations of the Norwegian Mapping Authority (ETPOS) as an alternative to static observations to Norway’s national network of benchmarks. What I wanted to find out was whether this method could be time-saving in addition to provide results that satisfy the standard’s requirements for accuracy.

The thesis is done as an assignment for Statens vegvesen. I have established two benchmarks in Lena, in Oppland county. I have extracted data from the three nearest base stations, Skreia, Løten and Moelv. Along with my own observations, I have processed vectors in Trimble's program, TBC. Moreover, I used Gisline for smoothing and reliability analysis.

The thesis consists of theory mostly dealing with satellites and measurements against these, in addition to planning, measurements, calculations, and explanations and documentation of this.
Forord

Denne bacheloroppgaven er gjennomført som avslutning på bachelorstudiet i Geomatikk ved NTNU i Gjøvik våren 2016. Valgt emne «Etablering av fastmerker med statiske målinger til Kartverkets permanente geodetiske baseasjoner» har så vidt meg bekjent, ikke tidligere vært valgt som emne i tilsvarende oppgave.

Arbeidet med oppgaven har nok vært mer krevende enn jeg kunne forutse. Imidlertid har det vært en utrolig positiv, lærerik og interessant prosess. Underveis har jeg fått mange «aha-opplevelser» i forhold til resultatet.

Jeg vil benytte anledningen til å takke mange gode hjelpere underveis. Min veileder, Vilma Zubinaite og faglig støtte fra øvrige lærere ved NTNU som har bidratt med konstruktiv veiledning gjennom arbeidet med denne oppgaven.

Jeg vil selvfølgelig også takke seksjonsleder Einar Gladhaug i Statens vegvesen som har gitt meg denne oppgaven. Denne problemstillingen var noe de ønsket undersøkt og den passet godt til min studieretning, landmåling.

Ved samme avdeling har Per Mathisen med flere også vært til uvurderlig hjelp.

Fall, 17.mai 2016

[Unterskrift]
Emilie Heen Fladby

Side 4 av 94
Innholdsfortegnelse

Sammendrag .. 2
Abstract ... 3
Forord ... 4
Figurliste .. 8

1 Innledning ... 9
 1.1 Tema ... 9
 1.2 Oppdragsgiver .. 9
 1.3 Oppgavens mål ... 10
 1.4 Problemstilling .. 10
 1.5 Arbeidsmetoder ... 10
 1.6 Web-side ... 11

2 Teori ... 12
 2.1 Fastmerker .. 12
 2.1.1 Etablering ... 13
 2.2 Landsnettet ... 13
 2.2.1 Utfordringer .. 13
 2.3 GNSS ... 14
 2.3.1 De ulike systemene ... 14
 2.3.2 Oppbygning .. 15
 2.3.3 Signaler ... 16
 2.3.4 Statistiske målinger .. 17
 2.3.5 Feilkilder ... 18
 2.4 Standarder .. 21
 2.4.1 Satellitbasert posisjonsbestemmelse 21
 2.4.2 Standard for grunnlagsnett .. 23
 2.4.3 Bygg- og anleggsnett ... 24
 2.5 CPOS ... 27
 2.5.1 Kvalitet .. 27
 2.6 ETPOS ... 28
 2.6.1 Hva ... 28
 2.6.2 Hvordan ... 28
 2.7 RINEX-formatet ... 29

3 Forberedelse og planlegging .. 30
 3.1 Generelt .. 31
 3.2 Måleforhold .. 32
 3.2.1 Lena .. 32
 3.2.2 Skreia .. 33
 3.2.3 Løten ... 34
 3.2.4 Moelv ... 35
 3.3 Målinger ... 36
 3.4 Beregninger ... 38

4 Analyse ... 40
 4.1 Programvare ... 40
 4.1.1 Trimble Business Centre (TBC) .. 40
 4.1.2 Gisline landmåling .. 40
 4.2 Analyse i TBC .. 40
 4.2.1 $4t + 1t$... 42
4.2.2 2t + 30 min.. 42
4.2.3 1t + 15 min.. 43
4.2.4 30 min + 10 min.. 43
4.3 Analyse i Gisline landmåling... 44
4.3.1 Første utjevning... 45
4.3.2 Andre forsøk.. 51
4.3.3 Tredje forsøk.. 53
5 Resultat... 56
5.1 Første forsøk.. 56
5.2 Andre forsøk.. 56
5.3 Tredje forsøk.. 57
6 Diskusjon... 58
7 Konklusjon.. 59
8 Kilder... 60
8.1 Literatur, nettsider og standarder.. 60
8.2 Kildehenvisninger figurer... 60
9 Vedlegg... 63
9.1 Vektorer første forsøk.. 63
 Vedlegg 1: Prosesserte vektorer 4t + 1t.. 63
 Vedlegg 2: Prosesserte vektorer 2t + 30 min... 63
 Vedlegg 3: Prosesserte vektorer 1t + 15 min... 64
 Vedlegg 4: Prosesserte vektorer 30 min + 10 min... 64
9.2 Pålitelighetsanalyse første forsøk... 65
 Vedlegg 5: Grovfølsom grunnriss 4t + 1t... 65
 Vedlegg 6: Grovfølsom høyde 4t + 1t.. 66
 Vedlegg 7: Ytre pålitelighet grunnriss 4t + 1t... 67
 Vedlegg 8: Ytre pålitelighet høyde 4t + 1t.. 68
9.3 Pålitelighetsanalyse andre forsøk (med kikkertmåling).. 69
 Vedlegg 9: Grovfølsom grunnriss 4t + 1t... 69
 Vedlegg 10: Grovfølsom høyde 4t + 1t... 70
 Vedlegg 11: Ytre pålitelighet grunnriss 4t + 1t.. 70
 Vedlegg 12: Ytre pålitelighet høyde 4t + 1t... 71
 Vedlegg 13: Grovfølsom grunnriss 2t + 30 min.. 72
 Vedlegg 14: Grovfølsom høyde 2t + 30 min... 72
 Vedlegg 15: Ytre pålitelighet grunnriss 2t + 30 min.. 73
 Vedlegg 16: Ytre pålitelighet høyde 2t + 30 min.. 74
 Vedlegg 17: Grovfølsom grunnriss 1t + 15 min.. 74
 Vedlegg 18: Grovfølsom høyde 1t + 15 min.. 75
 Vedlegg 19: Ytre pålitelighet grunnriss 1t + 15 min... 75
 Vedlegg 20: Ytre pålitelighet høyde 1t + 15 min... 76
 Vedlegg 21: Grovfølsom grunnriss 30 min + 10 min.. 77
 Vedlegg 22: Grovfølsom høyde 30 min + 10 min.. 77
 Vedlegg 23: Ytre pålitelighet grunnriss 30 min + 10 min... 78
 Vedlegg 24: Ytre pålitelighet høyde 30 min + 10 min.. 79
9.4 Vektorer tredje forsøk... 80
 Vedlegg 25: Prosesserte vektorer 4t + 1t... 80
 Vedlegg 26: Prosesserte vektorer 2t + 30 min.. 80
 Vedlegg 27: Prosesserte vektorer 1t + 15 min... 81
 Vedlegg 28: Prosesserte vektorer 30 min + 10 min.. 81
9.5 Pålitelighetsanalyse tredje forsøk... 82
 Vedlegg 29: Grovfølsom grunnriss 4t + 1t.. 82
Vedlegg 30: Grovfeilsøk høyde 4t + 1t

Vedlegg 31: Ytre pålitelighet grunnriss 4t + 1t

Vedlegg 32: Ytre pålitelighet høyde 4t + 1t

Vedlegg 33: Grovfeilsøk grunnriss 2t + 30 min

Vedlegg 34: Grovfeilsøk høyde 2t + 30 min

Vedlegg 35: Ytre pålitelighet grunnriss 2t + 30 min

Vedlegg 36: Ytre pålitelighet høyde 2t + 30 min

Vedlegg 37: Grovfeilsøk grunnriss 1t + 15 min

Vedlegg 38: Grovfeilsøk høyde 1t + 15 min

Vedlegg 39: Ytre pålitelighet grunnriss 1t + 15 min

Vedlegg 40: Ytre pålitelighet høyde 1t + 15 min

Vedlegg 41: Grovfeilsøk grunnriss 30 min + 10 min

Vedlegg 42: Grovfeilsøk høyde 30 min + 10 min

Vedlegg 43: Ytre pålitelighet 30 min + 10 min

Vedlegg 44: Ytre pålitelighet 30 min + 10 min

Antall ord: 8449
Figurliste

FIGUR 1 UTKLIPP FRA KARTVERKETS FASTMERKEKART 12
FIGUR 2 TRIMBLE GNSS-MOTTAKER 16
FIGUR 3 ILLUSTRASJON AV STATISK MÅLING 17
FIGUR 4 ILLUSTRASJON AV DOP 20
FIGUR 5 ILLUSTRASJON AV KODEMÅLING 22
FIGUR 6 ILLUSTRASJON AV FASEMÅLING 23
FIGUR 7 FRAMSIDEN AV STANDARDEN BYGG- OG ANLEGSNETT 24
FIGUR 8 UTKLIPP FRA KARTVERKETS KART OVER BASESTASJONER 31
FIGUR 9 ANTALL SYNLIKE SATELLITTER TIL ENHVER TID 32
FIGUR 10 HVILKE SATELLITTER SOM ER SYNLIKE TIL ENHVER TID 32
FIGUR 11 DOP-VERDIER I TIDSROMMET 33
FIGUR 12 SATELLITTENES ELEVASJONSVINKEL 33
FIGUR 13 ANTALL SYNLIKE SATELLITTER 33
FIGUR 14 HVILKE SATELLITTER SOM EN SYNLI TIL ENHVER TID 33
FIGUR 15 DOP-VERDIER 34
FIGUR 16 SATELLITTENES ELEVASJONSVINKEL 34
FIGUR 17 ANTALL SYNLIKE SATELLITTER 34
FIGUR 18 HVILKE SATELLITTER SOM ER SYNLIKE TIL ENHVER TID 34
FIGUR 19 DOP-VERDIER 35
FIGUR 20 SATELLITTENES ELEVASJONSVINKEL 35
FIGUR 21 ANTALL SYNLIKE SATELLITTER 35
FIGUR 22 HVILKE SATELLITTER SOM ER SYNLIKE TIL ENHVER TID 35
FIGUR 23 DOP-VERDIER 36
FIGUR 24 SATELLITTENES ELEVASJONSVINKEL 36
FIGUR 25 OPPSTILLING OVER FM2 37
FIGUR 26 FINE MÅLEFORHOLD 37
FIGUR 27 SATELLITT MED MYE FORSTYRRELSER 41
FIGUR 28 SATELLITT MED LITE SIGNALER* 41
FIGUR 29 VEKTORER 4 TIMER OG 1 TIME 42
FIGUR 30 VEKTORER 2 TIMER OG 30 MINUTTER 42
FIGUR 31 VEKTORER 1 TIME OG 15 MINUTTER 43
FIGUR 32 VEKTORER 30 MINUTTER OG 10 MINUTTER 43
FIGUR 33 GRUNNLAGSNETTET I GISLINE FØR UTJEVNING 44
1 Innledning

1.1 Tema
Denne bacheloroppgaven inngår som en del av studiet Bachelor i Geomatikk ved NTNU i Gjøvik og gir 20 studiepoeng. Bacheloroppgaven avslutter studieprogrammet som går over 3 år, og skal omhandle ett eller flere viktige temaer av studieprogrammets faglige innhold.¹

Da jeg skulle velge oppgave valgte jeg å snakke med Statens vegvesen. Dette var naturlig siden jeg har hatt sommerjobb der i 2 år på rad og i tillegg har jobbet der ved siden av skolen i 5. og 6. semester. Oppgaven min vil dreie seg om et forsøk på å etablere fastmerker ved å gjøre statiske målinger mellom satellittmottaker og Kartverkets permanente geodetiske basestasjoner.

1.2 Oppdragsgiver
Oppgaven gjøres på oppdrag for Statens vegvesen(SVV). SVV har ulike avdelinger som blant annet har landmåling som fagfelt. Flere av problemstillingene som dukker opp, har de ikke selv kapasitet til å undersøke. Det er derfor stor interesse av å finne ut om denne metoden å etablere fastmerker på er like god som deres nåværende metode, med landsnettpunkter. Dette er interessant siden de er i en fase hvor de skal fornye rammeavtaler og kravspesifikasjoner med bedrifter som utfører jobber for SVV, i all hovedsak kartlegging og måling av terrengmodeller. Dersom denne metoden tilfredsstiller kravene, er det både tid og penger å spare både for SVV og deres samarbeidende firmaer.

¹ NTNU i Gjøvik (Emnebeskrivelse 2015-2016)
1.3 Oppgavens mål
Målet med oppgaven er å finne ut om statiske målinger til Kartverkets permanente geodetiske basestasjoner holder mål og gir tilfredsstillende nøyaktighet i henhold til standard ved etablering av nye fastmerker.

1.4 Problemstilling

1.5 Arbeidsmetoder
Oppoavnen er delt inn i tre deler. Første del hvor jeg må sette meg inn i materiellet som finnes om temaet, standarder og retningslinjer om etablering av grunnlagspunkter. Ut fra informasjonen og kunnskapen jeg tilegner meg her, må jeg planlegge et godt måleopplegg.

Etter planleggingen kan jeg utføre målingene og laste ned data fra Kartverkets basestasjoner som jeg etterpå vil bruke til å gjøre beregningene. Beregningene vil ta mye tid da det er viktig å prøve seg frem med kombinasjoner av vektorer og deres observasjonstid.

Til slutt vil jeg konkludere og dokumentere på en god måte. I tillegg skal det skrives en rapport.
1.6 Web-side

I emnebeskrivelsen for bacheloroppgaven er det et krav at det skal opprettes en nettside. Nettsiden blir grunnlagt av IT-tjenesten ved skolen, men innholdet utarbeides av studentene selv.

2 Teori

2.1 Fastmerker

Slik situasjonen er i dag blir det stadig mindre bruk for fastmerker. Posisjonstjenestene er i ferd med å ta over for de tradisjonelle grunnlagssnettene, og det er jo nettopp hva jeg skal gjøre et forsøk på å bevise i denne oppgaven. Da de etablerte stamnettet og landsnettet var det brukernes behov på den tiden som ble lagt til grunn, punkter ble lagt slik at de skulle være lettest mulig tilgjengelig og ha best mulig dekning for GPS-måling. Selv om posisjonstjenestene tar mer og mer over, er fortsatt fastmerkene en viktig del av det geodetiske grunnlaget i landet vårt.

Figur 1 Utklip fra kartverkets fastmerkekart
2.1.1 Etablering
Satellittmålinger tar i dag mye over når det gjelder etablering av nye fastmerker. Tidligere, og i noen tilfeller fortsatt, blir det brukt polygondrag og enkeltpunktbestemmelse, men det mest vanlige er i dag å bygge opp et nett av GNSS-vektorer for å bestemme nye punkter.

Planleggingen av grunnlagsmålinger krever noe erfaring, selv om kravene til geometri ikke er like viktig som tidligere. «Gode skjæring» i nettet har ikke lenger så stor betydning for å få god bestemmelse av nye punkter etter at satellittmålinger er tatt i bruk, men det er uansett viktig å bruke et godt landmålerskjønn og ha god overbestemmelse. ²

2.2 Landsnettet

2.2.1 Utfordringer
Landsnettet er som nevnt referert til EUREF89. EUREF89 UTM har en oppgitt målestokk-korreksjon på 0,9996/400ppm, men denne varierer rundt om i Norge. Dette fører til at målte 100m ikke lenger er 100m og at det dermed er tvang i landsnettet. En fordel med å ikke bruke landsnettpunktene vil da bli at man slipper å ta hensyn til tvang i nettet, og den feilen dette måtte tilføre målingene og beregningene.

² Skogseth (2012) s.166-168
2.3 GNSS

GPS har og blir fortsatt brukt av mange som betegnelse på navigasjonstjenestene vi benytter oss av. GPS er i dag en del av et større system, GNSS. GNSS er en fellesbetegnelse på de ulike satellittnavigasjonssystemene som eksisterer og står for «Global Navigation Satellite System». Felles for systemene som inngår i GNSS er at de benytter satellitter i rommet kombinert med kontrollstasjoner på jorda for å gi brukere jorda rundt sanntids navigasjon og posisjoneringstjenester til enhver tid.

2.3.1 De ulike systemene

- **GPS**
 GPS er i utgangspunktet et militært amerikansk navigasjonssystem og var det første operative systemet. Det driftes av det amerikanske forsvar, men er tilgjengelig også for sivile brukere.

- **GLONASS**
 GLONASS er et russisk system som sammen med GPS er det systemet som er ferdig utbygd og brukes i dag.

- **GALILEO**
 Galileo er et system som etableres av EU, ment som et alternativ til GPS og GLONASS dersom henholdsvis USA og Russland skulle komme til å stenge navigasjonstjenestene sine for sivile brukere ved en eventuell krigssituasjon. Systemet er planlagt å være fullstendig utbygd i 2020, men per dags dato er det allerede delvis operativt.
• **BEIDOU/COMPASS**

 Beidou/Compass er et kinesisk uavhengig system som er under oppbygging. Det planlegges å være ferdig utbygd i 2020, samtidig som Galileo.

2.3.2 Oppbygning

Alle systemene GNSS omfatter består av et romsegment, et kontrollsegment og et brukersegment. Hva de forskjellige segmentene er, kan i stor grad forstås ut i fra navnene:

- **Romsegmentet** består av satellittene opppe i rommet. De ligger på en høyde på om lag 20 000 km fra jordoverflata og sender signaler for avstandsbestemmelse i tillegg til banedata og klokkedata ned til brukerne. Signalene sendes ut på ulike frekvenser, slik at de kan mottas av ulike typer mottakere. Hele GNSS systemet er basert på enveis kommunikasjon – satellittene sender og brukerne tar imot.

- **Kontrollsegmentet** består av kontrollstasjoner på bakken. Disse følger satellittene kontinuerlig og sender de dataene som skal videre til brukerne. Kontrollstasjonene følger også med på at satellittene virker som de skal. GPS systemet har fem stasjoner spredt rundt på jorda hvor hovedkontrollstasjonen ligger i Colorado springs i USA, mens GLONASS har kontrollstasjoner kun i russisk territorium.

- **Brukersegmentet** er de som bruker GNSS, både militære og sivile mottakere. De mottar signaler fra satellittene og beregner posisjoner på bakgrunn av disse. Posisjoner kan beregnes både i sanntid og i ettertid, alt ettersom hva man er ute etter og hva slags type mottaker man har.

3 Skogseth (2012) s.149-152
2.3.3 Signaler

Navigasjonssystemene har i prinsippet ganske like metoder å sende informasjon til brukeren på. Samme mottaker kan også motta signaler fra flere navigasjonssystemer samtidig. Likevel er det noen forskjeller.

Navigasjonssystemene, både GPS og GLONASS er stadig under forbedring og modernisering. Fra 2011 blir det jevnlig skutt opp såkalte GLONASS-K-satellitter. Disse har som mål å gjøre bruken av både GPS, GLONASS og GALILEO i samme mottaker lettere ved at de sender ut kodedelte signaler på frekvens L1 og L5, i tillegg til at de har frekvensdelte signaler på en tredje frekvens, L3.

Figur 2 Trimble GNSS-mottaker

4 Store norske leksikon
2.3.4 Statiske målinger

Å måle statisk går i hovedsak ut på at man måler med en base i et kjent punkt og en rover i et ukjent punkt samtidig og til de samme satellittene. Hele poenget er at mottakerne står i ro og måler, derav navnet «statisk».

Figur 3 Illustrasjon av statisk måling

2.3.4.1 Tid

Hvor lenge man bør logge data med mottakerne kommer an på beliggenhet, ionosfæriske forhold, avstanden mellom mottakerne, hvilken type mottaker man har (enfrekvent eller tofrekvent), og nøyaktigheten man er ute etter. Normalt logger man i 0,5 – 2 timer, men både kortere og lengere måleperioder er brukt. Man kan også måle i flere” sesjoner”, måle i de samme punktene flere ganger med tidsseparasjon, slik at man får uavhengige målinger.

2.3.4.2 Etterprosesserering

Målingene blir prosessert i ettertid med egnet programvare, stort sett med det programmet som tilhører den mottakeren det er målt med. For eksempel er det Trimble Business Centre som er aktuelt for Trimble-instrumenter og Leica Geo Office for Leica-instrumenter. Observasjonene eksporteres til programvare som rådata som reduseres, prosesseringen gir vektorer som resultat og danner et nettverk som til slutt blir utjevnet ved minste kvadraters metode. Når man skal danne vektorer mellom stasjonene er det viktig å unngå trivielle lukninger.
2.3.5 Feilkilder

I alt landmålingsarbeid er det viktig med kvalitetssikring. Den største kilden til feil eller dårlig kvalitet ved statiske målinger er systematiske feil, instrumentfeil eller observasjonsforhold. Ionosfæren kan utøve forskjellige forstyrrelser av GNSS-signaler, der noen kan korrigeres bort ved å bruke flerfrekvent mottaker.

2.3.5.1 Grovfeil
Grovfeil er i hovedsak menneskelige feil. Det være seg oppstilling i galt punkt, feil koordinatsystem eller inntasting av gale koordinater. Disse feilene vil man som oftest oppdage ganske fort, senest i etterprosesseringen. For å unngå slike feil er det viktig å ha gode rutiner i felt, og gjerne også ha planlagt godt i forhånd av målingene.

2.3.5.2 Systematiske feil
Systematiske feil er vanskeligere å oppdage, kontrollere og korrigerere for. Systematiske feil vil si at feilene påvirker målingene ensidig, disse kan deles inn i tre hovedgrupper:

1. Atmosfæriske forhold:
Volumet av plasma (ionisert gass) i ionosfæren er en faktor som stort sett korrigeres bort, sett bort ifra hvis det er store variasjoner i plasmainnholdet i rom eller tid.

IONOSFÆRISK TURBULENS, ROTI, ER ET MÅL PÅ Hvor TURBULENT IONOSFÆREN ER. DERSOM DEN ER TURBULENT, KAN Dette FØRE TIL MERKBARE FORSTYRRELSER PÅ GNSS-SIGNALENE. FORSTYRRELSENE KAN SOM OFTEST IKKE KORRigerES BORT OG DET ER DERFOR VIKTIG Å KONTROLLERE DISSE FORHOLDENE FØR MAN DRAR UT FOR Å MÅLE.\(^5\) Alle ionosfæriske forhold kan sjekkes på Kartverkets tjeneste, www.seSolstorm.kartverket.no.

I tillegg kan måleforholdene sjekkes i Trimble sin tjeneste, «GNSS planning online» på forhånd. Dette er nærmere beskrevet senere i oppgaven.

\(^5\) Kartverket, Se Solstorm.
2. **Feil på satellitter:**

Banefeil på satellittene vil gjøre at navigasjonsmeldingen mottakeren mottar vil inneholde feil satellittbanedata. Dette skyldes gjerne at satellittene er påvirket av ytre faktorer i rommet. Problemet kan løses ved å benytte presise efemerider som blir beregnet i ettertid.

Klokkefeil hos satellittene vil si at atomklokkene i satellittene ikke er synkronisert med GPS-tid. Dette gir også feil informasjon i observasjonsdataene, men denne feilen vil elimineres når man bruker flere mottakere.

En annen faktor er DOP-verdier, som sier noe om geometrien til satellittene. DOP står for «dilution of precision» og det skiller mellom 5 forskjellige DOP-verdier.

- **GDOP:** for alle koordinater pluss tid.
- **HDOP:** Horisontal nøyaktighet.
- **VDOP:** Vertikal nøyaktighet.
- **TDOP:** Nøyaktigheten i tidsbestemmelsen.
- **PDOP:** Tredimensjonal nøyaktighet.

DOP-verdiene er et tall på forholdet mellom nøyaktighetene ved posisjonsbestemmelsen og nøyaktighetene ved avstandsbestemmelsen, og derfor er de ønsket så lave som mulig. PDOP er den verdien man oftest sjekker når man er ute å måler og den bør være under 6 for å få tilfredsstillende nøyaktighet. En verdi på 6 betyr at den tredimensjonale posisjonsfeilen er mindre enn seks ganger feilen ved bestemmelsen av avstanden til satellittene.⁶

⁶ Store Norske Leksikon.
Figur 4 Illustrasjon av DOP

Som det fremgår av illustrasjonen er det best måleforhold når satellittene er godt spredt på himmelen. Da får man en god bestemmelse av posisjon og avstand.

3. Mottakerfeil:
Multipath/flerveisinterferens vil si at signalet fra satellitten går via noe til mottakeren, for eksempel en glassvegg. Dette gjør at avstanden som leses av i mottakeren blir lenger enn det som er riktig. Ved lengre måleperioder vil en slik feil ha lite betydning.

Klokkefeil i mottakeren er ganske normalt i og med at klokkene som brukes har mye dårligere nøyaktighet enn de som er i satellittene. Denne feilen vil rettes opp av klokkefeilen som ligger inne i observasjonsdataene fra satellittene.

Elektronisk støy i mottakeren vil kunne gjøre at mottakeren mister kontakt med satellitter og man får cycle-slips(fasebrudd) i målingene.

2.3.5.3 Tilfeldige feil
Etter at grove og systematiske feil er fjernet sitter man igjen med de tilfeldige feilene. Disse kan skyldes unøyaktighet hos landmåleren eller begrenset nøyaktighet i måleutstyret som er brukt. Uansett er disse feilene umulig å unngå og umulige å rette opp i.
2.4 Standarder

2.4.1 Satellittbasert posisjonsbestemmelse
Denne standarden er laget for å gi anbefalinger om hvordan satellittbasert posisjonsbestemmelse bør utføres i kart- og oppmålingsarbeider. I denne oppgaven vil jeg utføre målinger til satellitter, og derfor er denne standarden aktuell for mitt arbeid her.

Tidligere, før siste versjon ble utgitt i 2009, var det planlagte navnet på standarden «satellittbasert GPS-måling», men de siste årene har det russiske satellitnavigasjonssystemet GLONASS blitt tatt i bruk som et supplement til GPS. I tillegg jobbes det nå med et nytt europeisk navigasjonssystem ved navn GALILEO som også kan brukes til posisjonsbestemmelse. Allerede kan man benytte seg av et fåtall GALILEO-satellitter, selv om systemet ikke er ferdig utbygd. Av denne grunn er det ikke lenger passende å kun bruke GPS som betegnelse, men heller GNSS (Global Navigation Satellite System).

2.4.1.1 Metoder
I hovedsak finnes det to metoder for satellittbasert posisjonsbestemmelse, enkelpunktbestemmelse og differensiell/relativ GNSS. Ved enkelpunktbestemmelse er det bare en mottaker som mottar informasjon fra satellitter den har kontakt med. Ved differensiell/relativ GNSS utføres posisjonsbestemmelsen relativ til en eller flere andre mottakere eller baser, og man kan da beregne vektorer mellom disse.

Enkelpunktbestemmelse kan gjøres både i sanntid og med etterberegninger. Sistnevnte metode har et nøyaktighetspotensiale på 2-4mm og krever at det logges data kontinuerlig i et døgn. I denne oppgaven vil jeg bruke en metode som heter klassisk statisk.

Klassisk statisk går ut på at en eller flere mottakere står i ukjente punkt og logger data, mens flere andre mottakere står i kjente punkt og logger (f.eks. landsnettpunkter). Hvor lenge mottakene skal logge data kommer an på avstanden mellom de, men normalt vil tiden være 1-2 timer. Dette blir en variant av differensiell/relativ GNSS.

8 Kartverket (2009) kap.5.
2.4.1.2 Observasjonstyper

Kodemålinger og fasemålinger er de to hovedtypene observasjoner som finnes. I tillegg er det mulig å gjøre målinger med en kombinasjon av disse, kalt faseglattet kode.

Kodemåling er den enkleste typen av de to, men har mye dårligere nøyaktighet enn fasemåling. Kodemåling kalles også pseudoavstandsmåling. På det tidspunktet satellitten sender ut et signal, blir det modulert en kode på dette signalet. Tilsvarende kode blir generert i mottakeren på akkurat samme tidspunkt, forutsatt at klokkene i satellitt og mottaker er synkron. Når antennen mottar kodesekvensen fra satellitten, måler den hvor lang tid det tok til mottakeren hadde generert den samme kodesekvensen. Ved hjelp av lysets hastighet kan avstanden beregnes. For at avstandsmålingen skal bli presis er man som sagt avhengig av at klokkene stemmer overens. Dagens satellittmottakere har ikke like avanserte og kostbare klokker som satellittene, og derfor må en tilleggsukjent for klokkefeil løses i beregningene av avstanden.9

Fasemåling skjer ved at mottakeren måler avstandene til satellittene ved hjelp av bølgefase på signalene. Her er man avhengig av å måle over et tidsrom. Bølgelengdene for de ulike bærebølgene (L1, L2 osv.) er kjent. Mottakeren måler avstandsforandringen ved hjelp av antallet hele bølgelengder pluss deler av en bølgelengde. For å kunne bestemme den riktige avstanden er avstanden ved starttidspunktet interessant. Denne avstanden kan deles opp i hele og deler av en bølgelengde, men mottakeren registrerer bare delen av en bølgelengde når den begynner å måle. Derfor er det antallet hele bølgelengder ved starttidspunktet som blir ukjent. Dersom mottakeren klarer å beregne dette heltallet kan den ukjente elimineres og man har en

9 Skogseth (2012) s.153-155
såkalt «fixløsning» og høy nøyaktighet.

I etterberegninger kontrollerer man at målinger man bruker i beregningene er målinger med fix.

![Illustrasjon av fasemåling](image)

Figur 6 Illustrasjon av fasemåling

2.4.2 Standard for grunnlagsnett

Denne standarden setter krav til nøyaktighet av grunnlagsnett som skal brukes som fundament for oppmålingsoppgaver, geodata, kartlegging og eiendomsmåling, samt for stikking av planlagte objekter i terrenget. Den setter også rammene for hvordan fastmerkene skal plasseres og signaliseres, kontroll av utstyret som benyttes, samt hvordan man skal rapportere og dokumentere et grunnlagsnett.

2.4.2.1 Kvalitetskrav

Standarden tar hensyn til at nivået av nøyaktighet som er nødvendig kan variere i forhold til geografisk plassering og type arbeid som skal utføres. Derfor er kvalitetskravene delt inn etter områdetyper:

- Områdetype 1: Byområde
- Områdetype 2: Tettbygd/utbyggingsområder
- Områdetype 3: Spredtbygd/dyrket mark/skog
- Områdetype 4: Fjell/ekstensiv arealutnytting

Kravet til kvalitet og nøyaktighet er strengest i områdetype 1 og blir mindre og mindre strenge for de andre områdetypene.

10 Zubinaite, GEO3071.
11 Kartverket(2009).
2.4.3 Bygg- og anleggsnett

![Image]

Figur 7 Framsiden av standarden Bygg- og anleggsnett

Innholdet er mye av det samme som Standard for grunnlagsnett, men her er det laget en egen «klasse» for bygg- og anleggsnett i kvalitetskravene (merket i rødt i tabellene på neste side).
Grunnrisskrav

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Punkter i</th>
<th>Parameter for grunnriss</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>p, ppm</td>
<td>k, mm</td>
</tr>
<tr>
<td>Geodetisk stamnett</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Geodetisk landsnett</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Bygg- og anleggsnett</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Områdetype 1: Byområde</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Områdetype 2: Tettbygd/utbyggingsområder</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Områdetype 3: Spredtbygd/ dyrket mark/ skog</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>Områdetype 4: Fjell/ ekstensiv arealutnytting</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>Ukjent kvalitet, eller dårligere enn klasse 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Høydekrav

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Punkter i</th>
<th>Parameter for grunnriss</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>p, ppm</td>
<td>k, mm</td>
</tr>
<tr>
<td>Geodetisk stamnett, ellipsoidiske høyder</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Geodetisk stamnett, høyder i nasjonalt system</td>
<td>Følger områdetype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geodetisk landsnett, ellipsoidiske høyder</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Geodetisk landsnett, høyder i nasjonalt system</td>
<td>Følger områdetype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presisjonsnivellement, høyder i nasjonalt system</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Bygg- og anleggsnett</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Områdetype 1: Byområde</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Områdetype 2: Tettbygd/utbyggingsområder</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Områdetype 3: Spredtbygd/ dyrket mark/ skog</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>Områdetype 4: Fjell/ ekstensiv arealutnytting</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>Ukjent kvalitet, eller dårligere enn klasse 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Den eneste forskjellen på kvalitetskravene i denne standarden og standard for grunnlagsnett er at høydekravene for bygg- og anleggsnett er 10ppm/10mm og ikke lik som områdetype 1, ergo er det ikke like strenge krav til høyde. Dette er et mer «overkommelig» krav til nøyaktighet og dermed også kanskje et krav som blir overholdt oftere når det kommer til grunnlagspunktene på bygg- og anleggsprosjekter. Det er denne nøyaktigheten jeg skal prøve å oppnå på grunnlagspunktene jeg skal etablere i denne oppgaven.\(^\text{12}\)
2.5 CPOS

2.5.1 Kvalitet

Innenfor tjenestens dekningsområde er forventet oppnåelig nøyaktighet følgende:

<table>
<thead>
<tr>
<th></th>
<th>I områder med ca. 35 km mellom SATREF PGS</th>
<th>I områder med ca. 70 km mellom SATREF PGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grunnriss EUREF 89</td>
<td>8 mm</td>
<td>14 mm</td>
</tr>
<tr>
<td>Høyde EUREF89 (over ellipsoiden)</td>
<td>17 mm</td>
<td>30 mm</td>
</tr>
<tr>
<td>Høyde NN2000</td>
<td>20 mm</td>
<td>36 mm</td>
</tr>
</tbody>
</table>

De oppgitte nøyaktighetstallene er basert på analyser av målinger som er gjort med CPOS, og de gjelder for 66% av tilfellene (standardavvik 1 sigma). Nøyaktigheten er som ved alle andre målinger avhengig av atmosfæriske og lokale forhold, i tillegg til kvaliteten og oppsettet på måleinstrumentet. Feilkilder til målingene kan være:

- Forhold som gjør at satellittsignalene reflekteres før de når antennen.
- GPS/GLONASS-mottakerens evne til å eliminere reflektere signaler.
- Uro i atmosfæren, som for eksempel ionosfæreaktivitet ved solstorm og liknende.
- Antall synlige satellitter og deres plassering/geometri.
- GPS/GLONASS-mottakerens evne til å beregne posisjoner.\(^{13}\)

\(^{13}\) Kartverket, CPOS.
2.6 ETPOS

2.6.1 Hva

2.6.2 Hvordan

Kartverkets basestasjoner logger observasjonsdata med intervall på 1,0 sekunder, og dermed står man fritt til å velge hvilket loggeintervall man vil på punktene man logger observasjonsdata i selv. Beregningsprogrammet vil kun beregne for de tidspunktene som er felles for observasjonsfilene, normalt logger man hvert 10. eller 15. sekund ved etablering av fastmerker.

14 Kartverket, ETPOS.
15 Kartverket, ETPOS.
2.7 RINEX-formatet

RINEX står for Receiver Independent Exchange Format og er et utvekslingsformat for satellittnavigasjonsdata. Som man kan forstå ut fra navnet, er formatet uavhengig av type instrument eller beregningsprogram – alle kan lese RINEX. Formatet er basert på ASCII-data med en lett lesbar struktur, altså er det et tekstformat som kan leses i alle tekstredigeringsprogrammer og som er lett å lese også for mennesker.

Formatet ble funnet opp i 1989, men siden har det kommet nye versjoner. Den siste er versjon 3 som kom samtidig med at utbyggingen av navigasjonssystemet Galileo begynte i 2006. Etter den siste versjonen støtter formatet både Galileo, GPS og GLONASS.

RINEX består av tre ulike filer:

- **Observasjonsfil:**
 Denne fila forteller hvilke satellitter som var synlige under målingene og den inneholder pseudoavstander, fasemålinger og dopplerfrekvens for alle synlige satellitter på frekvens L1 og L2.

- **Navigasjonsmelding:**
 Inneholder data som beskriver satellittenes bevegelse samt de 6 Keplerelementene som beskriver banen til hver satellitt.

- **Meteorologiske data:**
 Inneholder data om værforholdene under det aktuelle måletidsrommet.

RINEX-formatet har strenge regler for filnavngivning. Filnavnet skal være som følger:
`ssssdddf.yyt`, der de forskjellige bokstavene står for:

- ssss: 4 tegn av stasjonens navnet.
- ddd: dag i året for den første observasjonen.
- f: hvilken sekvens for dagen(tall, 0 indikerer en hel dag).
- yy: År, de to siste tallene.
- t: filtype (O for observasjonsfil, N for GPS navigasjonsfil, G for GLONASS navigasjonsfil, M for meteorologiske data).

16 Wikipedia.
17 Zubinaite, GEO3071.
3 Forberedelse og planlegging

Målingene jeg skal utføre krever planlegging, og det første jeg gjorde var å ta kontakt med Kartverket. Jeg ønsket å spørre om deres basestasjoner er «godkjent» for etablering av fastmerker på samme måte som landsnett og stamnett, og om de eventuelt hadde noen innspill til oppgaven min.

Svaret jeg fikk var at de permanente geodetiske basestasjonene faktisk er de best bestemte punktene i Norge, ettersom koordinatene deres er beregnet på grunnlag av et helt år med observasjonsdata. På den måten er de like «godkjente» som stamnett og landsnett, selv om dette ikke står i «Standard for grunnlagsnett». Det som kan spille inn på resultatet er avstanden mellom de permanente stasjonene da disse er mye større enn mellom landsnett-/stamnettpunktene.

Oppdraget jeg har fått er å etablere to fastmerker som skal brukes til utbedring av et kryss på Lena i Oppland. Målingene skal gjøres 16.mars 2016. En annen ansatt i SVV skal etablere nøyaktig de samme grunnlagspunktene ved hjelp av landsnettpunkter, slik at resultatene kan sammenlignes etter at beregningene er gjort.
3.1 Generelt

Først tenkte jeg å lage en oversikt over hvor de nærmeste basestasjonene er, og avstanden til de. Dette for å lettere kunne finne ut hvor lenge jeg burde måle, og måleopplegget generelt. Som man ser på kartet nedenfor er de nærmeste basestasjonene på Skreia, Moelv og Løten. Det blir en vurdering om det vil ha noen betydning å ta med observasjoner til basestasjonen i Hedalen for å få bedre geometri. Avstanden hit blir mye lenger enn til de andre basestasjonene, slik at det er usikkert om observasjoner til dette punktet vil styrke bestemmelsen av de nye fastmerkene.

Figur 8 Utklipp fra Kartverkets kart over basestasjoner

Videre har jeg i samråd med veileder undersøkt og prøvd å avgjøre hvor lange observasjonene i de nye punktene bør være, og om det bør gjøres flere uavhengige målinger i hvert punkt.
3.2 Måleforhold

Trimble, som er produsenten av måleutstyret jeg skal bruke i oppgaven, har en tjeneste på internett som kan brukes for å planlegge målinger. «GNSS planning online» (www.gnssplanningonline.com) gir brukerne mulighet til å taste inn lokasjon og måletidsrom for når man planlegger å måle, og med det får man oversikt over:

- DOP-verdier.
- Elevasjonsvinkelen til de synlige satellittene (hvilken vinkel de har i forhold til jordoverflata).
- Oversikt over hvilke satellitter som er synlig ved ethvert tidspunkt.
- Hvor satellittene befinner seg på himmelen til enhver tid.

Målingene har jeg planlagt å gjøre 16.mars, og ved hjelp av denne tjenesten har jeg sjekket forholdene i områdene for de tre basestasjonene i tillegg til Lena hvor de nye fastmerkene skal etableres. Tidsrommet jeg har sjekket for er fra kl.12.00 til kl.18.00.

3.2.1 Lena

Figur 9 Antall synlige satellitter til enhver tid

Figur 10 Hvilke satellitter som er synlige til enhver tid
Figur 11 DOP-verdier i tidsrommet

Figur 12 Satellittenes elevasjonsvinkel

3.2.2 Skreia

Figur 13 Antall synlige satellitter

Figur 14 Hvilke satellitter som en synlig til enhver tid
3.2.3 Ølten

Figur 15 DOP-verdier

Figur 16 Satellittenes elevasjonsvinkel

Figur 17 Antall synlige satellitter

Figur 18 Hvilke satellitter som er synlige til enhver tid
3.2.4 Moelv

Figur 19 DOP-verdier

Figur 20 Satellittenes elevasjonsvinkel

Figur 21 Antall synlige satellitter

Figur 22 Hvilke satellitter som er synlige til enhver tid
3.3 Målinger

Erfaring tilsier at det er bedre å måle for mye enn for lite. I dette måleopplegget har jeg kanskje endt opp med for mye målinger i forhold til hva som er «innenfor» for at SVV i det hele tatt skal kunne spare tid på å bruke denne metoden. Men det er lettere å klippe ut det man vil ha fra måledataene, enn å reise ut å måle på nytt.

Etter samtaler med veileder og lærer på NTNU, kom jeg fram til at jeg går ut fra å observere 1 time per mil. Dette for å få bestemt de lange vektorene godt nok.

I tillegg er det på et slikt lite veganlegg like viktig med punktens nabonøyaktighet og derfor har jeg valgt å måle en kortere session for å bestemme vektoren mellom de to nye punktene. På grunn av trivielle lukninger må disse beregningene skje på ulike tidspunkt.

<table>
<thead>
<tr>
<th>Session</th>
<th>Varighet</th>
<th>Hvorfor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 t</td>
<td>For å bestemme vektorene fra de nye punktene til basestasjonene.</td>
</tr>
<tr>
<td>2</td>
<td>1 t</td>
<td>Beregn vektor mellom de nye punktene.</td>
</tr>
</tbody>
</table>
Figuur 25 Oppstilling over FM2

Figuur 26 Fine målforhold
3.4 Beregninger

Før beregningene gjøres er det viktig å planlegge for hvilket tidsrom de ulike vektorene skal beregnes, slik at man unngår trivielle lukninger og dermed usannsynlig gode resultater. Trivielle lukninger vil si lukkede figurer hvor alle vektorer blir beregnet samtidig. Her har jeg valgt å beregne de lengste vektorene først:

Videre vektoren mellom de to nye punktene samt Moelv – FM2 og Skreia – FM1 i den korte epoken:
I beregningene har jeg kortet ned observasjonstiden til henholdsvis:

- 2t(lange vektorer) + 30 min(korte vektorer)
- 1t(lange vektorer) + 15 min(korte vektorer)
- 30 min(lange vektorer) + 10 min(korte vektorer)

Dette for å se hvordan kvaliteten og nøyaktigheten på de nye punktene forandrer seg når observasjonstiden blir kortere. Metoden vil være mer aktuell å bruke jo kortere observasjonstid som kreves.
4 Analyse

4.1 Programvare

4.1.1 Trimble Business Centre (TBC)
Etter import av data har man mulighet til å justere tidsintervaller og velge hvilke satellitter som skal benyttes innenfor valgte tidsrom i tillegg til mange andre parametere. Resultatene av det som blir gjort i programmet kan skrives ut i rapporter som er enkle å forstå.

4.1.2 Gisline landmåling
Gisline er en programpakke fra NorKart som er laget for blant annet bearbeiding av landmålingsdata. Landmålingsmodulen er enkel å bruke med en god hjelpemønstrs. I programmet kan man utføre ulike beregninger, for eksempel utjevning som jeg har gjort i denne oppgaven. De fleste aktuelle filtyper kan importeres inn i programmet, og man kan eksportere data i blant annet SOSI, DXF og KOF alt ettersom til hvilket formål det skal brukes videre.

4.2 Analyse i TBC
I TBC lastet jeg inn data fra basestasjonene fra ETPOS sammen med mine egne Rinex-filer. I tillegg importerte jeg også målejobben direkte fra måleboken for på den måten være sikker på at koordinatsystem og geoidemodell ble riktig i prosjektet. Jeg ga basestasjonene status som kjente punkt med «control quality» slik at vektoene ble beregnet fra basestasjonen til de ukjente punktene. Observasjonstiden ble kuttet slik at vektoene i de to sesjonene hadde innbyrdes felles observasjonstid, henholdsvis 4 timer og 1 time, 2 timer og 30 minutter, 1 time og 15 minutter, og til slutt 30 minutter og 10 minutter. Jeg valgte å beregne alle mulige vektoere for så å eksportere de jeg ønsket slik at jeg endte opp med uavhengige målinger uten trivielle lukninger.
Før jeg prosesserte vektorene gikk jeg inn og så på målingene for hver enkelt satellitt. Når en satellitt nærmer seg horisonten eller når det er hindringer for signalene vil det oppstå «støy» i målingene som kan skape unøyaktighet i beregningene. Om man ikke fjerner hele satellitten fra beregningene, kan man likevel utelukke tidsintervaller hvor disse forstyrrelsene er store.

![Figur 27 Satellitt med mye forstyrrelser](image)

Her kan man se at satellitt R8 har lite sammenhengende signaler og stor unøyaktighet. I dette tilfellet fjernet jeg satellitten totalt fra beregningene.

![Figur 28 Satellitt med lite signaler](image)

Her kan man se at satellitten så vidt har vært «synlig» i det aktuelle måletidsrommet. Denne satellitten valgte jeg også å fjerne fra observasjonsmaterialet.
4.2.1 4t + 1t

<table>
<thead>
<tr>
<th>Save</th>
<th>Observation</th>
<th>Solution T</th>
<th>Horiz. Precision</th>
<th>Vert. Precision</th>
<th>RMS</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0.004</td>
<td>0.012</td>
<td>0.245</td>
<td>6618,538</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.010</td>
<td>0.270</td>
<td>6562,561</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.011</td>
<td>0.407</td>
<td>6618,533</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.011</td>
<td>0.130</td>
<td>6562,554</td>
</tr>
<tr>
<td>✔</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0.001</td>
<td>0.002</td>
<td>0.338</td>
<td>172,818</td>
</tr>
<tr>
<td>✔</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.002</td>
<td>0.170</td>
<td>172,820</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- LOTC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.266</td>
<td>29880,784</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.357</td>
<td>33474,884</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.012</td>
<td>0.187</td>
<td>34103,153</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0.004</td>
<td>0.013</td>
<td>0.175</td>
<td>34258,029</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0.004</td>
<td>0.013</td>
<td>0.311</td>
<td>30161,936</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.011</td>
<td>0.265</td>
<td>30032,797</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.011</td>
<td>0.150</td>
<td>34103,153</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.011</td>
<td>0.349</td>
<td>34258,027</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.012</td>
<td>0.129</td>
<td>30161,937</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.011</td>
<td>0.354</td>
<td>30038,771</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.166</td>
<td>37300,161</td>
</tr>
</tbody>
</table>

Figur 29 Vektorer 4 timer og 1 time

Her kan man se at vektorenes presisjon spesielt i høyde henger sammen med avstanden mellom punktene. Vektorer som er beregnet mellom to basestasjoner vil ha bedre nøyaktighet fordi de begge to er kjente og godt bestemt, men også fordi de har loggeintervall på 1 sekund. På de ukjente punktene valgte jeg å logge hvert 10. sekund, og vektorene hit har derfor ikke like stor mengde av observasjoner å basere seg på.

4.2.2 2t + 30 min

<table>
<thead>
<tr>
<th>Save</th>
<th>Observation</th>
<th>Solution T</th>
<th>Horiz. Precision</th>
<th>Vert. Precision</th>
<th>RMS</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.016</td>
<td>0.167</td>
<td>6618,537</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.011</td>
<td>0.261</td>
<td>6562,562</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.011</td>
<td>0.408</td>
<td>6618,535</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0.007</td>
<td>0.008</td>
<td>0.101</td>
<td>6562,555</td>
</tr>
<tr>
<td>✔</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0.001</td>
<td>0.002</td>
<td>0.332</td>
<td>172,618</td>
</tr>
<tr>
<td>✔</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.003</td>
<td>0.124</td>
<td>172,820</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.206</td>
<td>29880,783</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- LOTC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.266</td>
<td>29880,783</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.016</td>
<td>0.180</td>
<td>30038,776</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0.006</td>
<td>0.017</td>
<td>0.165</td>
<td>34258,016</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.017</td>
<td>0.075</td>
<td>34103,147</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0.004</td>
<td>0.013</td>
<td>0.264</td>
<td>30161,937</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.012</td>
<td>0.357</td>
<td>30038,774</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0.006</td>
<td>0.017</td>
<td>0.350</td>
<td>34258,028</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0.007</td>
<td>0.009</td>
<td>0.110</td>
<td>30161,937</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.013</td>
<td>0.127</td>
<td>34103,154</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.105</td>
<td>37300,161</td>
</tr>
</tbody>
</table>

Figur 30 Vektorer 2 timer og 30 minutter
4.2.3 1t + 15 min

<table>
<thead>
<tr>
<th>Søye</th>
<th>Observation</th>
<th>Solution T</th>
<th>Horiz. Precision</th>
<th>Vert. Precision</th>
<th>RMS</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ SKRC --- FM2</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.015</td>
<td>0.408</td>
<td>6618,535</td>
<td></td>
</tr>
<tr>
<td>✔ SKRC --- FM1</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.011</td>
<td>0.291</td>
<td>6562,562</td>
<td></td>
</tr>
<tr>
<td>✔ SKRC --- FM2</td>
<td>Fixed</td>
<td>0.008</td>
<td>0.017</td>
<td>0.112</td>
<td>6618,538</td>
<td></td>
</tr>
<tr>
<td>✔ SKRC --- FM1</td>
<td>Fixed</td>
<td>0.010</td>
<td>0.012</td>
<td>0.129</td>
<td>6562,555</td>
<td></td>
</tr>
<tr>
<td>✔ FM1 --- FM2</td>
<td>Fixed</td>
<td>0.001</td>
<td>0.002</td>
<td>0.332</td>
<td>172,818</td>
<td></td>
</tr>
<tr>
<td>✔ FM1 --- FM2</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.004</td>
<td>0.148</td>
<td>172,816</td>
<td></td>
</tr>
<tr>
<td>✔ SKRC --- LOTC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.206</td>
<td>29880,763</td>
<td></td>
</tr>
<tr>
<td>✔ SKRC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.358</td>
<td>33474,893</td>
<td></td>
</tr>
<tr>
<td>✔ LOTC --- FM2</td>
<td>Fixed</td>
<td>0.007</td>
<td>0.024</td>
<td>0.350</td>
<td>34258,030</td>
<td></td>
</tr>
<tr>
<td>✔ LOTC --- FM1</td>
<td>Fixed</td>
<td>0.008</td>
<td>0.019</td>
<td>0.127</td>
<td>34103,155</td>
<td></td>
</tr>
<tr>
<td>✔ MOEC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.017</td>
<td>0.357</td>
<td>30038,775</td>
<td></td>
</tr>
<tr>
<td>✔ MOEC --- FM2</td>
<td>Fixed</td>
<td>0.004</td>
<td>0.013</td>
<td>0.284</td>
<td>30161,937</td>
<td></td>
</tr>
<tr>
<td>✔ LOTC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.017</td>
<td>0.075</td>
<td>34103,148</td>
<td></td>
</tr>
<tr>
<td>✔ LOTC --- FM2</td>
<td>Fixed</td>
<td>0.009</td>
<td>0.019</td>
<td>0.119</td>
<td>34258,022</td>
<td></td>
</tr>
<tr>
<td>✔ MOEC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.017</td>
<td>0.061</td>
<td>30038,765</td>
<td></td>
</tr>
<tr>
<td>✔ MOEC --- FM2</td>
<td>Fixed</td>
<td>0.010</td>
<td>0.014</td>
<td>0.143</td>
<td>30161,935</td>
<td></td>
</tr>
<tr>
<td>✔ LOTC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.105</td>
<td>37300,181</td>
<td></td>
</tr>
</tbody>
</table>

Figur 31 Vektorer 1 time og 15 minutter

4.2.4 30 min + 10 min

<table>
<thead>
<tr>
<th>Søye</th>
<th>Observation</th>
<th>Solution T</th>
<th>Horiz. Precision</th>
<th>Vert. Precision</th>
<th>RMS</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ SKRC --- FM2</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.015</td>
<td>0.408</td>
<td>6618,535</td>
<td></td>
</tr>
<tr>
<td>✔ SKRC --- FM1</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.011</td>
<td>0.291</td>
<td>6562,562</td>
<td></td>
</tr>
<tr>
<td>✔ SKRC --- FM2</td>
<td>Fixed</td>
<td>0.007</td>
<td>0.011</td>
<td>0.110</td>
<td>6618,559</td>
<td></td>
</tr>
<tr>
<td>✔ SKRC --- FM1</td>
<td>Fixed</td>
<td>0.011</td>
<td>0.013</td>
<td>0.154</td>
<td>6562,556</td>
<td></td>
</tr>
<tr>
<td>✔ FM1 --- FM2</td>
<td>Fixed</td>
<td>0.001</td>
<td>0.002</td>
<td>0.332</td>
<td>172,818</td>
<td></td>
</tr>
<tr>
<td>✔ FM1 --- FM2</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.005</td>
<td>0.174</td>
<td>172,814</td>
<td></td>
</tr>
<tr>
<td>✔ SKRC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.358</td>
<td>33474,893</td>
<td></td>
</tr>
<tr>
<td>✔ SKRC --- LOTC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.206</td>
<td>29880,763</td>
<td></td>
</tr>
<tr>
<td>✔ MOEC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.017</td>
<td>0.387</td>
<td>30038,775</td>
<td></td>
</tr>
<tr>
<td>✔ LOTC --- FM2</td>
<td>Fixed</td>
<td>0.007</td>
<td>0.024</td>
<td>0.350</td>
<td>34258,030</td>
<td></td>
</tr>
<tr>
<td>✔ LOTC --- FM1</td>
<td>Fixed</td>
<td>0.006</td>
<td>0.019</td>
<td>0.127</td>
<td>34103,155</td>
<td></td>
</tr>
<tr>
<td>✔ MOEC --- FM2</td>
<td>Fixed</td>
<td>0.004</td>
<td>0.013</td>
<td>0.284</td>
<td>30161,937</td>
<td></td>
</tr>
<tr>
<td>✔ MOEC --- FM1</td>
<td>Fixed</td>
<td>0.008</td>
<td>0.011</td>
<td>0.082</td>
<td>30038,770</td>
<td></td>
</tr>
<tr>
<td>✔ LOTC --- FM2</td>
<td>Fixed</td>
<td>0.008</td>
<td>0.015</td>
<td>0.137</td>
<td>34258,028</td>
<td></td>
</tr>
<tr>
<td>✔ LOTC --- FM1</td>
<td>Fixed</td>
<td>0.007</td>
<td>0.013</td>
<td>0.082</td>
<td>34103,154</td>
<td></td>
</tr>
<tr>
<td>✔ MOEC --- FM2</td>
<td>Fixed</td>
<td>0.011</td>
<td>0.015</td>
<td>0.168</td>
<td>30161,932</td>
<td></td>
</tr>
<tr>
<td>✔ LOTC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.105</td>
<td>37300,161</td>
<td></td>
</tr>
</tbody>
</table>

Figur 32 Vektorer 30 minutter og 10 minutter

Spesielt på de lange vektorene mellom ukjent og kjent punkt kan man se at presisjonen blir dårligere og dårligere etter som målesesjonene blir kortere. Dette er naturlig fordi vektorene er basert på mindre og mindre måledata.
4.3 Analyse i Gisline landmåling

Selv om utjevning av grunnlagsnett kan gjøres direkte i TBC har jeg valgt å gjøre dette i Gisline. Dette er fordi Gisline er et program jeg er kjent med fra før og har brukt både på skole og i jobb.

Før vektorene kan importeres og utjevnes må de konverteres fra ASCII til KOF. Dette gjøres enkelt i Gisline. Videre må basestasjonene enten tastes inn med koordinater eller importeres fra en fil, og lagres med status «gitt». De er da låst i grunnriss og høyde.

Jeg startet med utjevning av grunnlagsnettet med de lengste vektorene (4 timer og 1 time) for å se om disse holder mål. Dersom de ikke gjør det, vil mest sannsynlig heller ikke vektorene med kortere observasjonstid være innenfor kravene.

Figur 33 Grunnlagsnettet i Gisline før utjevning
4.3.1 Første utjevning

4.3.1.1 Grovfeilsøk

Hele utjevningsprosessen valgte jeg å gjøre i grunnriss og høyde hver for seg for å lettere kunne lokalisere feil. Etter importen oppdaterte jeg geoidenhøyde på alle punktene, slik at høydeforskjellen kan korrigeres ved hjelp av denne.

Grovfeilsøket fant ingen feil i observasjonsmaterialet i grunnriss, men på testresultatene kan man se at avstandsmålingen mellom FM1 og FM2 ligger rett under grensa for å bli kategorisert som en grov feil.

<table>
<thead>
<tr>
<th>Fra</th>
<th>Til</th>
<th>Restfeil</th>
<th>Est. grovfeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>2 FM2</td>
<td>R</td>
<td>-0.00020</td>
<td>-0.0023</td>
</tr>
<tr>
<td>FM1</td>
<td>2 FM2</td>
<td>D</td>
<td>0.0022</td>
<td>-0.012</td>
</tr>
<tr>
<td>LOC1</td>
<td>1 FM1</td>
<td>R</td>
<td>-0.00000</td>
<td>-0.00000</td>
</tr>
<tr>
<td>LOC1</td>
<td>1 FM1</td>
<td>D</td>
<td>0.004</td>
<td>-0.008</td>
</tr>
<tr>
<td>LOC1</td>
<td>1 FM2</td>
<td>R</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>LOC1</td>
<td>1 FM2</td>
<td>D</td>
<td>-0.005</td>
<td>0.008</td>
</tr>
<tr>
<td>MOC1</td>
<td>1 FM1</td>
<td>R</td>
<td>0.00001</td>
<td>-0.00002</td>
</tr>
<tr>
<td>MOC1</td>
<td>1 FM1</td>
<td>D</td>
<td>0.002</td>
<td>-0.004</td>
</tr>
<tr>
<td>MOC1</td>
<td>1 FM2</td>
<td>R</td>
<td>-0.00002</td>
<td>0.00002</td>
</tr>
<tr>
<td>MOC1</td>
<td>1 FM2</td>
<td>D</td>
<td>-0.007</td>
<td>0.004</td>
</tr>
<tr>
<td>SBR1</td>
<td>1 FM1</td>
<td>R</td>
<td>-0.00001</td>
<td>0.00002</td>
</tr>
<tr>
<td>SBR1</td>
<td>1 FM1</td>
<td>D</td>
<td>0.004</td>
<td>-0.007</td>
</tr>
<tr>
<td>SBR1</td>
<td>1 FM2</td>
<td>R</td>
<td>0.00000</td>
<td>-0.00001</td>
</tr>
<tr>
<td>SBR1</td>
<td>1 FM2</td>
<td>D</td>
<td>-0.005</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Tabellverdi=5.14 (Student-t, f=5, alfa=0.0018)

I forhold til avstanden mellom FM1 og FM2 er restfeilen stor i forhold til de lengre observasjonene.
I høyde er det heller ingen observasjoner som slår ut som grove feil.

Men det kan kommenteres at den estimerte grovfeilen mellom FM1 og FM2 er høy i forhold til de andre vektorene, med tanke på hvor kort denne avstanden er i forhold til de andre. 2 cm avvik på ca. 175 m er forholdsvis mye.

Tabellverdi

Tabellverdi=11.64 *(Student-t, f=2, alfa=0.0037)*

<table>
<thead>
<tr>
<th>Fra</th>
<th>Til</th>
<th>Restfeil</th>
<th>Est. grovfeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td>FM1</td>
<td>dH</td>
<td>0.009</td>
<td>-0.021</td>
</tr>
<tr>
<td>LOTC</td>
<td>FM2</td>
<td>dH</td>
<td>-0.012</td>
<td>0.021</td>
</tr>
<tr>
<td>MOEC</td>
<td>FM1</td>
<td>dH</td>
<td>0.003</td>
<td>-0.007</td>
</tr>
<tr>
<td>MOEC</td>
<td>FM2</td>
<td>dH</td>
<td>-0.003</td>
<td>0.007</td>
</tr>
<tr>
<td>SHRC</td>
<td>FM1</td>
<td>dH</td>
<td>0.015</td>
<td>-0.030</td>
</tr>
<tr>
<td>SHRC</td>
<td>FM2</td>
<td>dH</td>
<td>-0.015</td>
<td>0.030</td>
</tr>
</tbody>
</table>

4.3.1.2 Grunnlagstest

Grunnlagstesten avgjør om det er feil i grunnlaget i nettet, altså om det er feil i punktene med status «gitt». Dette testes ved sammenligning av feilkvadratsum (Spv) i fritt nett og tvungent nett. Dersom ett eller flere punkter slår ut i denne testen, kan en løsning være å fristille de eventuelle punktene dersom man har overbestemmelse nok til å gjøre utjevning uten å ta utgangspunkt i disse.

Både i grunnriss og høyde er grunnlaget godkjent. Beregnet verdi ligger godt under tabellverdi for begge testene. Dette er ingen stor overraskelse da basestasjonene som tidligere nevnt er de best bestemte punktene i landet.
4.3.1.3 Indre pålitelighet

Indre pålitelighet tester hvor store feil som kan passere grovfeilsøket uoppdaget. Den forteller også noe om hvordan observasjonen kontrollerer hverandre gjensidig.

Her kan man se at retning- og avstandsmålingen på observasjonen FM1-FM2 overskrider toleransegrensen. Beregnet maksimal gjenværende feil på retningsmålingen er -0.00564 gon og 0.019 meter på avstandsmålingen.

Beregnet maksimal gjenværende feil på retningsmålingen er -0.00564 gon og 0.019 meter på avstandsmålingen.

INNENFOR PåLITELIHEIT - KonfidensiellINTERVALL [meter / gon]

<table>
<thead>
<tr>
<th>Fra</th>
<th>Till</th>
<th>Restfeil</th>
<th>Est. grovfeil</th>
<th>Indre pål.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>2 FM2</td>
<td>R</td>
<td>0.00020</td>
<td>-0.00223</td>
</tr>
<tr>
<td>FM1</td>
<td>2 FM2</td>
<td>D</td>
<td>0.002</td>
<td>-0.012</td>
</tr>
<tr>
<td>LGTC</td>
<td>1 FM1</td>
<td>R</td>
<td>-0.00000</td>
<td>-0.00000</td>
</tr>
<tr>
<td>LGTC</td>
<td>1 FM1</td>
<td>D</td>
<td>0.004</td>
<td>-0.008</td>
</tr>
<tr>
<td>LGTC</td>
<td>1 FM2</td>
<td>R</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>LGTC</td>
<td>1 FM2</td>
<td>D</td>
<td>-0.005</td>
<td>0.008</td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM1</td>
<td>R</td>
<td>0.00001</td>
<td>-0.00002</td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM1</td>
<td>D</td>
<td>0.002</td>
<td>-0.004</td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM2</td>
<td>R</td>
<td>-0.00002</td>
<td>0.00002</td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM2</td>
<td>D</td>
<td>-0.007</td>
<td>0.004</td>
</tr>
<tr>
<td>SRGC</td>
<td>1 FM1</td>
<td>R</td>
<td>-0.00001</td>
<td>0.00002</td>
</tr>
<tr>
<td>SRGC</td>
<td>1 FM1</td>
<td>D</td>
<td>0.004</td>
<td>-0.007</td>
</tr>
<tr>
<td>SRGC</td>
<td>1 FM2</td>
<td>R</td>
<td>0.00000</td>
<td>-0.00001</td>
</tr>
<tr>
<td>SRGC</td>
<td>1 FM2</td>
<td>D</td>
<td>-0.001</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Tabellverdi=2.57 (Student-t, f=5, alfa=0.0250)

Tilsvarende i høyde; 0.05 meter er den beregnede maksimale gjenværende feilen på høydeforskjellen mellom FM1 og FM2.

INNENFOR PåLITELIHEIT - KonfidensiellINTERVALL [meter / gon]

<table>
<thead>
<tr>
<th>Fra</th>
<th>Till</th>
<th>Restfeil</th>
<th>Est. grovfeil</th>
<th>Indre pål.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>2 FM2</td>
<td>GH</td>
<td>0.001</td>
<td>-0.020</td>
</tr>
<tr>
<td>LGTC</td>
<td>1 FM1</td>
<td>GH</td>
<td>0.009</td>
<td>-0.021</td>
</tr>
<tr>
<td>LGTC</td>
<td>1 FM2</td>
<td>GH</td>
<td>-0.012</td>
<td>0.021</td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM1</td>
<td>GH</td>
<td>0.003</td>
<td>-0.007</td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM2</td>
<td>GH</td>
<td>-0.003</td>
<td>0.007</td>
</tr>
<tr>
<td>SRGC</td>
<td>1 FM1</td>
<td>GH</td>
<td>0.015</td>
<td>0.030</td>
</tr>
<tr>
<td>SRGC</td>
<td>1 FM2</td>
<td>GH</td>
<td>-0.015</td>
<td>0.030</td>
</tr>
</tbody>
</table>

Tabellverdi=4.30 (Student-t, f=2, alfa=0.0250)
4.3.1.4 Ytre pålitelighet

Ytre pålitelighet i gisline beregner som første punkt nybestemte koordinater med midlere feil. Dette er det første og enkleste steget i beregningen, og det forteller standardavviket til de nybestemte punktene med 66% sikkerhet, hypotetisk sett er altså 66% av målingene innenfor disse standardavvikene.

Neste steg i prosessen er ytre pålitelighet på koordinatene (punktdeformasjon). Hypotetisk sett er 99% av målingene innenfor den beregnede nøyaktigheten/påliteligheten.

I grunnriss er det krav om en øvre grense for vinkelfeil og målestokkdifferanse mellom linjer ut fra punktene i grunnlagsnettet. Dette er mål for lokale forskjeller fra riktig størrelse mellom punktene i nettet. For to linjer (s₁ og s₂) mellom ett punkt og to vilkårlige andre punkter blir grenseverdien for vinkelfeil og målestokkdifferanse beregnet. Det trenger ikke å være målinger mellom disse punktene. Kravene er oppfylt dersom avvikene er mindre enn de toleransene man får ved å sette inn aktuelle verdier fra tabellen og inn i formelen:

\[
\Delta = \sqrt{p^2 + \frac{s_1^2 + s_2^2 + s_3^2}{s_1^2 \cdot s_2^2}} k^2
\]

Der \(p \) og \(k \) er konstanter hentet fra kravene i den valgte kvalitetsklassen i standarden og \(s_1, s_2 \) og \(s_3 \) er sidene i en trekant i km. \(\Delta \) blir beregnet i ppm(milliontedeler).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>MOEC</td>
<td>82.78</td>
<td>88.27 *</td>
</tr>
<tr>
<td>FM2</td>
<td>FM1</td>
<td>MOEC</td>
<td>82.45</td>
<td>82.95 *</td>
</tr>
<tr>
<td>L0TC</td>
<td>FM1</td>
<td>S0RC</td>
<td>10.01</td>
<td>-9.16</td>
</tr>
<tr>
<td>S0RC</td>
<td>FM1</td>
<td>FM2</td>
<td>10.01</td>
<td>-9.34</td>
</tr>
<tr>
<td>R</td>
<td>FM1</td>
<td>2 FM2</td>
<td>10.23</td>
<td>-1.65</td>
</tr>
</tbody>
</table>

Tabellverdi=2.26 (Student-t, f=8, alpha=0.0250)

Norgparametere:

- Hvittype: Egendefinert
- Normklasse: g= 10.0 ppm k= 10.0 km

I de to første linjene på målestokkdifferanser kan man se at avstandsmålingen(D) mellom FM1 og FM2 kan ha en gjenværende grovfeil på 0.018 meter. Denne feilen vil gi en målestokkdifferanse på 83.27ppm mellom forbindelsene FM1 – FM2 og FM2 – MOEC. Kravet etter den valgte normen er 87.78ppm, og kravet er derfor ikke oppfylt.

I høyde er det på samme måte et krav om maksimal relativ høydedeformasjon mellom to punkt:

\[\Delta = \sqrt{p^2 + 2 \frac{k^2}{l^2}} \]

Der l er skråavstand (korteste avstand) i km.

Side 49 av 93
På samme måte som målestokkdifferanser og vinkeldeformasjoner, blir resultatet av ytre pålitelighet på høydedeformasjoner presentert på to linjer i dok-fila. Første linja forteller hvilken enkeltforbindelse av høydedeformasjoner for et punkt som kommer dårligst ut i forhold til normen. Høydedeformasjonen og normens krav har benevnelsen meter. I den andre linja vil informasjon om hvilken observasjon som er skyldig denne deformasjonen stå.

I de to første linjene for høydedeformasjoner i utskriften kan man se at høydeforskjellmålingen fra FM1 til FM2 kan ha en gjenværende grovfeil på 7.4 cm. Denne målingen påvirker nettet slik at høydeforskjellen mellom FM1 og FM2 forandrer seg 7.0 cm. Kravet fra normen er på 1.4 cm, og dette er dermed ikke oppfylt.

Ytre pålitelighet i dette grunnlagsnettet viser helt tydelig at det er noe mellom FM1 og FM2 som er dårlig. Ut fra resultatene kan jeg konkludere med at grunnlagsnettet jeg har målt ikke tilfredsstiller kravene til nøyaktighet i «Bygg- og anleggsnett»-standarden. Det gis høye verdier for ytre pålitelighet på målestokkdifferansen og høydeforskjellen mellom de. Fra observasjonstesten vet jeg at avstandsmålingen mellom disse punktene var nært ved å være en grov feil. Derfor har jeg to forslag til hva som kan prøves ut for å forbedre resultatet:

1. Legge til en avstandsmåling med kikkert mellom de to punktene.
2. Beregn eukvelden mellom FM1 og FM2 i den lengste sesjonen.

<table>
<thead>
<tr>
<th>Ytre pålitelighet - høydedeformasjoner [m]</th>
<th>Forbindelse</th>
<th>Observasjon [m/gon]</th>
<th>Indre pål.</th>
<th>Normkrav</th>
<th>VR-double</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>2 FM2</td>
<td>-0.074</td>
<td>0.014</td>
<td>0.070 ***</td>
</tr>
<tr>
<td>FM2</td>
<td>FM1</td>
<td>2 FM1</td>
<td>-0.074</td>
<td>0.014</td>
<td>0.070 ***</td>
</tr>
<tr>
<td>LOEF</td>
<td>FM2</td>
<td>2 FM2</td>
<td>-0.074</td>
<td>0.014</td>
<td>0.070 ***</td>
</tr>
<tr>
<td>MOEC</td>
<td>FM2</td>
<td>2 FM2</td>
<td>-0.074</td>
<td>0.014</td>
<td>0.070 ***</td>
</tr>
<tr>
<td>SHRC</td>
<td>FM2</td>
<td>2 FM2</td>
<td>-0.074</td>
<td>0.014</td>
<td>0.070 ***</td>
</tr>
</tbody>
</table>

Tabellverdi=2.76 (Student-t, f=4, alfa=0.0250)
4.3.2 Andre forsøk
Som en annen variant har jeg prøvd å legge til et sikt (bare avstandsåndling) mellom FM1 og FM2 for å forhåpentligvis bedre bestemmelsen av avstanden.

4.3.2.1 Lang observasjonstid på vektorer (4t + 1t)

I grovfeilsøket ble det nå ingen målinger som var nærmere å være grovfeil, alle ligger godt under tabellverdi både i grunnriss og høyde.

TEST AV OBSERVASJONER - MULTIPPEL T-TEST

<table>
<thead>
<tr>
<th>Fra</th>
<th>Til</th>
<th>Est. grovfeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>1 FM1</td>
<td>0.000</td>
<td>0.06</td>
</tr>
<tr>
<td>FM1</td>
<td>2 FM1</td>
<td>0.000000</td>
<td>-0.000000</td>
</tr>
<tr>
<td>FM2</td>
<td>2 FM1</td>
<td>0.002</td>
<td>2.02</td>
</tr>
<tr>
<td>L05C</td>
<td>1 FM1</td>
<td>0.000000</td>
<td>0.14</td>
</tr>
<tr>
<td>L05C</td>
<td>1 FM1</td>
<td>0.000000</td>
<td>1.40</td>
</tr>
<tr>
<td>L05C</td>
<td>1 FM1</td>
<td>0.000000</td>
<td>0.16</td>
</tr>
<tr>
<td>L05C</td>
<td>1 FM2</td>
<td>0.006</td>
<td>1.40</td>
</tr>
</tbody>
</table>

I ytre pålitelighet på målestokkdifferanser er verdien halvert, og begge punktene er godkjent i grunnriss innenfor valgt norm. I høyde har ytre pålitelighet på høydeforskjellen mellom FM1 og FM2 gått ned fra 7cm til 1,4cm noe som også er innenfor kravene. Begge punktene er dermed innenfor nøyaktighetskravene i standarden og godkjent. Videre er det interessant å se om denne metoden vil hjelpe på resultatet med vektorer med kortere observasjonstid.

Halvert observasjonstid på vektorer (2t + 30 min)

Observasjonene og de nye punktene ble godkjent i både grunnriss og høyde med halvert observasjonstid på vektorene. Ytre pålitelighet på koordinater, målestokkdifferanser, vinkeldeformasjoner og høydedeformasjon er fortsatt godt innenfor normens krav.
4.3.2.3 Kortere observasjonstid på vektorer (1t + 15 min)

Med vektorer på 1 time og på 15 minutter blir alle punkt godkjent i grunnriss, her er også ytre pålitelighet godt innenfor normens krav. I høyde er det litt verre.

Her kan man se at målingen mellom FM1 og FM2 har en potensiell gjenværende feil på 2.6 cm, som vil utgjøre en endring på høydeforskjellen med 1.9cm. Normkravet er 1.4cm, og høydebestemmelsen av FM1 og FM2 er dermed ikke godkjent av standarden.

4.3.2.3 Kortest observasjonstid på vektorer (30 min + 15 min)

Også her blir punktene godkjent i grunnriss med god margin, mens i høyde er avvikene over normens krav. Grunnlagsnettet er dermed ikke godkjent med denne observasjonstiden.
4.3.3 Tredje forsøk

For å gjøre et forsøk på å få grunnlagsnettet godkjent av standarden med kun statiske målinger har jeg beregnet vektorene i grunnlagsnettet på nytt der vekten mellom FM1 og FM2 i første omgang har 4 timer observasjonstid i tillegg til 1 time i sesjon 2. Fra de tidligere beregningene vet jeg at det er her problemene ligger. Vektorene som er beregnet er da:

- 1 time: Moelv – FM2, Løten – FM2, Skreia – FM1, FM1 – FM2

4.3.3.1 Lang observasjonstid på vektorer (4t + 1t)

I grovfeilsøket kan man se at avstandsmålingen mellom FM1 og FM2 ikke lenger er nærme å være en grov feil. Testverdien er 2.63, noe som ligger godt under tabellverdien på 4.39.

I høyde er det heller ingen observasjoner som slår ut som grove feil. Sammenlignet med første utjevning har også den estimerte grovfeilen mellom FM1 og FM2 gått drastisk ned.

TEST AV OBSERVASJONER - MULTIPEL T-TEST

<table>
<thead>
<tr>
<th>Fra</th>
<th>Til</th>
<th>R</th>
<th>Est. grovfeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>R</td>
<td>-0.00019</td>
<td>0.40</td>
</tr>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>D</td>
<td>-0.00019</td>
<td>0.49</td>
</tr>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>R</td>
<td>-0.00019</td>
<td>0.57</td>
</tr>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>D</td>
<td>0.00019</td>
<td>0.59</td>
</tr>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>R</td>
<td>-0.00019</td>
<td>0.61</td>
</tr>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>D</td>
<td>-0.00019</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Tabellverdi=4.33 (Student-t, f=7, alfa=0.0036)

TEST AV OBSERVASJONER - MULTIPEL T-TEST

<table>
<thead>
<tr>
<th>Fra</th>
<th>Til</th>
<th>R</th>
<th>Est. grovfeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>R</td>
<td>-0.00019</td>
<td>0.40</td>
</tr>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>D</td>
<td>-0.00019</td>
<td>0.49</td>
</tr>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>R</td>
<td>-0.00019</td>
<td>0.57</td>
</tr>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>D</td>
<td>0.00019</td>
<td>0.59</td>
</tr>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>R</td>
<td>-0.00019</td>
<td>0.61</td>
</tr>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>D</td>
<td>-0.00019</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Tabellverdi=4.64 (Student-t, f=5, alfa=0.0032)
Kravene til ytre pålitelighet er oppfylt både i grunnriss og høyde. Her kan man også sammenligne resultatene med første utjevning, og man ser helt klart at lengre observasjonstid mellom FM1 og FM2 har hjulpet på resultatet.

På målestokkdifferanser ser man at avstandsmålingen mellom FM1 og FM2 kan ha en gjenverende feil på 9mm, og at denne kan gi en målestokkdifferanse på 0.13ppm mellom forbindelsene MOEC – FM2 og FM2 – FM1. Normkravet er 10.01ppm, og dette er derfor oppfylt.

For vinkler og høyder er også deformasjonene innenfor normkravene, og jeg vil derfor prøve å halvere observasjonstiden på vektorene for å se om dette også gir et godkjent resultat.

4.3.3.2 Halvert observasjonstid på vektorer (2t + 30 min)

Med observasjonstid på 2 timer og på 30 minutter blir også grunnlagsnettet godkjent av «bygg- og anleggsnett».

I ytre pålitelighet på høydedeformasjoner ligger deformasjonen tett oppunder normkravet for FM1 og FM2 (-0.013m kontra 0.014m som er normkravet).

På koordinater, målestokkdifferanser og vinkeldeformasjoner ligger verdiene fortsatt godt under normkravene, og nettet er dermed godkjent både i høyde og grunnriss. Videre vil jeg forøke å halvere observasjonstiden en gang til for å se på resultatene da.
4.3.3.3 Kortere observasjonstid på vektorer (1t + 15 min)

Med observasjonstid på vektorene på 1 time og på 15 minutter blir også grunnlagsnettet godkjent av valgt norm. Ingen observasjoner er i nærheten av å være kvalifisert som grove feil, og ytre pålitelighet på koordinater, vinkeldeformasjoner og målestokkdifferanser er godt innenfor normkravene.

Verdien på ytre pålitelighet på høydedeformasjoner på punktene FM1 og FM2 ligger nå akkurat på normkravet (1.4cm), og de er derfor godkjent av standarden.

I og med at høydebestemmelsen nå ligger akkurat på normkravet, er det sannsynlig at enda kortere observasjonstid vil føre til at grunnlagsnettet ikke blir godkjent av standarden. Likevel vil jeg igjen forsøke å korte ned observasjonstiden for å kjøre analyse mot «Bygg- og anleggsnett» på nytt.

4.3.3.4 Kortest observasjonstid på vektorer (30 min + 10 min)

Med observasjonstid på 30 minutter og 10 minutter blir grunnlagsnettet godkjent i grunnriss med gode resultater på ytre pålitelighet. I høyde er det ingen observasjoner som slår ut i grovefeilsøket, men ytre pålitelighet på høydedeformasjoner på FM1 og FM2 er 1.9cm, mot normkravet på 1.4cm.

Dette er ikke et veldig stort avvik, men grunnlagsnettet blir altså ikke godkjent i høyde.
5 Resultat

5.1 Første forsøk

Det første forsøket på etablering av to nye fastmerker var med det opprinnelige måleopplegget som er beskrevet i kapittel 3. Her ble resultatet at måleopplegget med vektorer på 4 timer og 1 time ikke ble godkjent av standarden verken i høyde eller grunnriss. Utfra beregningsdokumentasjonen skyldtes dette dårlig bestemmelse av avstanden mellom FM1 og FM2. Videre utjevning av vektorer med kortere observasjonstid ble avlyst da heller ikke disse ville blitt godkjent.

Etter samtale med veileder ble vi enige om å gjøre et forsøk på å styrke bestemmelsen av avstanden mellom FM1 og FM2 med en kikkertmåling mellom punktene, da det helt klart var her problemet lå.

5.2 Andre forsøk

I det andre forsøket fortsatte jeg i det samme beregningsprosjektet bare med å legge til en avstandsmåling med kikkert mellom FM1 og FM2. Først begynte jeg med utjevning av vektorene med lengst observasjonstid (4 timer og 1 time). Dette ble godkjent i både høyde og grunnriss med gode marginer til normkravene.

Videre halverte jeg observasjonstiden på vektorene. Dette resulterte også i godkjent grunnlagsnett, fortsatt med gode marginer til kravene i standarden. Kortere observasjonstid, henholdsvis 1 time + 15 minutter og 30 minutter + 10 minutter resulterte i godkjent grunnriss, men ikke høyde.

Koordinatene på FM1 og FM2 i de godkjente beregningene (i EUREF89/NN1954):

<table>
<thead>
<tr>
<th>Observasjonstid 4t + 1t</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>6727007.906</td>
<td>599047.560</td>
<td>231.475</td>
</tr>
<tr>
<td>FM2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>6726860.877</td>
<td>598957.446</td>
<td>242.456</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observasjonstid 2t + 30 min</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>6727007.910</td>
<td>599047.561</td>
<td>231.465</td>
</tr>
<tr>
<td>FM2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>6726860.881</td>
<td>598957.448</td>
<td>242.447</td>
</tr>
</tbody>
</table>
5.3 Tredje forsøk

For å holde meg til det oppgaven i utgangspunktet gikk ut på, å gjøre statiske målinger mot Kartverkets basestasjoner, ville jeg gjøre et forsøk til på å kun benytte meg av dette for å få grunnlagsnettet godkjent etter kravene i «Bygg –og anleggsnett». Jeg valgte å beregne vektorer på nytt, denne gangen med vektor mellom FM1 og FM2 i begge sesjoner.

Resultatet ble at utjevningen med vektorer på 4 timer + 1 time, 2 timer + 30 min og 1 time + 15 min hadde nøyaktighet som ble godkjent av standarden. Dette var en kraftig forbedring av resultatet fra det første forsøket.

Koordinatene på FM1 og FM2:

<table>
<thead>
<tr>
<th>Observasjonstid 4t + 1t</th>
<th>N</th>
<th>Ø</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>6727007.906</td>
<td>599047.558</td>
<td>231.484</td>
</tr>
<tr>
<td>FM2</td>
<td>6726860.878</td>
<td>598957.446</td>
<td>242.463</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observasjonstid 2t + 30 min</th>
<th>N</th>
<th>Ø</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>6727007.905</td>
<td>599047.560</td>
<td>231.483</td>
</tr>
<tr>
<td>FM2</td>
<td>6726860.883</td>
<td>598957.450</td>
<td>242.465</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observasjonstid 1t + 15 min</th>
<th>N</th>
<th>Ø</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>6727007.908</td>
<td>599047.561</td>
<td>231.480</td>
</tr>
<tr>
<td>FM2</td>
<td>6726860.888</td>
<td>598957.451</td>
<td>242.470</td>
</tr>
</tbody>
</table>
6 Diskusjon

I dette kapitlet vil jeg reflektere litt rundt hvorfor resultatet ble som det ble og hva som kunne vært gjort annerledes.

Valget av måleopplegg og observasjonstid ble gjort slik fordi logisk sett burde de lengste vektorene trenge lengst observasjonstid og de korte vektorene kortest observasjonstid. Det jeg i ettertid kan konkludere med er at den ekstremt store forskjellen på avstandene mellom punktene har skapt problemer som jeg i utgangspunktet ble ganske overrasket over. I ettertid har jeg forstått at avstandsforskjeller med GNSS-målinger fungerer litt på samme måte som sentreringsfeil ved kikkertmålinger. En sentreringsfeil vil ha størst virkning på korte sikt, og mindre og mindre virkning jo lengre man sikter. I tillegg er utjevningsprosessen av grunnlagsnett bygd opp på den måten at kravet til høydedeformasjoner, vinkeldeformasjoner og målestokkdifferanser er avhengig av avstand, og da strengest for korte avstander. Dette kan man lett se i utjevningsdokumentasjonen.

En ting som kunne vært interessant å prøve videre er å utføre de samme målingene i et grunnlagsnett med større avstand mellom punktene som skal etableres. Da vil muligens avstanden mellom de bli bedre bestemt.

Som en rød tråd i beregningene kan man se at det er høyden som er problemet når observasjonstiden på vektorene kortes ned. Satellittmålinger gir generelt en dårligere bestemmelse i høyde enn i grunnriss. Allikevel klarer jeg på tredje forsøket å komme ned i observasjonstid på 1 time og 15 minutter med resultatet godkjent grunnlagsnett.
7 Konklusjon

Målet med denne bacheloroppgaven var å finne ut om etablering av fastmerker ved hjelp av statiske målinger til Kartverkets permanente geodetiske basestasjoner kan være tidsbesparende sammenlignet med statiske målinger til landsnett-/stamnettpunkter.

For å finne ut av dette har jeg endt opp med å forsøke tre beregningsmetoder hvor målet har vært å komme ned i så kort observasjonstid som mulig med et grunnlagsnett som er godkjent etter kravene i «Bygg- og anleggsnett». Den korteste observasjonstiden kom jeg til i det tredje forsøket (se kap.4.3.3) og denne var 1 time på første målesesjon og 15 minutter på andre målesesjon.

Det er mange ting som spiller inn når denne metoden skal vurderes opp mot oppstilling og observasjoner fra landsnett-/stamnettpunkter. Avstander til landsnett-/stamnettpunkter og hvordan disse ligger, avstander til Kartverkets basestasjoner, avstand mellom punktene som skal etableres og hvor mange punkter som skal etableres for å nevne noe. I dette tilfellet ble det brukt to landsnettpunkter som lå like ved (2-3km) og som var forholdvis greie å finne frem til. Observasjonstiden i disse punktene var 1 time.

Gjennom beregninger av vektorer og utjevning av grunnlagsnett i programvare har jeg kommet frem til følgende punkter som bør legges vekt på ved planlegging av denne metoden:

- Det er viktig å vurdere avstander mellom punkter som skal etableres innbyrdes og deres avstand til basestasjonene når denne metoden skal brukes.
- Dersom det er kort avstand mellom punktene som skal etableres, bør det legges mye vekt på observasjoner mellom disse. Avstandene til basestasjonene vil i de fleste tilfeller være store, og vektorene hit har i hvert fall i mine beregninger vært veldig godt bestemt.

Sammenlignet med statiske målinger til landsnett-/stamnettpunkter vil jeg utfra mine resultater påstå at metoden ikke er mer tidkrevende. Her er det som sagt mange faktorer som spiller inn, men i dette tilfellet, med den korteste observasjonstiden med godkjente punkter lagt til grunn, er min konklusjon at statiske målinger til Kartverkets basestasjoner er tidsbesparende.
8 Kilder

8.1 Litteratur, nettsider og standarder

1: NTNU i Gjøvik, emnebeskrivelse 2015-2016.
(lest: 26.01.16)

4: Store Norske Leksikon, GLONASS, https://snl.no/GLONASS (lest: 01.03.16).

6: Store Norske Leksikon, Dilution of precision, https://snl.no/DOP%2Fsatellittgeometri
(lest: 23.02.16)

7: Kartverket, geodivisjonen, Satellittbasert posisjonsbestemmelse, 2009.

8: Kartverket, geodivisjonen, Satellittbasert posisjonsbestemmelse, 2009.

10: Zubinaite, Vilma, forelesningsnotat fra GEO3071 Satellittgeodesi.

11: Kartverket, geodivisjonen, Standard for grunnlagsnett, 2009

17: Zubinaite, Vilma, forelesningsnotat fra GEO3071 Satellittgeodesi.

8.2 Kildehenvisninger figurer

Figur 1: Skjermbilde fra Kartverkets fastmerkekart,

Figur 3: Illustrasjon av statisk måling fra forelesningsnotat GEO3071 – Satellittgeodesi.

Figur 4: Illustrasjon av DOP-verdier fra forelesningsnotat GEO3071 –Satellittgeodesi.

Figur 5: Illustrasjon av kodemåling, Skogseth: Grunnleggende landmåling(s.154).
Figur 6: Illustrasjon av fasemåling, Skogseth: Grunnleggende landmåling (s.155).
Figur 7: Framsiden av standarden «Bygg- og anleggsnett».
Figur 25: Oppstilling over FM2, foto: Emilie Heen Fladby.
Figur 26: Fine måleforhold, foto: Emilie Heen Fladby.

Figur 27: Satellitt med mye forstyrrelsen, skjermdump fra Trimble Business Centre.

Figur 28: Satellitt med lite signaler, skjermdump fra Trimble Business Centre.

Figur 29: Vektorer 4 timer og 1 time, skjermdump fra Trimble Business Centre.

Figur 30: Vektorer 2 timer og 30 minutter, skjermdump fra Trimble Business Centre.

Figur 31: Vektorer 1 time og 15 minutter, skjermdump fra Trimble Business Centre.

Figur 32: Vektorer 30 minutter og 10 minutter, skjermdump fra Trimble Business Centre.

Figur 33: Grunnlagsnettet i Gisline før utjevning, skjermdump fra Gisline landmåling.
9 Vedlegg

9.1 Vektorer første forsøk

Vedlegg 1: Prosesserte vektorer 4t + 1t

<table>
<thead>
<tr>
<th>Save</th>
<th>Observation</th>
<th>Solution T</th>
<th>Horiz. Precision</th>
<th>Vert. Precision</th>
<th>RMS</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0.004</td>
<td>0.012</td>
<td>0.245</td>
<td>6618,535</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.010</td>
<td>0.279</td>
<td>6562,561</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.011</td>
<td>0.467</td>
<td>6618,533</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.011</td>
<td>0.130</td>
<td>6562,554</td>
</tr>
<tr>
<td>✔</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0.001</td>
<td>0.002</td>
<td>0.338</td>
<td>172,818</td>
</tr>
<tr>
<td>✔</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.002</td>
<td>0.170</td>
<td>172,820</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- LOTC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.266</td>
<td>29680,764</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.357</td>
<td>33474,894</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.012</td>
<td>0.187</td>
<td>34103,153</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0.004</td>
<td>0.013</td>
<td>0.175</td>
<td>34258,029</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0.004</td>
<td>0.013</td>
<td>0.311</td>
<td>30161,936</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.011</td>
<td>0.265</td>
<td>30032,767</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.011</td>
<td>0.130</td>
<td>34103,153</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.011</td>
<td>0.349</td>
<td>34258,027</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.012</td>
<td>0.129</td>
<td>30161,937</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.011</td>
<td>0.384</td>
<td>30038,771</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.106</td>
<td>37300,161</td>
</tr>
</tbody>
</table>

Vedlegg 2: Proseserte vektorer 2t + 30 min

<table>
<thead>
<tr>
<th>Save</th>
<th>Observation</th>
<th>Solution T</th>
<th>Horiz. Precision</th>
<th>Vert. Precision</th>
<th>RMS</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.016</td>
<td>0.167</td>
<td>6618,537</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.011</td>
<td>0.261</td>
<td>6562,562</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.011</td>
<td>0.408</td>
<td>6618,535</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0.007</td>
<td>0.009</td>
<td>0.101</td>
<td>6562,555</td>
</tr>
<tr>
<td>✔</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0.001</td>
<td>0.002</td>
<td>0.332</td>
<td>172,818</td>
</tr>
<tr>
<td>✔</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.003</td>
<td>0.124</td>
<td>172,820</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.358</td>
<td>33474,893</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- LOTC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.206</td>
<td>39680,763</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.016</td>
<td>0.180</td>
<td>30038,766</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0.006</td>
<td>0.017</td>
<td>0.165</td>
<td>34258,016</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.017</td>
<td>0.075</td>
<td>34103,147</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0.004</td>
<td>0.013</td>
<td>0.264</td>
<td>30161,937</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.012</td>
<td>0.387</td>
<td>30038,774</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0.008</td>
<td>0.017</td>
<td>0.350</td>
<td>34258,028</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0.007</td>
<td>0.009</td>
<td>0.110</td>
<td>30161,837</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.013</td>
<td>0.127</td>
<td>34103,154</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.105</td>
<td>37300,161</td>
</tr>
</tbody>
</table>
Vedlegg 3: Prosesseserte vektorer 1t + 15 min

<table>
<thead>
<tr>
<th>Save</th>
<th>Observation</th>
<th>Solution T</th>
<th>Horiz. Precision</th>
<th>Vert. Precision</th>
<th>RMS</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.015</td>
<td>0.408</td>
<td>6618,535</td>
</tr>
<tr>
<td>✓</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.011</td>
<td>0.291</td>
<td>6592,562</td>
</tr>
<tr>
<td>✓</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0.008</td>
<td>0.017</td>
<td>0.112</td>
<td>6618,538</td>
</tr>
<tr>
<td>✓</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0.010</td>
<td>0.012</td>
<td>0.129</td>
<td>6592,555</td>
</tr>
<tr>
<td>✓</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0.001</td>
<td>0.002</td>
<td>0.332</td>
<td>172,818</td>
</tr>
<tr>
<td>✓</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.004</td>
<td>0.148</td>
<td>172,816</td>
</tr>
<tr>
<td>✓</td>
<td>SKRC --- LOTC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.206</td>
<td>29880,763</td>
</tr>
<tr>
<td>✓</td>
<td>SKRC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.358</td>
<td>33474,893</td>
</tr>
<tr>
<td>✓</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0.007</td>
<td>0.024</td>
<td>0.350</td>
<td>34258,030</td>
</tr>
<tr>
<td>✓</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0.006</td>
<td>0.019</td>
<td>0.127</td>
<td>34103,155</td>
</tr>
<tr>
<td>✓</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.017</td>
<td>0.387</td>
<td>30038,775</td>
</tr>
<tr>
<td>✓</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0.004</td>
<td>0.013</td>
<td>0.264</td>
<td>30161,937</td>
</tr>
<tr>
<td>✓</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.017</td>
<td>0.075</td>
<td>34103,148</td>
</tr>
<tr>
<td>✓</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0.009</td>
<td>0.019</td>
<td>0.119</td>
<td>34258,022</td>
</tr>
<tr>
<td>✓</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.017</td>
<td>0.061</td>
<td>30038,765</td>
</tr>
<tr>
<td>✓</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0.010</td>
<td>0.014</td>
<td>0.143</td>
<td>30161,935</td>
</tr>
<tr>
<td>✓</td>
<td>LOTC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.105</td>
<td>37300,161</td>
</tr>
</tbody>
</table>

Vedlegg 4: Prosesseserte vektorer 30 min + 10 min

<table>
<thead>
<tr>
<th>Save</th>
<th>Observation</th>
<th>Solution T</th>
<th>Horiz. Precision</th>
<th>Vert. Precision</th>
<th>RMS</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.015</td>
<td>0.408</td>
<td>6618,535</td>
</tr>
<tr>
<td>✓</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.011</td>
<td>0.291</td>
<td>6592,562</td>
</tr>
<tr>
<td>✓</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0.007</td>
<td>0.011</td>
<td>0.110</td>
<td>6618,538</td>
</tr>
<tr>
<td>✓</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0.011</td>
<td>0.013</td>
<td>0.154</td>
<td>6562,556</td>
</tr>
<tr>
<td>✓</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0.001</td>
<td>0.002</td>
<td>0.332</td>
<td>172,818</td>
</tr>
<tr>
<td>✓</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.005</td>
<td>0.174</td>
<td>172,814</td>
</tr>
<tr>
<td>✓</td>
<td>SKRC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.358</td>
<td>33474,893</td>
</tr>
<tr>
<td>✓</td>
<td>SKRC --- LOTC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.206</td>
<td>29880,763</td>
</tr>
<tr>
<td>✓</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.017</td>
<td>0.387</td>
<td>30038,775</td>
</tr>
<tr>
<td>✓</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0.007</td>
<td>0.024</td>
<td>0.350</td>
<td>34258,030</td>
</tr>
<tr>
<td>✓</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0.006</td>
<td>0.019</td>
<td>0.127</td>
<td>34103,155</td>
</tr>
<tr>
<td>✓</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0.004</td>
<td>0.013</td>
<td>0.284</td>
<td>30161,937</td>
</tr>
<tr>
<td>✓</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0.006</td>
<td>0.011</td>
<td>0.082</td>
<td>30038,770</td>
</tr>
<tr>
<td>✓</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0.008</td>
<td>0.015</td>
<td>0.137</td>
<td>34258,028</td>
</tr>
<tr>
<td>✓</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0.007</td>
<td>0.013</td>
<td>0.082</td>
<td>34103,154</td>
</tr>
<tr>
<td>✓</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0.011</td>
<td>0.015</td>
<td>0.188</td>
<td>30161,932</td>
</tr>
<tr>
<td>✓</td>
<td>LOTC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.105</td>
<td>37300,161</td>
</tr>
</tbody>
</table>
9.2 Pålitelighetsanalyse første forsøk

Vedlegg 5: Grovfeilsøk grunnriss 4t + 1t

<table>
<thead>
<tr>
<th>TEST AV OBSERVASJONER</th>
<th>DATUM: EUREF89 - SONE 32</th>
<th>UTJEVNING I GRUNNRISS</th>
<th>FRI UTJEVNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST AV OBSERVASJONER - MULTIPPEL T-TEST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fra</td>
<td>T11</td>
<td>Restfeil</td>
<td>Est.grovfeil</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>FM1</td>
<td>2 FM2</td>
<td>D</td>
<td>0.00020</td>
</tr>
<tr>
<td>LOTC</td>
<td>1 FM1</td>
<td>R</td>
<td>-0.00000</td>
</tr>
<tr>
<td>LOTC</td>
<td>1 FM1</td>
<td>D</td>
<td>0.0044</td>
</tr>
<tr>
<td>LOTC</td>
<td>1 FM2</td>
<td>R</td>
<td>0.00000</td>
</tr>
<tr>
<td>LOTC</td>
<td>1 FM2</td>
<td>D</td>
<td>-0.005</td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM1</td>
<td>R</td>
<td>0.00021</td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM1</td>
<td>D</td>
<td>0.002</td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM2</td>
<td>R</td>
<td>-0.00020</td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM2</td>
<td>D</td>
<td>-0.007</td>
</tr>
<tr>
<td>SKRC</td>
<td>1 FM1</td>
<td>R</td>
<td>-0.00002</td>
</tr>
<tr>
<td>SKRC</td>
<td>1 FM1</td>
<td>D</td>
<td>0.004</td>
</tr>
<tr>
<td>SKRC</td>
<td>1 FM2</td>
<td>R</td>
<td>0.00000</td>
</tr>
<tr>
<td>SKRC</td>
<td>1 FM2</td>
<td>D</td>
<td>-0.003</td>
</tr>
</tbody>
</table>

Tabellverdi=5.14 (Student-t, f=5, alfa=0.0018)

Oppsummering etter test av observasjoner:

<table>
<thead>
<tr>
<th>Ant.obs.</th>
<th>Akkumulert (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 < Test/Tabell < 2.0</td>
<td>0</td>
</tr>
<tr>
<td>2.0 < Test/Tabell < 3.0</td>
<td>0</td>
</tr>
<tr>
<td>3.0 < Test/Tabell < 3.0</td>
<td>0</td>
</tr>
<tr>
<td>Ukontrollerbar</td>
<td>0</td>
</tr>
</tbody>
</table>

Statistikk

Antall iterasjoner	:	2
Antall observasjoner retning	:	7
Antall observasjoner avstand	:	7
Antall observasjoner	:	14
Antall ukjente grunnrisskoordinater	:	10
Antall ukjente	:	10
Rangdefekt	:	2
Antall ukjente korrigert	:	8
Antall overbestemmelser	:	6
Antall korrelasjoner	:	7

Feilkvadratsum: 11.07155947
Beregnet std. avvik på vektsenheten = 1.3584
Antatt std. avvik på vektsenheten = 1.0000

Test av m0:
Tabellverdi = 12.59 (Kjikvadrat, f=6, alfa=0.0500)
Beregnet verdi = 11.07
Ingen feil i observasjonsmatrialet er funnet
Vedlegg 6: Grovfeilsøk høyde 4t + 1t

TEST AV OBSERVASJONER

UTJEVNING I HØYDE

FRI UTJEVNING

TEST AV OBSERVASJONER - MULTIPPEL T-TEST

<table>
<thead>
<tr>
<th>Fra</th>
<th>Til</th>
<th>Restfeil</th>
<th>Est.grovfeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>2</td>
<td>FM2</td>
<td>dh</td>
<td>0.001</td>
</tr>
<tr>
<td>LOTC</td>
<td>1</td>
<td>FM1</td>
<td>dh</td>
<td>0.009</td>
</tr>
<tr>
<td>LOTC</td>
<td>1</td>
<td>FM2</td>
<td>dh</td>
<td>-0.012</td>
</tr>
<tr>
<td>MOEC</td>
<td>1</td>
<td>FM1</td>
<td>dh</td>
<td>0.003</td>
</tr>
<tr>
<td>MOEC</td>
<td>1</td>
<td>FM2</td>
<td>dh</td>
<td>-0.003</td>
</tr>
<tr>
<td>SKRC</td>
<td>1</td>
<td>FM1</td>
<td>dh</td>
<td>0.015</td>
</tr>
<tr>
<td>SKRC</td>
<td>1</td>
<td>FM2</td>
<td>dh</td>
<td>-0.015</td>
</tr>
</tbody>
</table>

Tabellverdi=11.64 (Student-t, f-2, alfa-0.0037)

OPPSUMERING ETTER TEST AV OBSERVASJONER:

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Ant.obs.</th>
<th>Akkumulert (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 < Test/Tabell < 2.0</td>
<td>7</td>
<td>100.00</td>
</tr>
<tr>
<td>2.0 < Test/Tabell < 3.0</td>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>3.0 < Test/Tabell < 3.0</td>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>Ukontrollerbar</td>
<td>0</td>
<td>100.00</td>
</tr>
</tbody>
</table>

STATISTIKK

<table>
<thead>
<tr>
<th>Antall i tabell</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usembleider</td>
<td>2</td>
</tr>
<tr>
<td>Usembleider</td>
<td>7</td>
</tr>
<tr>
<td>Usembleider</td>
<td>7</td>
</tr>
<tr>
<td>Usembleider</td>
<td>2</td>
</tr>
<tr>
<td>Usembleider</td>
<td>2</td>
</tr>
<tr>
<td>Rangeføkken</td>
<td>3</td>
</tr>
<tr>
<td>Usembleider</td>
<td>4</td>
</tr>
<tr>
<td>Usembleider</td>
<td>3</td>
</tr>
<tr>
<td>Feilsum</td>
<td>2.01319173</td>
</tr>
</tbody>
</table>

Beregnet std.avvik på vektenheten : 0.8192
Antall std.avvik på vektenheten : 1.0000

TEST AV MØ

Tabellverdi = 7.82 (Kjikkvadrat, f-3, alfa-0.0500)
Beregnet verdi = 2.01

Enge/var feil i observasjonsmaterialet er funnet.
Vedlegg 7: Ytre pålitelighet grunnriss 4t + 1t

YTRE PÅLITELIGHET
DATUM: EUREF99 - SONE 32
UTJEVNING I GRUNNRISS
TYNGDE UTJEVNING

GITTE KOORDINATER [meter]

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td>6745217.085</td>
<td>627870.969</td>
<td>255.534</td>
</tr>
<tr>
<td>MOEC</td>
<td>6756258.245</td>
<td>392233.749</td>
<td>164.704</td>
</tr>
<tr>
<td>SKRC</td>
<td>6725497.774</td>
<td>605431.765</td>
<td>190.189</td>
</tr>
</tbody>
</table>

NYBESTEMTE KOORDINATER MED MIDLERE FEIL [meter]

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
<th>SN</th>
<th>SE</th>
<th>SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>6727907.906</td>
<td>599047.560</td>
<td>0.002</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM2</td>
<td>6726860.877</td>
<td>398937.446</td>
<td>0.002</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YTRE PÅLITELIGHET - KOORDINATER [meter]

<table>
<thead>
<tr>
<th>KOORDINAT</th>
<th>Observasjon....[meter/gon]</th>
<th>Indre pål.</th>
<th>Ytre pål.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N FM1</td>
<td>MOEC</td>
<td>1 FM1</td>
<td>D -0.014</td>
</tr>
<tr>
<td>E FM1</td>
<td>FM1</td>
<td>2 FM1</td>
<td>R -0.00465</td>
</tr>
<tr>
<td>P FM1</td>
<td>FM1</td>
<td>2 FM1</td>
<td>R -0.00465</td>
</tr>
<tr>
<td>N FM2</td>
<td>FM1</td>
<td>2 FM2</td>
<td>D -0.012</td>
</tr>
<tr>
<td>E FM2</td>
<td>FM1</td>
<td>2 FM2</td>
<td>R -0.00465</td>
</tr>
<tr>
<td>P FM2</td>
<td>FM1</td>
<td>2 FM2</td>
<td>R -0.00465</td>
</tr>
</tbody>
</table>

Tabellverdi=2.23 (Student-t, f=10, alfa=0.0250)

YTRE PÅLITELIGHET - MALESTOKKDIFFERANSER [ppm]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>SKRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D FM1</td>
<td>2 FM1</td>
<td></td>
<td>-0.012</td>
<td>82.98</td>
<td>41.21</td>
<td></td>
</tr>
<tr>
<td>FM2</td>
<td>FM1</td>
<td></td>
<td></td>
<td>82.45</td>
<td>40.94</td>
<td></td>
</tr>
<tr>
<td>D FM1</td>
<td>2 FM1</td>
<td></td>
<td>-0.012</td>
<td>82.98</td>
<td>41.21</td>
<td></td>
</tr>
<tr>
<td>LOTC</td>
<td>FM1</td>
<td>MOEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R FM1</td>
<td>2 FM1</td>
<td></td>
<td></td>
<td>10.01</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>MOEC</td>
<td>FM1</td>
<td>FM2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R FM1</td>
<td>2 FM1</td>
<td></td>
<td></td>
<td>10.01</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>SKRC</td>
<td>FM1</td>
<td>FM2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R FM1</td>
<td>2 FM1</td>
<td></td>
<td></td>
<td>10.23</td>
<td>-1.50</td>
<td></td>
</tr>
</tbody>
</table>

Tabellverdi=2.23 (Student-t, f=10, alfa=0.0250)

Normparametre:
- Normtype: Egendefinert
- Normklasse: (p= 10.0 ppm k= 10.0 mm)

YTRE PÅLITELIGHET - VINKELFORMASJONER [ppm]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>LOTC</td>
<td></td>
<td>82.80</td>
<td>60.76</td>
<td></td>
</tr>
<tr>
<td>R FM1</td>
<td>2 FM1</td>
<td></td>
<td></td>
<td>82.43</td>
<td>60.48</td>
<td></td>
</tr>
<tr>
<td>FM2</td>
<td>FM1</td>
<td>LOTC</td>
<td></td>
<td>82.80</td>
<td>60.76</td>
<td></td>
</tr>
<tr>
<td>R FM1</td>
<td>2 FM1</td>
<td></td>
<td></td>
<td>82.43</td>
<td>60.48</td>
<td></td>
</tr>
<tr>
<td>LOTC</td>
<td>FM1</td>
<td>SKRC</td>
<td></td>
<td>10.01</td>
<td>-0.13</td>
<td></td>
</tr>
<tr>
<td>R FM1</td>
<td>2 FM1</td>
<td></td>
<td></td>
<td>10.01</td>
<td>-0.25</td>
<td></td>
</tr>
<tr>
<td>MOEC</td>
<td>FM1</td>
<td>FM2</td>
<td></td>
<td>10.23</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>R FM1</td>
<td>2 FM1</td>
<td></td>
<td></td>
<td>10.23</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>SKRC</td>
<td>FM1</td>
<td>FM2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R FM1</td>
<td>2 FM1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D FM1</td>
<td>2 FM1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabellverdi=2.23 (Student-t, f=10, alfa=0.0250)

Normparametre:
- Normtype: Egendefinert
- Normklasse: (p= 10.0 ppm k= 10.0 mm)

STATISTIKK
- Antall iterasjoner: 2
- Antall observasjoner retning: 7
- Antall observasjoner avstand: 8
- Antall observasjoner: 13
- Antall ukjente grunnrisskoordinater: 4
- Antall ukjente: 4
- Antall overbestemmelser: 11
- Maksimalt antall punkt pr. sektor: 2
- Grenseavstand for nabopunktet: 50000.000
- Antall enkeltforbindelser: 16
- Antall dubbeltforbindelser: 19
- Antall korrelasjoner: 7
- Feilkvadratsum: 13.83595200
- Beregnet std. avvik på vektensheten: 1.1213
- Antalet std. avvik på vektensheten: 1.0000

TEST AV MD
- Tabellverdi = 10.67 (Kjikkvadrat, f=11, alfa=0.0500)
- Beregnet verdi = 13.84

GRATULERER, Alle dubbeltforbindelser godtas av valgt norm i grunnriss!
Vedlegg 8: Ytre pålitelighet høyde 4t + 1t

Ytre pålitelighet

Utjevning i høyde

Tvungen utjevning

<table>
<thead>
<tr>
<th>Gjitte koordinater [meter]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punkt</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>LTC</td>
</tr>
<tr>
<td>MÖEC</td>
</tr>
<tr>
<td>SKRC</td>
</tr>
</tbody>
</table>

Nybestemte koordinater med midlere feil [meter]

<table>
<thead>
<tr>
<th>Punkt</th>
<th>N</th>
<th>E</th>
<th>H</th>
<th>sN</th>
<th>sE</th>
<th>sH</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>231.475</td>
<td>0.009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM2</td>
<td>242.456</td>
<td>0.009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ytre pålitelighet - koordinater [meter]

<table>
<thead>
<tr>
<th>Koordinater</th>
<th>Observasjon...[meter/gon]</th>
<th>Indre pål.</th>
<th>Ytre pål.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>MÖEC 1 FM1 dh 0.083 0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM2</td>
<td>MÖEC 1 FM1 dh 0.083 0.015</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabellverdi=2.57 (Student-t, f=5, alfa=0.0250)

Ytre pålitelighet - høyde deformasjoner [m]

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Observasjon...[meter/gon]</th>
<th>Indre pål.</th>
<th>YP-dh. def.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>FM2 dh FM1 2 FM2 -0.023 0.014 0.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM2</td>
<td>FM1 dh FM1 2 FM2 -0.023 0.014 0.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTC</td>
<td>MÖEC dh MÖEC 1 FM1 0.083 0.341 0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MÖEC</td>
<td>FM1 dh MÖEC 1 FM1 0.083 0.301 0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKRC</td>
<td>MÖEC dh MÖEC 1 FM1 0.083 0.067 0.016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabellverdi=2.57 (Student-t, f=5, alfa=0.0250)

Normalparametre:

- Normtype: Egendefinert
- Normklasse: (p= 10.0 ppm k= 10.0 mm)

Statistikk

- Antall iterasjoner: 1
- Antall observasjoner høydeforskjell: 8
- Antall observasjoner: 8
- Antall ukjente høydekoordinater: 2
- Antall ukjente: 2
- Antall overbestemmelser: 6
- Maksimalt antall punkt pr. sektor: 2
- Grenseavstand for nabopunkt: 50000.000
- Antall enkeltforbindelser: 16
- Antall dobbeltforbindelser: 19
- Feilkvadratsum: 8.70400494
- Beregnet std. avvik på vektsheten: 1.2044
- Antatt std. avvik på vektsheten: 1.0000

Test av Mo

- Tabellverdi = 12.50 (Kjikvadrat, f=6, alfa=0.0500)
- Beregnet verdi = 8.70

Bemerkninger: Alle enkeltforbindelser godtas av valgt norm i høyde!
9.3 Pålitelighetsanalyse andre forsøk (med kikkertmåling)

Vedlegg 9: Grovfeilsøk grunnriss 4t + 1t

<table>
<thead>
<tr>
<th>TEST AV OBSERVASJONER</th>
<th>DATUM: EREF89 – SOME 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTEVÆRING 1 GRUNNRISS</td>
<td></td>
</tr>
<tr>
<td>FRE UTEVÆRING</td>
<td></td>
</tr>
</tbody>
</table>

TEST AV OBSERVASJONER – MULTIPPEL T-TEST

<table>
<thead>
<tr>
<th>Fra</th>
<th>Til</th>
<th>Restfeil</th>
<th>Est.grovfeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>1 FM2</td>
<td>D</td>
<td>-0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>FM1</td>
<td>2 FM2</td>
<td>R</td>
<td>-0.00020</td>
<td>-0.00225</td>
</tr>
<tr>
<td>FM1</td>
<td>2 FM2</td>
<td>D</td>
<td>0.002</td>
<td>-0.006</td>
</tr>
<tr>
<td>LOTC</td>
<td>1 FM1</td>
<td>R</td>
<td>-0.00000</td>
<td>-0.00000</td>
</tr>
<tr>
<td>LOTC</td>
<td>1 FM1</td>
<td>D</td>
<td>0.004</td>
<td>-0.008</td>
</tr>
<tr>
<td>LOTC</td>
<td>1 FM2</td>
<td>R</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>LOTC</td>
<td>1 FM2</td>
<td>D</td>
<td>-0.005</td>
<td>0.008</td>
</tr>
<tr>
<td>MDEC</td>
<td>1 FM1</td>
<td>R</td>
<td>0.00001</td>
<td>-0.00002</td>
</tr>
<tr>
<td>MDEC</td>
<td>1 FM1</td>
<td>D</td>
<td>0.002</td>
<td>-0.004</td>
</tr>
<tr>
<td>MDEC</td>
<td>1 FM2</td>
<td>R</td>
<td>-0.00002</td>
<td>0.00002</td>
</tr>
<tr>
<td>MDEC</td>
<td>1 FM2</td>
<td>D</td>
<td>-0.007</td>
<td>0.004</td>
</tr>
<tr>
<td>SKRC</td>
<td>1 FM1</td>
<td>R</td>
<td>-0.00001</td>
<td>0.00002</td>
</tr>
<tr>
<td>SKRC</td>
<td>1 FM1</td>
<td>D</td>
<td>0.004</td>
<td>-0.007</td>
</tr>
<tr>
<td>SKRC</td>
<td>1 FM2</td>
<td>R</td>
<td>0.00000</td>
<td>-0.00002</td>
</tr>
<tr>
<td>SKRC</td>
<td>1 FM2</td>
<td>D</td>
<td>-0.003</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Tabellverdi: 4.67 (Student-t, f=6, alfa=0.0027)

OPPSUMERING ETTER TEST AV OBSERVASJONER:

<table>
<thead>
<tr>
<th>Ant. obs.</th>
<th>Akkumulert (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 < Test/Tabell < 2.0</td>
<td>0</td>
</tr>
<tr>
<td>2.0 < Test/Tabell < 3.0</td>
<td>0</td>
</tr>
<tr>
<td>3.0 < Test/Tabell < 4.0</td>
<td>0</td>
</tr>
<tr>
<td>Ukontrollerbare</td>
<td>0</td>
</tr>
</tbody>
</table>

STATISTIKK

Antall observer samlet	2
Antall observasjoner retning	7
Antall observasjoner avstand	8
Antall ukjente grunnrissskoordinater	10
Antall ukjente	10
Rangdefekt	2
Antall ukjente korrigert	8
Antall overbestemmelser	7
Antall korrelasjoner	7
Felli kvadratsum	11.38147999
Beregnet std. avvik på vekstenheten	1.2751
Antatt std. avvik på vekstenheten	1.0000

TEST AV MOD

Tabellverdi: 14.07 (Kjikvadrat, f=7, alfa=0.0500)
Beregnet verdi: 11.38

Ingen feil i observasjonsmatrialet er funnet.
Vedlegg 10: Grovfeilsøk høyde 4t + 1t

<table>
<thead>
<tr>
<th>TEST AV OBSERVASJONER</th>
<th>UTEVIIING I HØVOC</th>
<th>FRE UTEVIIING</th>
<th>TEST AV OBSERVASJONER - MULTIPPEL T-TEST</th>
<th>Fra</th>
<th>Fil</th>
<th>Restfeil</th>
<th>Est. grovfeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>1 FM2</td>
<td>dh</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM1</td>
<td>2 FM2</td>
<td>dh</td>
<td>0.001</td>
<td>-0.020</td>
<td>-0.020</td>
<td>2.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOTC</td>
<td>1 FM1</td>
<td>dh</td>
<td>0.009</td>
<td>-0.021</td>
<td>-0.021</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOTC</td>
<td>1 FM2</td>
<td>dh</td>
<td>-0.012</td>
<td>0.021</td>
<td>0.021</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM1</td>
<td>dh</td>
<td>0.003</td>
<td>-0.007</td>
<td>-0.007</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM2</td>
<td>dh</td>
<td>-0.003</td>
<td>0.007</td>
<td>0.007</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKRC</td>
<td>1 FM1</td>
<td>dh</td>
<td>0.015</td>
<td>-0.010</td>
<td>-0.010</td>
<td>1.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKRC</td>
<td>1 FM2</td>
<td>dh</td>
<td>-0.003</td>
<td>0.030</td>
<td>0.030</td>
<td>1.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tabellverdi=12.45 (Student-t, f=2, alfa=0.0032)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPPSAMING TER TEST AV OBSERVASJONER:
Kategorier:
Ant. obs. Akkumulert (%) |

<table>
<thead>
<tr>
<th>Test/Tabell</th>
<th>< 1.0</th>
<th>1.0-2.0</th>
<th>2.0-3.0</th>
<th>3.0-5.0</th>
<th>5.0-7.0</th>
<th>7.0-9.0</th>
<th>9.0-11.0</th>
<th>11.0-13.0</th>
<th>13.0-15.0</th>
<th>15.0-20.0</th>
<th>> 20.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>7</td>
<td>87.50</td>
</tr>
<tr>
<td>Tabellverdi</td>
<td>7.32</td>
<td>1.0000</td>
</tr>
<tr>
<td>Beregnet verdi</td>
<td>2.01</td>
<td></td>
</tr>
</tbody>
</table>

Ingen feil i observasjonsmatrixalet er funnet

Vedlegg 11: Ytre pålitelighet grunnriss 4t + 1t

YTRE PÅLITELIGHET
DATUM: EUREF89 - SONE 32
UTEVIING I GRUNNRISS
TVUNGEN UTEVIING
GITTER KOORDINATER [meter]

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td>6745217.085</td>
<td>627870.969</td>
<td>235.534</td>
</tr>
<tr>
<td>MOEC</td>
<td>6756258.245</td>
<td>592253.749</td>
<td>164.704</td>
</tr>
<tr>
<td>SKRC</td>
<td>6725497.774</td>
<td>603431.765</td>
<td>190.189</td>
</tr>
</tbody>
</table>

NYESTEMTE KOORDINATER MED MIDLERE FEIL [meter]

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
<th>SE</th>
<th>SE</th>
<th>SE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>6727007.906</td>
<td>599047.560</td>
<td>0.002</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM2</td>
<td>6726860.877</td>
<td>598957.446</td>
<td>0.002</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YTRE PÅLITELIGHET - KOORDINATER [meter]
KOORDINAT Observasjon...[meter/gon] | Indre pål. | Ytre pål.

<table>
<thead>
<tr>
<th>N FM1</th>
<th>MOEC</th>
<th>1 FM1</th>
<th>D</th>
<th>-0.014</th>
<th>0.004</th>
</tr>
</thead>
<tbody>
<tr>
<td>E FM1</td>
<td>FM1</td>
<td>2 FM2</td>
<td>R</td>
<td>-0.00465</td>
<td>-0.004</td>
</tr>
<tr>
<td>P FM1</td>
<td>FM1</td>
<td>2 FM2</td>
<td>R</td>
<td>-0.00465</td>
<td>0.005</td>
</tr>
<tr>
<td>N FM2</td>
<td>FM1</td>
<td>2 FM2</td>
<td>D</td>
<td>-0.012</td>
<td>0.0033</td>
</tr>
<tr>
<td>E FM2</td>
<td>FM1</td>
<td>2 FM2</td>
<td>R</td>
<td>-0.00465</td>
<td>0.005</td>
</tr>
<tr>
<td>P FM2</td>
<td>FM1</td>
<td>2 FM2</td>
<td>R</td>
<td>-0.00465</td>
<td>0.006</td>
</tr>
<tr>
<td>Tabellverdi=2.23 (Student-t, f=10, alfa=0.0250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YTRE PÅLITELIGHET - MÅLESTOKKDIFFERANSER [ppm]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>SKRC</td>
<td>82.98</td>
<td>41.21</td>
<td></td>
</tr>
<tr>
<td>FM2</td>
<td>FM1</td>
<td>2 FM2</td>
<td>-0.012</td>
<td>82.45</td>
<td>40.94</td>
</tr>
<tr>
<td>LOTC</td>
<td>FM1</td>
<td>MOEC</td>
<td>10.01</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>MOEC</td>
<td>R FM1</td>
<td>1 FM1</td>
<td>0.0003</td>
<td>10.01</td>
<td>0.24</td>
</tr>
<tr>
<td>SKRC</td>
<td>R FM1</td>
<td>2 FM1</td>
<td>10.23</td>
<td>-1.50</td>
<td></td>
</tr>
<tr>
<td>Tabellverdi=-2.23 (Student-t, f=10, alfa=0.0250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Normparametre:
Normtype : Egendefinert
Normklasse : (p= 10.0 ppm k= 10.0 mm)
Vedlegg 12: Ytre pålitelighet høyde 4t + 1t

VYRE PÅLITELIGHET - VINKELDEFORMASJONER [ppm]

<table>
<thead>
<tr>
<th>Punkt</th>
<th>Forh1</th>
<th>Forh2</th>
<th>Normkrav</th>
<th>YP-V. def.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>FM1</td>
<td>FM1</td>
<td>0.00465</td>
<td></td>
</tr>
<tr>
<td>FM2</td>
<td>FM2</td>
<td>FM2</td>
<td>0.00465</td>
<td></td>
</tr>
<tr>
<td>L0TC</td>
<td>L0TC</td>
<td>L0TC</td>
<td>0.00465</td>
<td></td>
</tr>
<tr>
<td>M0EC</td>
<td>M0EC</td>
<td>M0EC</td>
<td>0.00465</td>
<td></td>
</tr>
<tr>
<td>S0RC</td>
<td>S0RC</td>
<td>S0RC</td>
<td>0.00465</td>
<td></td>
</tr>
</tbody>
</table>

Tabellverdi = 2.23 (Student-t, f=10, alfa=0.0250)

Normparametre:
- Normtype: Egendefinert
- Normklasse: (p= 10.0 ppm k= 10.0 mm)

STATISTikk
- Antall iterasjoner: 7
- Antall observasjoner retning: 8
- Antall observasjoner avstand: 8
- Antall observasjoner 15
- Antall ukjente grunnrisskoordinater: 4
- Antall ukjente: 4
- Antall overbestemmelser: 11
- Maksimalt antall punkt pr. sektor: 2
- Grenseavstand for nabopunkt: 50000000
- Antall enkeltforbindelser: 16
- Antall dobbeltforbindelser: 19
- Antall korrelasjoner: 18
- Fallkvadratsum: 13.83595187

Beregnet std. avvik på vekstenheten: 1.1212
Antatt std. avvik på vekstenheten: 1.0000

TEST AV M0
Tabellverdi = 19.67 (Kjøkadrat, f=11, alfa=0.0500)
Beregnet verdi = 13.84

GRATULER, Alle enkeltforbindelser godtas av valgt norm i grunnriss!

VYRE PÅLITELIGHET - HØYDE FORHOLD

VYRE PÅLITELIGHET - HØYDDDIFORMAKSJONER [m]

Forbindelse

<table>
<thead>
<tr>
<th>Punkt</th>
<th>Normkrav</th>
<th>YP-dh. def.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H FM1</td>
<td>0.083</td>
<td>0.016</td>
</tr>
<tr>
<td>H FM2</td>
<td>0.083</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Tabellverdi = 2.57 (Student-t, f=5, alfa=0.0250)

TEST AV M0
Tabellverdi = 12.59 (Kjøkadrat, f=6, alfa=0.0500)
Beregnet verdi = 8.70

GRATULER, Alle enkeltforbindelser godtas av valgt norm i høydeforh.
Vedlegg 13: Grovfeilsøk grunnriss 2t + 30 min

TEST AV OBSERVASJONER
DATUM: EUREF89 – SONE 32
UTJENING I GRUNNRISS

<table>
<thead>
<tr>
<th>Fra</th>
<th>TIL</th>
<th>Restfeil</th>
<th>Est. grovefeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FML</td>
<td>1 FM2</td>
<td>D</td>
<td>-0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>FML</td>
<td>2 FM2</td>
<td>R</td>
<td>0.00004</td>
<td>-0.0008</td>
</tr>
<tr>
<td>FML</td>
<td>2 FM2</td>
<td>D</td>
<td>0.000</td>
<td>-0.003</td>
</tr>
<tr>
<td>LOTC</td>
<td>1 FML</td>
<td>R</td>
<td>-0.00005</td>
<td>-0.00005</td>
</tr>
<tr>
<td>LOTC</td>
<td>1 FML</td>
<td>D</td>
<td>0.001</td>
<td>-0.003</td>
</tr>
<tr>
<td>LOTC</td>
<td>1 FML</td>
<td>R</td>
<td>0.00005</td>
<td>-0.00005</td>
</tr>
<tr>
<td>LOTC</td>
<td>1 FML</td>
<td>D</td>
<td>0.001</td>
<td>-0.002</td>
</tr>
<tr>
<td>MDEC</td>
<td>1 FML</td>
<td>R</td>
<td>0.00005</td>
<td>-0.00005</td>
</tr>
<tr>
<td>MDEC</td>
<td>1 FML</td>
<td>D</td>
<td>0.002</td>
<td>-0.005</td>
</tr>
<tr>
<td>MDEC</td>
<td>1 FML</td>
<td>R</td>
<td>0.00005</td>
<td>-0.00005</td>
</tr>
<tr>
<td>MDEC</td>
<td>1 FML</td>
<td>D</td>
<td>-0.004</td>
<td>0.005</td>
</tr>
<tr>
<td>SKRC</td>
<td>1 FML</td>
<td>R</td>
<td>0.00002</td>
<td>-0.00002</td>
</tr>
<tr>
<td>SKRC</td>
<td>1 FML</td>
<td>D</td>
<td>0.003</td>
<td>-0.005</td>
</tr>
<tr>
<td>SKRC</td>
<td>1 FML</td>
<td>R</td>
<td>-0.00001</td>
<td>0.00003</td>
</tr>
<tr>
<td>SKRC</td>
<td>1 FML</td>
<td>D</td>
<td>-0.002</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Tabellverdi=4.67 (Student-t, f=6, alfa=0.0017)

OPPSUMERING ETTER TEST AV OBSERVASJONER:
Kategori	Ant. obs.	Akkumulert (%)
Test/Tabell < 1.0 | 15 | 100.00 |
2.0 < Test/Tabell < 2.0 | 0 | 100.00 |
2.0 < Test/Tabell < 3.0 | 0 | 100.00 |
3.0 < Test/Tabell < 3.0 | 0 | 100.00 |
Ukontrollerbar | 0 | 100.00 |

STATISTIkk
Antall iterasjoner : 2
Antall observasjoner retning : 7
Antall observasjoner avstand : 8
Antall observasjoner : 15
Antall ukjente grunnrisskoordinater : 10
Antall ukjente : 10
Rangdefekt : 2
Antall ukjente korrigert : 7
Antall overbestemmelser : 7
Antall korrelasjoner : 7
Fellkvadratsum : 12.84480490
Beregnet std.avvik på vekselenheten : 1.3546
Antatt std. avvik på vekselenheten : 1.0000

 Ingen feil i observasjonsmatrialet er funnet

Vedlegg 14: Grovfeilsøk høyde 2t + 30 min

TEST AV OBSERVASJONER
UTJENING I HØYDE

<table>
<thead>
<tr>
<th>Fra</th>
<th>TIL</th>
<th>Restfeil</th>
<th>Est. grovefeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FML</td>
<td>1 FM2</td>
<td>dh</td>
<td>-0.000</td>
<td>-0.020</td>
</tr>
<tr>
<td>FML</td>
<td>2 FM2</td>
<td>dh</td>
<td>0.001</td>
<td>0.015</td>
</tr>
<tr>
<td>LOTC</td>
<td>1 FML</td>
<td>dh</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>LOTC</td>
<td>1 FML</td>
<td>dh</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td>MDEC</td>
<td>1 FML</td>
<td>dh</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td>MDEC</td>
<td>1 FML</td>
<td>dh</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>SKRC</td>
<td>1 FML</td>
<td>dh</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>SKRC</td>
<td>1 FML</td>
<td>dh</td>
<td>0.011</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Tabellverdi=12.45 (Student-t, f=2, alfa=0.0032)

OPPSUMERING ETTER TEST AV OBSERVASJONER:
Kategori	Ant. obs.	Akkumulert (%)
Test/Tabell < 1.0 | 7 | 87.50 |
1.0 < Test/Tabell < 2.0 | 0 | 87.50 |
2.0 < Test/Tabell < 3.0 | 0 | 87.50 |
3.0 < Test/Tabell < 3.0 | 1 | 100.00 |
Ukontrollerbar | 1 | 100.00 |

STATISTIkk
Antall iterasjoner : 2
Antall observasjoner høydeforskjell : 8
Antall observasjoner : 8
Antall ukjente høydekoordinater : 5
Antall tilleggsukjente : 7
Antall ukjente : 7
Rangdefekt : 2
Antall ukjente korrigert : 5
Antall overbestemmelser : 3
Fellkvadratsum : 12.79175989
Beregnet std. avvik på vekselenheten : 2.0649
Antatt std. avvik på vekselenheten : 1.0000

 Ingen feil i observasjonsmatrialet er funnet
Vedlegg 15: Ytre pålitelighet grunnriss 2t + 30 min

Ytre pålitelighet

Datums: EURIFOR - SOME 32
Utvugning grunnriss

Gitt koordinater [meter]

<table>
<thead>
<tr>
<th>Punkt</th>
<th>N</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td>6745217.085</td>
<td>207870.969</td>
<td>225.534</td>
</tr>
<tr>
<td>MOEC</td>
<td>6736328.245</td>
<td>592351.749</td>
<td>184.704</td>
</tr>
<tr>
<td>SKRC</td>
<td>6723497.774</td>
<td>600431.765</td>
<td>196.189</td>
</tr>
</tbody>
</table>

Nøyestemte koordinater med midlere feil [meter]

<table>
<thead>
<tr>
<th>Punkt</th>
<th>N</th>
<th>E</th>
<th>H</th>
<th>SE</th>
<th>SN</th>
<th>SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>6727007.910</td>
<td>599047.561</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM2</td>
<td>6728680.881</td>
<td>598957.448</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ytre pålitelighet - koordinater [meter]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N FML</td>
<td>MOEC</td>
<td>P FML</td>
<td></td>
</tr>
<tr>
<td>E FML</td>
<td>FML</td>
<td>P FML</td>
<td></td>
</tr>
<tr>
<td>P FML</td>
<td>FML</td>
<td>P FML</td>
<td></td>
</tr>
</tbody>
</table>

Tabellverdi: 2.23 (Student-t, F=10, alfa=0.0250)

Ytre pålitelighet - MALESTOKKDIFFERANSER [ppm]

<table>
<thead>
<tr>
<th>Punkt</th>
<th>Forb1</th>
<th>Forb2</th>
<th>Normkrav</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td>D LOTC</td>
<td>FML</td>
<td>10.01</td>
</tr>
<tr>
<td>MOEC</td>
<td>D MOEC</td>
<td>FML</td>
<td>10.01</td>
</tr>
<tr>
<td>SKRC</td>
<td>R SKRC</td>
<td>FML</td>
<td>10.23</td>
</tr>
<tr>
<td>FML</td>
<td>R FML</td>
<td>FML</td>
<td>82.98</td>
</tr>
<tr>
<td>D FML</td>
<td>D FML</td>
<td>FML</td>
<td>82.45</td>
</tr>
</tbody>
</table>

Tabellverdi: 2.23 (Student-t, F=10, alfa=0.0250)

Normparametre:

<table>
<thead>
<tr>
<th>Normtype</th>
<th>Egendefinerd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normklasse</td>
<td>(p=10.0 ppm k=10.0 mm)</td>
</tr>
</tbody>
</table>

Ytre pålitelighet - VINKELDEFORMASJONER [ppm]

<table>
<thead>
<tr>
<th>Punkt</th>
<th>Forb1</th>
<th>Forb2</th>
<th>Normkrav</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td>R FML</td>
<td>FML</td>
<td>10.01</td>
</tr>
<tr>
<td>MOEC</td>
<td>R FML</td>
<td>FML</td>
<td>10.01</td>
</tr>
<tr>
<td>SKRC</td>
<td>R FML</td>
<td>FML</td>
<td>10.23</td>
</tr>
<tr>
<td>FML</td>
<td>R FML</td>
<td>FML</td>
<td>82.78</td>
</tr>
<tr>
<td>D FML</td>
<td>D FML</td>
<td>FML</td>
<td>82.45</td>
</tr>
</tbody>
</table>

Tabellverdi: 2.23 (Student-t, F=10, alfa=0.0250)

Normparametre:

<table>
<thead>
<tr>
<th>Normtype</th>
<th>Egendefinerd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normklasse</td>
<td>(p=10.0 ppm k=10.0 mm)</td>
</tr>
</tbody>
</table>

Statistikk

Antall iterasjoner	1
Antall observasjon retning	7
Antall observasjon avstand	8
Antall observasjon	15
Antall ukjente grunnrisskoordinater	4
Antall ukjente	4
Antall overbestemmelser	11
Maksimalt antall punkt pr. sektor	2
Grenseavstand for nabopunkt	400000.000
Antall enkeltforbindelser	16
Antall dobbeltforbindelser	19
Antall korrelasjoner	7
Feltkvadratsum	2.54476927
Beregnet std.avvik på vektsenheten	0.4810
Antatt std.avvik på vektsenheten	1.0000

Gratulerer, Alle dobbeltforbindelser godtas av valgt norm i grunnriss!
Vedlegg 16: Ytre pålitelighet høyde 2t + 30 min

VÅRE PÅLITELIGHET
UTJEVNING I HØYDE
TVONGEN UTJEVNING

<table>
<thead>
<tr>
<th>GITTE KOORDINATER [meter]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUNKT</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>FM1</td>
</tr>
<tr>
<td>FM2</td>
</tr>
</tbody>
</table>

VÅRE PÅLITELIGHET – KOORDINATER [meter]

<table>
<thead>
<tr>
<th>KORDINAT</th>
<th>Observasjon...[meter/gon]</th>
<th>Indre pål.</th>
<th>Ytre pål.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H FM1</td>
<td>SKRC 1 FM1</td>
<td>dh -0,064</td>
<td>-0,022</td>
</tr>
<tr>
<td>H FM2</td>
<td>SKRC 1 FM1</td>
<td>dh -0,064</td>
<td>-0,021</td>
</tr>
</tbody>
</table>

VÅRE PÅLITELIGHET – HØYDEDEFORMASJONER [a]

Forbindelse | Observasjon...[meter/gon] | Indre pål. | YP-dii.def. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>0,014</td>
<td>0,012</td>
</tr>
<tr>
<td>FM2</td>
<td>FM1</td>
<td>-0,023</td>
<td>0,014</td>
</tr>
<tr>
<td>LOTC</td>
<td>FM2</td>
<td>0,032</td>
<td>0,031</td>
</tr>
<tr>
<td>MÖRC</td>
<td>FM1</td>
<td>-0,064</td>
<td>0,063</td>
</tr>
<tr>
<td>SKRC</td>
<td>FM1</td>
<td>-0,064</td>
<td>0,067</td>
</tr>
</tbody>
</table>

Tabellverdi=2,57 (Student-t, f=5, alfa=0,0250)

STASSTISIK

Antall iterasjoner : 2
Antall observasjoner høydeforskjell : 8
Antall observasjoner : 8
Antall ukjente høydeforskjell : 2
Antall ukjente : 2
Antall overbestemmelser : 6
Maksimalt antall punkt pr. sektor : 2
Grenseavstand for nabopunkt : 4,000,000
Antall enkeltforbindelser : 16
Antall dobbeltforbindelser : 19
Følg ekvadratsum : 8,86732886
Beregnet std. avvik på vektsetningen : 1,0698
Antatt std. avvik på vektsetningen : 1,0000

Kratulering: Alle enkeltforbindelser godtas av valgt norm i høydeforskjell.

Vedlegg 17: Grovfeilsøk grunnriss 1t + 15 min

TEST AV OBSERVASJONER – MULTIPPEL T-TEST

<table>
<thead>
<tr>
<th>Fra</th>
<th>Til</th>
<th>Restfeil</th>
<th>Est. grovfeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>R -0,00011</td>
<td>-0,00093</td>
<td>0,73</td>
</tr>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>D 0,002</td>
<td>-0,008</td>
<td>2,73</td>
</tr>
<tr>
<td>FM2</td>
<td>FM2</td>
<td>D 0,004</td>
<td>0,004</td>
<td>0,93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOTC</th>
<th>LOTC</th>
<th>LOTC</th>
<th>MÖRC</th>
<th>MÖRC</th>
<th>MÖRC</th>
<th>SKRC</th>
<th>SKRC</th>
<th>SKRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>FM1</td>
<td>FM1</td>
<td>FM1</td>
<td>FM1</td>
<td>FM1</td>
<td>FM1</td>
<td>FM1</td>
<td>FM1</td>
</tr>
<tr>
<td>R</td>
<td>D</td>
<td>R</td>
<td>D</td>
<td>R</td>
<td>D</td>
<td>R</td>
<td>D</td>
<td>R</td>
</tr>
<tr>
<td>-0,00000</td>
<td>-0,00000</td>
<td>-0,00000</td>
<td>-0,00000</td>
<td>-0,00000</td>
<td>-0,00000</td>
<td>-0,00000</td>
<td>-0,00000</td>
<td>-0,00000</td>
</tr>
<tr>
<td>0,002</td>
<td>-0,008</td>
<td>0,002</td>
<td>-0,008</td>
<td>0,002</td>
<td>-0,008</td>
<td>0,002</td>
<td>-0,008</td>
<td>0,002</td>
</tr>
<tr>
<td>0,004</td>
<td>0,004</td>
<td>0,004</td>
<td>0,004</td>
<td>0,004</td>
<td>0,004</td>
<td>0,004</td>
<td>0,004</td>
<td>0,004</td>
</tr>
</tbody>
</table>

Tabellverdi=1,67 (Student-t, f=6, alfa=0,0017)

OBSERVERINGER EFTER TEST AV OBSERVASJONER:

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Ant. obs.</th>
<th>Akkumulert (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 < Test/Tabell</td>
<td>15</td>
<td>100,00</td>
</tr>
<tr>
<td>2.0 < Test/Tabell</td>
<td>0</td>
<td>100,00</td>
</tr>
<tr>
<td>3.0 < Test/Tabell</td>
<td>0</td>
<td>100,00</td>
</tr>
<tr>
<td>Ukontrollerbare</td>
<td>0</td>
<td>100,00</td>
</tr>
</tbody>
</table>

STASSTISIK

Antall iterasjoner : 2
Antall observasjoner retningslag : 8
Antall observasjoner : 15
Antall ukjente grunnrisskoordinater : 10
Antall ukjente : 10
Kørefeil : 2
Antall ukjente korrigerer : 8
Antall overbestemmelser : 2
Antall korrelasjoner : 2
Følg ekvadratsum : 28,73828411
Beregnet std. avvik på vektsetningen : 1,9537
Antatt std. avvik på vektsetningen : 1,0000

Ingen feil i observasjonsmatrilet er funnet.
Vedlegg 18: Grovfeilsøk høyde 1t + 15 min

TEST AV OBSERVASJONER
UTJEVNING I HØYDE
FRI UTJEVNING

TEST AV OBSERVASJONER - MULTIPPEL T-TEST
Fra Til Restfeil Est.grovefeil Testverdi

FML	1 FM2	DH	0.001	-0.016	4.52
FML	2 FM2	DH	0.000	-0.000	4.52
LOTC	1 FM1	DH	0.005	-0.011	0.54
LOTC	1 FM2	DH	0.006	0.011	0.54
MOEC	1 FM1	DH	0.012	-0.011	1.88
MOEC	1 FM2	DH	0.008	0.021	1.88
SKRC	1 FM1	DH	0.004	-0.011	0.67
SKRC	1 FM2	DH	0.007	0.011	0.67

Tabellverdi=12.45 (Student-t, f=2, alfa=0.0032)

OPPSAMNING ETTER TEST AV OBSERVASJONER:

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Ant. obs.</th>
<th>Akkumulert (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test/Tabell < 1.0</td>
<td>7</td>
<td>87.50</td>
</tr>
<tr>
<td>1.0 < Test/Tabell < 2.0</td>
<td>0</td>
<td>87.50</td>
</tr>
<tr>
<td>2.0 < Test/Tabell < 3.0</td>
<td>0</td>
<td>87.50</td>
</tr>
<tr>
<td>3.0 < Test/Tabell < 3.0</td>
<td>0</td>
<td>87.50</td>
</tr>
<tr>
<td>Utkontrollerbar</td>
<td>1</td>
<td>100.00</td>
</tr>
</tbody>
</table>

STATISTIKK
Antall iterasjoner : 2
Antall observasjoner høyeforskylling : 8
Antall observasjoner høyeforskylling : 8
Antall ukjente høyekoordinater : 5
Antall tilleggsukjente : 2
Antall ukjente : 7
Randeført : 7
Antall ukjente korrigert : 5
Antall overbestemmelser : 3
Feltvaktardatumin : 3.67216449
Beregnet std.avvik på vekselenheten : 1.3750
Antatt std.avvik på vekselenheten : 1.0000

Ingen feil i observasjonsmatrialet er funnet

Vedlegg 19: Ytre pålitelighet grunnriss 1t + 15 min

YTRE PÅLITELIGET
DATUM: ENERVE - SOM 32
UTJEVNING I GRUNNRISS
TYVUNG UTJEVNING

GITTE KOORDINATER [meter]

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td>6754527.085</td>
<td>672870.969</td>
<td>251.54</td>
</tr>
<tr>
<td>MOEC</td>
<td>6754528.245</td>
<td>592235.749</td>
<td>184.704</td>
</tr>
<tr>
<td>SKRC</td>
<td>6725497.774</td>
<td>605431.765</td>
<td>190.189</td>
</tr>
</tbody>
</table>

NYBNESTE KOORDINATER MEDI MIDLERE FEIL [meter]

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
<th>SN</th>
<th>SE</th>
<th>SN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FML1</td>
<td>6727007.909</td>
<td>592041.560</td>
<td>0.002</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FML2</td>
<td>6720684.084</td>
<td>598907.447</td>
<td>0.002</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YTRE PÅLITELIGET - KOORDINATE [meter]

N FML1	MOEC	1 FML1	0	0.012	0.004
FML1	FML1	1 FML2	R	0.002864	-0.003
FML1	FML1	1 FML2	R	0.002864	-0.004
FML1	FML1	1 FML2	R	0.002864	-0.005

Tabellverdi=-2.23 (Student-t, f=10, alfa=0.0250)

YTRE PÅLITELIGET - MALESTOKDIFFERANSER [ppm]

LOTC	D FML2	1 FML2	-0.012	10.01	0.10
FML1	FML1	1 FML2	-0.012	10.01	-0.20
MOEC	FML1	1 FML2	-0.012	10.23	-0.93
SKRC	FML1	1 FML2	-0.00284	82.98	-51.87
FML1	FML1	1 FML2	-0.012	82.45	-51.51

Tabellverdi=-2.23 (Student-t, f=10, alfa=0.0250)

Normparametre:
Normtype: Egendeinert
Normklasse: (p=10.0 ppm k=10.0 mm)
Vedlegg 20: Ytre pålitelighet høyde 1t + 15 min

YTRE PÅLITELIGEN

UTEVENING I HØYDE

TVUNGEN UTJEVNING

GITTE KOORDINATER [meter]

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td>6745217.085</td>
<td>627870.369</td>
<td>255.534</td>
</tr>
<tr>
<td>MØRE</td>
<td>6756258.245</td>
<td>592253.749</td>
<td>164.704</td>
</tr>
<tr>
<td>SKRC</td>
<td>6725497.774</td>
<td>603431.785</td>
<td>190.189</td>
</tr>
</tbody>
</table>

NYREVÆRT KOORDINATER MED MIDLERE FEIL [meter]

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>H</th>
<th>E</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>231.466</td>
<td>2</td>
<td>0.006</td>
</tr>
<tr>
<td>FM2</td>
<td>242.451</td>
<td>2</td>
<td>0.006</td>
</tr>
</tbody>
</table>

YTRE PÅLITELIGEN - KOORDINATER [meter]

<table>
<thead>
<tr>
<th>OBSERVAASJON... [meter/pon]</th>
<th>Indre pål.</th>
<th>Ytre pål.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>SKRC</td>
<td>1 FM1</td>
</tr>
<tr>
<td>FM2</td>
<td>SKRC</td>
<td>1 FM1</td>
</tr>
<tr>
<td>LOTC</td>
<td>SKRC</td>
<td>1 FM1</td>
</tr>
<tr>
<td>MØRE</td>
<td>SKRC</td>
<td>1 FM1</td>
</tr>
</tbody>
</table>

YTRE PÅLITELIGEN - HØYDEDEFORMASJONER [m]

<table>
<thead>
<tr>
<th>OBSERVAASJON... [meter/pon]</th>
<th>Indre pål.</th>
<th>Ytre pål.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>dFM1</td>
<td>1 FM1</td>
</tr>
<tr>
<td>FM2</td>
<td>dFM1</td>
<td>1 FM1</td>
</tr>
<tr>
<td>LOTC</td>
<td>dSKRC</td>
<td>1 FM1</td>
</tr>
<tr>
<td>MØRE</td>
<td>dSKRC</td>
<td>1 FM1</td>
</tr>
</tbody>
</table>

STATISTIKK

<table>
<thead>
<tr>
<th>Antall iterasjoner</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall observasjoner høydeforskjell</td>
<td>8</td>
</tr>
<tr>
<td>Antall observasjoner</td>
<td>8</td>
</tr>
<tr>
<td>Antall ukjente høydekoordinater</td>
<td>2</td>
</tr>
<tr>
<td>Antall ukjente</td>
<td>2</td>
</tr>
<tr>
<td>Antall overbestemmelser</td>
<td>6</td>
</tr>
<tr>
<td>Maksimalt antall punkt pr. sektor</td>
<td>2</td>
</tr>
<tr>
<td>Grenseavstand for nabopunkt</td>
<td>4000.000</td>
</tr>
<tr>
<td>Antall enkeltilforbindelser</td>
<td>16</td>
</tr>
<tr>
<td>Antall dobbeltforbindelser</td>
<td>19</td>
</tr>
<tr>
<td>Fallkvadratsum</td>
<td>0.87034234</td>
</tr>
<tr>
<td>Beregnet std. avvik på vektsehaten</td>
<td>1.6752</td>
</tr>
<tr>
<td>Antatt std. avvik på vektsehaten</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

GRATISERER, ALLE DOBBELTFORBINDELSER GODT AV VALGT NØYD 1 GRUNNRISS
Vedlegg 21: Grovfeilsøk grunnriss 30 min + 10 min

Test av observasjoner

Utevning i grunnriss

<table>
<thead>
<tr>
<th>Fra</th>
<th>Til</th>
<th>Restfeil</th>
<th>Est. grovefeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMI</td>
<td>FM2</td>
<td>D</td>
<td>-0.0029</td>
<td>0.00042</td>
</tr>
<tr>
<td>FM2</td>
<td>FM2</td>
<td>D</td>
<td>0.003</td>
<td>-0.008</td>
</tr>
<tr>
<td>FM2</td>
<td>FM2</td>
<td>D</td>
<td>-0.005</td>
<td>0.006</td>
</tr>
<tr>
<td>LITC</td>
<td>FM1</td>
<td>R</td>
<td>-0.000001</td>
<td>0.000002</td>
</tr>
<tr>
<td>LITC</td>
<td>FM1</td>
<td>D</td>
<td>0.003</td>
<td>-0.007</td>
</tr>
<tr>
<td>LITC</td>
<td>FM1</td>
<td>R</td>
<td>0.000001</td>
<td>-0.000002</td>
</tr>
<tr>
<td>LITC</td>
<td>FM2</td>
<td>D</td>
<td>-0.009</td>
<td>0.007</td>
</tr>
<tr>
<td>MOEC</td>
<td>FM1</td>
<td>R</td>
<td>-0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>MOEC</td>
<td>FM1</td>
<td>D</td>
<td>0.004</td>
<td>-0.002</td>
</tr>
<tr>
<td>MOEC</td>
<td>FM2</td>
<td>R</td>
<td>0.000000</td>
<td>-0.000000</td>
</tr>
<tr>
<td>MOEC</td>
<td>FM2</td>
<td>D</td>
<td>-0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>SGRC</td>
<td>FM1</td>
<td>R</td>
<td>-0.000002</td>
<td>0.000004</td>
</tr>
<tr>
<td>SGRC</td>
<td>FM1</td>
<td>D</td>
<td>0.004</td>
<td>-0.008</td>
</tr>
<tr>
<td>SGRC</td>
<td>FM2</td>
<td>R</td>
<td>0.000001</td>
<td>-0.000001</td>
</tr>
<tr>
<td>SGRC</td>
<td>FM2</td>
<td>D</td>
<td>-0.003</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Tabellverdi: 4.67 (Student-t, t=6, alfa=0.0017)

Oppsummering etter test av observasjoner:

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Ant. obs.</th>
<th>Akkumulert (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test/tabell < 1.0</td>
<td>15</td>
<td>100.00</td>
</tr>
<tr>
<td>1.0 < Test/tabell < 2.0</td>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>2.0 < Test/tabell < 3.0</td>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>3.0 < Test/tabell < 5.0</td>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>Ukontrollerbar</td>
<td>0</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Vedlegg 22: Grovfeilsøk høyde 30 min + 10 min

Test av observasjoner

Utevning i høyde

<table>
<thead>
<tr>
<th>Fra</th>
<th>Til</th>
<th>Restfeil</th>
<th>Est. grovefeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMI</td>
<td>FM2</td>
<td>D</td>
<td>-0.002</td>
<td>-0.0012</td>
</tr>
<tr>
<td>FM2</td>
<td>FM2</td>
<td>D</td>
<td>-0.003</td>
<td>0.0015</td>
</tr>
<tr>
<td>LITC</td>
<td>FM1</td>
<td>D</td>
<td>0.006</td>
<td>-0.0015</td>
</tr>
<tr>
<td>LITC</td>
<td>FM2</td>
<td>D</td>
<td>-0.008</td>
<td>0.0015</td>
</tr>
<tr>
<td>MOEC</td>
<td>FM1</td>
<td>D</td>
<td>0.002</td>
<td>-0.008</td>
</tr>
<tr>
<td>MOEC</td>
<td>FM2</td>
<td>D</td>
<td>-0.003</td>
<td>0.009</td>
</tr>
<tr>
<td>SGRC</td>
<td>FM1</td>
<td>D</td>
<td>0.005</td>
<td>-0.009</td>
</tr>
<tr>
<td>SGRC</td>
<td>FM2</td>
<td>D</td>
<td>-0.003</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Tabellverdi: 42.45 (Student-t, t=2, alfa=0.0032)

Oppsummering etter test av observasjoner:

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Ant. obs.</th>
<th>Akkumulert (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test/tabell < 1.0</td>
<td>7</td>
<td>87.50</td>
</tr>
<tr>
<td>1.0 < Test/tabell < 2.0</td>
<td>0</td>
<td>87.50</td>
</tr>
<tr>
<td>2.0 < Test/tabell < 3.0</td>
<td>0</td>
<td>87.50</td>
</tr>
<tr>
<td>3.0 < Test/tabell < 5.0</td>
<td>0</td>
<td>87.50</td>
</tr>
<tr>
<td>Ukontrollerbar</td>
<td>1</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Statistikk

<table>
<thead>
<tr>
<th>Antall litesager</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall observasjoner høydeforskjell</td>
<td>8</td>
</tr>
<tr>
<td>Antall observasjoner</td>
<td>8</td>
</tr>
<tr>
<td>Antall ukjente høydekoordinater</td>
<td>5</td>
</tr>
<tr>
<td>Antall tillleggsukjente</td>
<td>2</td>
</tr>
<tr>
<td>Antall ukjente</td>
<td>7</td>
</tr>
<tr>
<td>Råntegdekket</td>
<td>2</td>
</tr>
<tr>
<td>Antall ukjente korrigert</td>
<td>5</td>
</tr>
<tr>
<td>Antall overbestemmelser</td>
<td>7</td>
</tr>
</tbody>
</table>

Fellkvadratsum: 32.29381311
Beregnet std.avvik på vektsenheter: 1.7846
Antatt std.avvik på vektsenheter: 1.0000

Ingen feil i observasjonsmatrisalet er funnet.
Vedlegg 23: Ytre pålitelighet grunnriss 30 min + 10 min

YTRE PÅLITELIGHET

DATUM: \(\text{EURFRÅ} \) - \(\text{SØNDE} \)

UTJEVNING I GRUNNRISS

TVUNGEN UTJEVNING

GITTTE KOORDINATER [meter]

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKRC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NYBESTEMTE KOORDINATER MED MIDLERE FEIL [meter]

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YTRE PÅLITELIGHET - KOORDINATER

KOORDINAT OBSERVAJON [meter/gon]

<table>
<thead>
<tr>
<th>N</th>
<th>E</th>
<th>H</th>
<th>R</th>
<th>D</th>
<th>Ytre pål.</th>
<th>Ytre pål.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YTRE PÅLITELIGHET - MALESTOKKSIFTERANSER [ppm]

<table>
<thead>
<tr>
<th>Punkt</th>
<th>Forb1</th>
<th>Forb2</th>
<th>Normalver</th>
<th>YP-M.differ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabellverdi-2.23 (Student-t, f=10, alfa=0.0250)

NORMPARAMETRE: E: Egendefinert

<table>
<thead>
<tr>
<th>Normtype</th>
<th>Egendefinert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normklasse</td>
<td>(p=10.0 ppm k=10.0 mm)</td>
</tr>
</tbody>
</table>

YTRE PÅLITELIGHET - VINKELDEFORMASJONER [ppm]

<table>
<thead>
<tr>
<th>Punkt</th>
<th>Forb1</th>
<th>Forb2</th>
<th>Normalver</th>
<th>YP-V.differ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabellverdi-2.23 (Student-t, f=10, alfa=0.0250)

NORMPARAMETRE: E: Egendefinert

<table>
<thead>
<tr>
<th>Normtype</th>
<th>Egendefinert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normklasse</td>
<td>(p=10.0 ppm k=10.0 mm)</td>
</tr>
</tbody>
</table>

STATISTIKK

<table>
<thead>
<tr>
<th>Antall iterasjoner</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall observasjoner reting</td>
<td>7</td>
</tr>
<tr>
<td>Antall observasjoner avstand</td>
<td>8</td>
</tr>
<tr>
<td>Antall observasjoner</td>
<td>15</td>
</tr>
<tr>
<td>Antall ukjente grunnrisskoordinater</td>
<td>4</td>
</tr>
<tr>
<td>Antall ukjente</td>
<td>4</td>
</tr>
<tr>
<td>Antall overbestemmelser</td>
<td>2</td>
</tr>
<tr>
<td>Maksimalt antall punkt pr. sektor</td>
<td>40000.00</td>
</tr>
<tr>
<td>Antall enkeltforbindelser</td>
<td>16</td>
</tr>
<tr>
<td>Antall dobbeltforbindelser</td>
<td>15</td>
</tr>
<tr>
<td>Antall korrelasjoner</td>
<td>4</td>
</tr>
<tr>
<td>Feilkvadratsum</td>
<td>29.78885046</td>
</tr>
<tr>
<td>Beregnet std. avvik på vekstheneten</td>
<td>1.6436</td>
</tr>
<tr>
<td>Antatt std. avvik på vekstheneten</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

GRATULERER, ATTE DOBBELTFORBINDELSER GODT AS VALGT NORM I GRUNNRISS!
Vedlegg 24: Ytre pålitelighet høyde 30 min + 10 min

Ytre pålitelighet
UTJEVNING I HØYDE
TVUNGEN UTJEVNING

GITT KOORDINATER [meter]

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>L07C</td>
<td>6745217.085</td>
<td>62780.969</td>
<td>253.334</td>
</tr>
<tr>
<td>N05C</td>
<td>6736256.245</td>
<td>592253.749</td>
<td>164.704</td>
</tr>
<tr>
<td>S20C</td>
<td>6725487.774</td>
<td>603431.765</td>
<td>150.189</td>
</tr>
</tbody>
</table>

NYBESTEMTE KOORDINATER MED MIDLERE FEIL [meter]

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
<th>SN</th>
<th>SE</th>
<th>SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>F071</td>
<td>231.470</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F072</td>
<td>242.088</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ytre pålitelighet - koordinater [meter].

<table>
<thead>
<tr>
<th>H F071</th>
<th>N05C</th>
<th>1 F071</th>
<th>DH</th>
<th>0.030</th>
<th>0.031</th>
</tr>
</thead>
<tbody>
<tr>
<td>H F072</td>
<td>S20C</td>
<td>1 F072</td>
<td>DH</td>
<td>0.031</td>
<td>-0.024</td>
</tr>
</tbody>
</table>

Tabellverdi=2.57 (Student-t, f=5, alfa=0.0250)

Ytre pålitelighet - høydedeformasjoner [m]

<table>
<thead>
<tr>
<th>FORBINDELSE</th>
<th>OBSERVASJON [meter/gon] Indre pål.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F071</td>
<td>F072</td>
</tr>
<tr>
<td></td>
<td>0.026</td>
</tr>
<tr>
<td>F072</td>
<td>F071</td>
</tr>
<tr>
<td></td>
<td>0.026</td>
</tr>
<tr>
<td>L07C</td>
<td>S20C</td>
</tr>
<tr>
<td></td>
<td>0.051</td>
</tr>
<tr>
<td>N05C</td>
<td>F071</td>
</tr>
<tr>
<td></td>
<td>0.302</td>
</tr>
<tr>
<td>S20C</td>
<td>F072</td>
</tr>
<tr>
<td></td>
<td>0.051</td>
</tr>
</tbody>
</table>

Tabellverdi=2.57 (Student-t, f=5, alfa=0.0250)

Kompperamete: Egetenfert Normlasse: (p< 10.0 ppm k< 10.0 mm)

STATISTIKK

Antall iterasjoner: 1
Antall observasjoner høydeforskjell: 8
Antall ukjente høydekoordinater: 2
Antall ukjente: 2
Antall overbestemmelser: 6
Maksimalt antall punkt pr. søk: 2
Grenseavstand for nabopunkt: 40000.000
Antall enkelteforbindelser: 16
Antall dobbeltforbindelser: 19
Fellkvadratsum: 28.90135348
Beregnet std. avvik på vektsenheten: 2.1947
Antatt std. avvik på vektsenheten: 1.0000
9.4 Vektorer tredje forsøk

Vedlegg 25: Prosesserte vektorer 4t + 1t

<table>
<thead>
<tr>
<th>Sove</th>
<th>Observation</th>
<th>Solution T</th>
<th>Horiz. Precision</th>
<th>Vert. Precision</th>
<th>RMS</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0,004</td>
<td>0,013</td>
<td>0,176</td>
<td>34258,027</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0,003</td>
<td>0,011</td>
<td>0,253</td>
<td>34103,157</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0,005</td>
<td>0,011</td>
<td>0,349</td>
<td>34258,027</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0,005</td>
<td>0,011</td>
<td>0,130</td>
<td>34103,153</td>
</tr>
<tr>
<td>✔</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0,001</td>
<td>0,002</td>
<td>0,337</td>
<td>172,817</td>
</tr>
<tr>
<td>✔</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0,002</td>
<td>0,002</td>
<td>0,170</td>
<td>172,820</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- MOEC</td>
<td>Fixed</td>
<td>0,002</td>
<td>0,004</td>
<td>0,106</td>
<td>37500,161</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- SKRC</td>
<td>Fixed</td>
<td>0,002</td>
<td>0,004</td>
<td>0,233</td>
<td>29580,764</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0,004</td>
<td>0,013</td>
<td>0,311</td>
<td>30161,936</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0,003</td>
<td>0,011</td>
<td>0,300</td>
<td>30038,766</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0,003</td>
<td>0,011</td>
<td>0,246</td>
<td>6818,538</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0,004</td>
<td>0,010</td>
<td>0,277</td>
<td>6562,581</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0,005</td>
<td>0,011</td>
<td>0,392</td>
<td>30161,939</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0,005</td>
<td>0,011</td>
<td>0,384</td>
<td>30038,772</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0,005</td>
<td>0,011</td>
<td>0,407</td>
<td>6818,533</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0,005</td>
<td>0,011</td>
<td>0,194</td>
<td>6562,555</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- SKRC</td>
<td>Fixed</td>
<td>0,002</td>
<td>0,004</td>
<td>0,264</td>
<td>33474,894</td>
</tr>
</tbody>
</table>

Vedlegg 26: Prosesserte vektorer 2t + 30 min

<table>
<thead>
<tr>
<th>Sove</th>
<th>Observation</th>
<th>Solution T</th>
<th>Horiz. Precision</th>
<th>Vert. Precision</th>
<th>RMS</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0,005</td>
<td>0,015</td>
<td>0,162</td>
<td>6618,534</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0,003</td>
<td>0,010</td>
<td>0,279</td>
<td>6562,561</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0,005</td>
<td>0,011</td>
<td>0,467</td>
<td>6618,533</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0,007</td>
<td>0,008</td>
<td>0,104</td>
<td>6562,553</td>
</tr>
<tr>
<td>✔</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0,002</td>
<td>0,002</td>
<td>0,188</td>
<td>172,812</td>
</tr>
<tr>
<td>✔</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0,002</td>
<td>0,003</td>
<td>0,129</td>
<td>172,820</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- LOTC</td>
<td>Fixed</td>
<td>0,002</td>
<td>0,004</td>
<td>0,267</td>
<td>28680,784</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0,005</td>
<td>0,016</td>
<td>0,083</td>
<td>34103,150</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- MOEC</td>
<td>Fixed</td>
<td>0,002</td>
<td>0,004</td>
<td>0,356</td>
<td>33474,894</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0,004</td>
<td>0,013</td>
<td>0,182</td>
<td>34258,027</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0,005</td>
<td>0,016</td>
<td>0,227</td>
<td>30038,770</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0,005</td>
<td>0,012</td>
<td>0,130</td>
<td>34103,153</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0,007</td>
<td>0,009</td>
<td>0,085</td>
<td>34258,025</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0,004</td>
<td>0,013</td>
<td>0,284</td>
<td>30161,936</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0,005</td>
<td>0,012</td>
<td>0,384</td>
<td>30038,772</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0,007</td>
<td>0,009</td>
<td>0,113</td>
<td>30161,934</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- MOEC</td>
<td>Fixed</td>
<td>0,002</td>
<td>0,004</td>
<td>0,105</td>
<td>37300,161</td>
</tr>
</tbody>
</table>
Vedlegg 27: Prosesserte vektorer 1t + 15 min

<table>
<thead>
<tr>
<th>Save</th>
<th>Observation</th>
<th>Solution T</th>
<th>Horiz. Precision (0)</th>
<th>Vert. Precision (0)</th>
<th>RMS</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.014</td>
<td>0.407</td>
<td>6618.533</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.010</td>
<td>0.285</td>
<td>6562.561</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0.008</td>
<td>0.016</td>
<td>0.112</td>
<td>6618.535</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0.009</td>
<td>0.012</td>
<td>0.132</td>
<td>6562.553</td>
</tr>
<tr>
<td>✔</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.003</td>
<td>0.076</td>
<td>172.811</td>
</tr>
<tr>
<td>✔</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.004</td>
<td>0.155</td>
<td>172.816</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- LOTC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.209</td>
<td>29680.764</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.257</td>
<td>33474.894</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.016</td>
<td>0.131</td>
<td>34103.153</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0.004</td>
<td>0.013</td>
<td>0.180</td>
<td>34258.027</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.015</td>
<td>0.375</td>
<td>30038.773</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0.004</td>
<td>0.013</td>
<td>0.286</td>
<td>30161.937</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.016</td>
<td>0.079</td>
<td>34103.146</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.016</td>
<td>0.066</td>
<td>30038.766</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0.010</td>
<td>0.013</td>
<td>0.104</td>
<td>34258.023</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0.010</td>
<td>0.013</td>
<td>0.147</td>
<td>30161.933</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.105</td>
<td>37300.161</td>
</tr>
</tbody>
</table>

Vedlegg 28: Prosesserte vektorer 30 min + 10 min

<table>
<thead>
<tr>
<th>Save</th>
<th>Observation</th>
<th>Solution T</th>
<th>Horiz. Precision (0)</th>
<th>Vert. Precision (0)</th>
<th>RMS</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.014</td>
<td>0.407</td>
<td>6618.533</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.010</td>
<td>0.270</td>
<td>6562.561</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM2</td>
<td>Fixed</td>
<td>0.007</td>
<td>0.010</td>
<td>0.115</td>
<td>6618.535</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- FM1</td>
<td>Fixed</td>
<td>0.011</td>
<td>0.013</td>
<td>0.158</td>
<td>6562.554</td>
</tr>
<tr>
<td>✔</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.003</td>
<td>0.084</td>
<td>172.814</td>
</tr>
<tr>
<td>✔</td>
<td>FM1 --- FM2</td>
<td>Fixed</td>
<td>0.003</td>
<td>0.005</td>
<td>0.163</td>
<td>172.813</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- LOTC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.207</td>
<td>29680.784</td>
</tr>
<tr>
<td>✔</td>
<td>SKRC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.358</td>
<td>33474.894</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.016</td>
<td>0.130</td>
<td>34103.153</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0.005</td>
<td>0.015</td>
<td>0.384</td>
<td>30038.773</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0.004</td>
<td>0.013</td>
<td>0.182</td>
<td>34258.027</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0.004</td>
<td>0.013</td>
<td>0.284</td>
<td>30161.936</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM1</td>
<td>Fixed</td>
<td>0.007</td>
<td>0.013</td>
<td>0.085</td>
<td>34103.150</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM1</td>
<td>Fixed</td>
<td>0.008</td>
<td>0.010</td>
<td>0.065</td>
<td>30038.771</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- FM2</td>
<td>Fixed</td>
<td>0.011</td>
<td>0.015</td>
<td>0.123</td>
<td>34258.023</td>
</tr>
<tr>
<td>✔</td>
<td>MOEC --- FM2</td>
<td>Fixed</td>
<td>0.011</td>
<td>0.015</td>
<td>0.172</td>
<td>30161.930</td>
</tr>
<tr>
<td>✔</td>
<td>LOTC --- MOEC</td>
<td>Fixed</td>
<td>0.002</td>
<td>0.004</td>
<td>0.105</td>
<td>37300.161</td>
</tr>
</tbody>
</table>
9.5 Pålitelighetsanalyse tredje forsøk

Vedlegg 29: Grovfeilsøk grunnriss 4t + 1t

TEST AV OBSERVASJONER
DATUM: EUREF99 - SONE 32
UTJEVNING I GRUNNRISS
PRE UTJEVNING

<table>
<thead>
<tr>
<th>Fra</th>
<th>Til</th>
<th>Restfeil</th>
<th>Est. grovfeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>1 FM2</td>
<td>R</td>
<td>0.00015</td>
<td>-0.00090</td>
</tr>
<tr>
<td>FM1</td>
<td>1 FM2</td>
<td>D</td>
<td>0.002</td>
<td>-0.005</td>
</tr>
<tr>
<td>FM1</td>
<td>2 FM2</td>
<td>R</td>
<td>-0.00031</td>
<td>0.00005</td>
</tr>
<tr>
<td>FM1</td>
<td>2 FM2</td>
<td>D</td>
<td>-0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>LTCC</td>
<td>1 FM1</td>
<td>R</td>
<td>-0.00000</td>
<td>0.00001</td>
</tr>
<tr>
<td>LTCC</td>
<td>1 FM1</td>
<td>D</td>
<td>-0.002</td>
<td>-0.004</td>
</tr>
<tr>
<td>LTCC</td>
<td>1 FM1</td>
<td>R</td>
<td>0.00001</td>
<td>-0.00001</td>
</tr>
<tr>
<td>LTCC</td>
<td>1 FM1</td>
<td>D</td>
<td>-0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM1</td>
<td>R</td>
<td>0.00001</td>
<td>-0.00001</td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM1</td>
<td>D</td>
<td>0.002</td>
<td>-0.008</td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM1</td>
<td>R</td>
<td>-0.00001</td>
<td>0.00001</td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM1</td>
<td>D</td>
<td>-0.006</td>
<td>0.008</td>
</tr>
<tr>
<td>SKCR</td>
<td>1 FM1</td>
<td>R</td>
<td>-0.00003</td>
<td>0.00005</td>
</tr>
<tr>
<td>SKCR</td>
<td>1 FM1</td>
<td>D</td>
<td>0.005</td>
<td>-0.009</td>
</tr>
<tr>
<td>SKCR</td>
<td>1 FM1</td>
<td>R</td>
<td>0.00001</td>
<td>-0.00003</td>
</tr>
<tr>
<td>SKCR</td>
<td>1 FM1</td>
<td>D</td>
<td>-0.004</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Tabellverdi = 4.39 (Student-t, f=7, alfa=0.0016)

OPPSUMMERING ETTER TEST AV OBSERVASJONER:

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Ant. obs.</th>
<th>Akkumulert (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 < Test/tabell < 1.9</td>
<td>16</td>
<td>100.00</td>
</tr>
<tr>
<td>2.0 < Test/tabell < 3.0</td>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>3.0 < Test/tabell < 5.0</td>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>Ukontrollerbar</td>
<td>0</td>
<td>100.00</td>
</tr>
</tbody>
</table>

STATISTIKK

- Antall iterasjoner : 2
- Antall observasjoner retnin g : 8
- Antall observasjoner avstand : 8
- Antall observasjoner : 16
- Antall ukjente grunnrisskoordinater : 10
- Antall ukjente : 10
- Rangdefekt : 2
- Antall ukjente korrigeret : 8
- Antall overbestemmelser : 8
- Antall korrelasjoner : 8
- Feilvadet : 9.06455999

Beregnet std. avvik på vektshenhet : 1.0645
Antatt std. avvik på vektshenhet : 1.0000

 Ingen feil i observasjonsmatrialet er funnet

Vedlegg 30: Grovfeilsøk høyde 4t + 1t

TEST AV OBSERVASJONER
UTJEVNING I HØYDE
PRE UTJEVNING

<table>
<thead>
<tr>
<th>Fra</th>
<th>Til</th>
<th>Restfeil</th>
<th>Est. grovfeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>1 FM2</td>
<td>dh</td>
<td>0.000</td>
<td>-0.001</td>
</tr>
<tr>
<td>FM1</td>
<td>2 FM2</td>
<td>dh</td>
<td>0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td>LTCC</td>
<td>1 FM1</td>
<td>dh</td>
<td>0.005</td>
<td>-0.009</td>
</tr>
<tr>
<td>LTCC</td>
<td>1 FM1</td>
<td>dh</td>
<td>-0.005</td>
<td>0.009</td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM1</td>
<td>dh</td>
<td>0.007</td>
<td>-0.013</td>
</tr>
<tr>
<td>MOEC</td>
<td>1 FM1</td>
<td>dh</td>
<td>-0.006</td>
<td>0.013</td>
</tr>
<tr>
<td>SKCR</td>
<td>1 FM1</td>
<td>dh</td>
<td>0.012</td>
<td>-0.026</td>
</tr>
<tr>
<td>SKCR</td>
<td>1 FM1</td>
<td>dh</td>
<td>-0.013</td>
<td>0.026</td>
</tr>
</tbody>
</table>

Tabellverdi = 4.84 (Student-t, f=3, alfa=0.0032)

OPPSUMMERING ETTER TEST AV OBSERVASJONER:

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Ant. obs.</th>
<th>Akkumulert (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 < Test/tabell < 1.9</td>
<td>8</td>
<td>100.00</td>
</tr>
<tr>
<td>2.0 < Test/tabell < 3.0</td>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>3.0 < Test/tabell < 5.0</td>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>Ukontrollerbar</td>
<td>0</td>
<td>100.00</td>
</tr>
</tbody>
</table>

STATISTIKK

- Antall iterasjoner : 2
- Antall observasjoner høydeforskjell : 8
- Antall observasjoner : 8
- Antall ukjente høydekoordinater : 5
- Antall tilløp ukjente : 2
- Antall ukjente : 7
- Rangdefekt : 3
- Antall ukjente korrigeret : 4
- Antall overbestemmelser : 4
- Feilvadet : 1.12410833

Beregnet std. avvik på vektshenhet : 0.5301
Antatt std. avvik på vektshenhet : 1.0000

Ingen feil i observasjonsmatrialet er funnet
Vedlegg 31: Ytre pålitelighet grunnriss 4t + 1t

YTRE PåLITELIGHET
DATUM: EUREFF 89 – SONE 32
UTJEVNING 1 GRUNNRISS
TVUNGEN UTJEVNING

GIITTE KOORDINATER [meter]
PUNKT	N	E	H
LOT C | 6745217.085 | 627470.960 | 255.534
MOEC | 6756258.245 | 592253.740 | 164.704
SKRC | 625449.774 | 604317.665 | 190.189

NVEBESTEMTE KOORDINATER MED MEDLERE FEIL [meter]
PUNKT	N	E	H	SN	SE	SH
FM1 | 6270907.900 | 599567.598 | 0.002 | 0.002
FM2 | 626980.876 | 598957.446 | 0.002 | 0.002

YTRE PåLITELIGHET - KOORDINATER [meter]
--- | --- | --- | ---
N FM1 | MOEC | 1 FM1 | D | -0.019 | 0.004
E FM1 | SKRC | 1 FM1 | D | -0.018 | 0.003
P FM1 | MOEC | 1 FM1 | D | -0.019 | 0.004
N FM2 | MOEC | 1 FM1 | D | -0.019 | 0.004
E FM2 | SKRC | 1 FM1 | D | -0.018 | 0.003
P FM2 | MOEC | 1 FM1 | D | -0.019 | 0.004
Tabellverdi-2.20 (Student-t, f-11, alfa-0.0250)

YTRE PåLITELIGHET - MALESTOKKDIFFERANSER [ppm]
PUNKT	Forb	Forb2	Normkrav	YP-M.GITT.
LOT C | SKRC | FM1 | 10.01 | 0.09
MOEC | D LOT C | 1 FM1 | 0.014 | 10.01 | 0.13
SKRC | D FM1 | 1 FM2 | -0.009 | 10.23 | 0.36
FM2 | R FM1 | 1 FM1 | -0.0230 | 82.29 | -32.73
FM1 | D FM1 | 1 FM2 | -0.009 | 82.98 | -33.04
Tabellverdi-2.20 (Student-t, f-11, alfa-0.0250)

Normparametre:
Normtype: Egendefinert
Normklasse: (p< 10.0 ppm k= 10.0 mm)

YTRE PåLITELIGHET - VINKELDEFORMASJONER [ppm]
PUNKT	Forb	Forb2	Normkrav	YP-V.def.
LOT C | SKRC | FM1 | 10.01 | 0.11
MOEC | D MOEC | 1 FM1 | -0.019 | 10.01 | 0.14
SKRC | D FM1 | 1 FM2 | -0.009 | 10.23 | -0.81
FM2 | R FM1 | 1 FM1 | -0.0230 | 82.43 | -22.08
FM1 | D FM1 | 1 FM2 | -0.0230 | 82.78 | -22.18
Tabellverdi-2.20 (Student-t, f-11, alfa-0.0250)

Normparametre:
Normtype: Egendefinert
Normklasse: (p< 10.0 ppm k= 10.0 mm)

STATISTIKK
Antall iterasjoner: 1
Antall observasjoner retnign: 8
Antall observasjoner avstand: 8
Antall observasjoner: 16
Antall ukjente grunnrisskoordinater: 4
Antall ukjente: 12
Antall overbestemmelser: 12
Maksimalt antall punkt pr. sektor: 2
Grenseavstand for nabopunkt: 40000.00
Antall enkeltforbindelser: 19
Antall dobbeltforbindelser: 36
Antall korrelasjoner: 8
Fellkvadratsum: 12.9211576
Beregnet std.avvik på vektsehheten: 1.0378
Antatt std.avvik på vektsehheten: 1.0000

GRATULERER, ALLE DOBBELTFORBINDELSER GODTAS AV VALGT NORM I GRUNNRISS!
Vedlegg 32: Ytre pålitelighet høyde 4t + 1t

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
<th>SW</th>
<th>SE</th>
<th>SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td>6745217.085</td>
<td>627870.369</td>
<td>255.534</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOC</td>
<td>593252.749</td>
<td>164.704</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKOC</td>
<td>6715247.774</td>
<td>605452.765</td>
<td>190.189</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
<th>SW</th>
<th>SE</th>
<th>SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>231.484</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM2</td>
<td>242.463</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VYRE PÅITELIGHET - KOORDINATER [meter]

<table>
<thead>
<tr>
<th>KOORDINAT</th>
<th>Observation...</th>
<th>Indre pål.</th>
<th>Ytre pål.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H FM1</td>
<td>MOC 1 FM2</td>
<td>dh 0.081</td>
<td>0.014</td>
</tr>
<tr>
<td>H FM2</td>
<td>MOC 1 FM2</td>
<td>dh 0.081</td>
<td>0.014</td>
</tr>
<tr>
<td>Tabellverdi:2.37 (Student-t, f=5, alfa=0.0250)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VYRE PÅITELIGHET - HØYDEDEFORMASJONER [m]

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Normkrav</th>
<th>VP-dh.def.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1 dh FM1</td>
<td>0.015</td>
<td>0.014</td>
</tr>
<tr>
<td>FM1 dh FM1</td>
<td>0.015</td>
<td>0.014</td>
</tr>
<tr>
<td>FM1 dh FM1</td>
<td>0.343</td>
<td>0.014</td>
</tr>
</tbody>
</table>

STATISTIKK

<table>
<thead>
<tr>
<th>Antall observationer</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall observationer</td>
<td>8</td>
</tr>
<tr>
<td>Antall observationer</td>
<td>8</td>
</tr>
<tr>
<td>Antall ukjente hoydekoordinater</td>
<td>2</td>
</tr>
<tr>
<td>Antall ukjente hoydekoordinater</td>
<td>2</td>
</tr>
<tr>
<td>Maksimalt antall punkt pr. sektor</td>
<td>2</td>
</tr>
<tr>
<td>Grenseavstand for nabopunkt</td>
<td>40000.000</td>
</tr>
<tr>
<td>Antall dobbeltforbindelser</td>
<td>16</td>
</tr>
<tr>
<td>Antall dobbeltforbindelser</td>
<td>16</td>
</tr>
<tr>
<td>Beregnet std.avvik på vektensheten</td>
<td>1.0071</td>
</tr>
<tr>
<td>Antall std. avvik på vektensheten</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

GRATULERER, Alle enkeltforbindelser godtas av valgt norm i høyde.
Vedlegg 33: Grovfeilsøk grunnriss 2t + 30 min

TEST AV OBSERVASJONER
DATUM: EUREF89 - SONE 32
UJENING I GRUNNRIS 2T UTJENING

<table>
<thead>
<tr>
<th>Fra</th>
<th>Till</th>
<th>Restfeil</th>
<th>Est.grovfeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>R</td>
<td>-0.00008</td>
<td>0.00105</td>
</tr>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>D</td>
<td>0.0037</td>
<td>-0.0008</td>
</tr>
<tr>
<td>FM1</td>
<td>FM3</td>
<td>R</td>
<td>0.00006</td>
<td>0.00073</td>
</tr>
<tr>
<td>FM1</td>
<td>FM3</td>
<td>D</td>
<td>-0.0041</td>
<td>0.0078</td>
</tr>
<tr>
<td>LOTC</td>
<td>FM1</td>
<td>R</td>
<td>-0.00000</td>
<td>-0.00001</td>
</tr>
<tr>
<td>LOTC</td>
<td>FM1</td>
<td>D</td>
<td>0.0005</td>
<td>-0.0012</td>
</tr>
<tr>
<td>LOTC</td>
<td>FM2</td>
<td>R</td>
<td>0.00001</td>
<td>0.00001</td>
</tr>
<tr>
<td>LOTC</td>
<td>FM2</td>
<td>D</td>
<td>-0.0010</td>
<td>0.0012</td>
</tr>
<tr>
<td>MOEC</td>
<td>FM1</td>
<td>R</td>
<td>0.00000</td>
<td>-0.00001</td>
</tr>
<tr>
<td>MOEC</td>
<td>FM1</td>
<td>D</td>
<td>0.0002</td>
<td>-0.0002</td>
</tr>
<tr>
<td>MOEC</td>
<td>FM2</td>
<td>R</td>
<td>0.00001</td>
<td>0.00001</td>
</tr>
<tr>
<td>MOEC</td>
<td>FM2</td>
<td>D</td>
<td>-0.0003</td>
<td>0.0002</td>
</tr>
<tr>
<td>SKRC</td>
<td>FM1</td>
<td>R</td>
<td>-0.00003</td>
<td>0.00005</td>
</tr>
<tr>
<td>SKRC</td>
<td>FM1</td>
<td>D</td>
<td>0.0004</td>
<td>-0.0006</td>
</tr>
<tr>
<td>SKRC</td>
<td>FM2</td>
<td>R</td>
<td>0.00001</td>
<td>-0.00005</td>
</tr>
<tr>
<td>SKRC</td>
<td>FM2</td>
<td>D</td>
<td>-0.0002</td>
<td>0.0006</td>
</tr>
</tbody>
</table>

Tabellverdi: 0.39 (Student-t, f=7, alfa=0.0016)

OPPSAMLING ETTER TEST AV OBSERVASJONER:
Kategori Ant. obs. Akkumulert (%)

Test/tablel < 1.0 15 93.75
1.0 < Test/tablel < 2.0 1 100.00
2.0 < Test/tablel < 3.0 0 100.00
3.0 < Test/tablel < 3.0 0 100.00
Ukontrollerbar 0 100.00

STATISTIKK
Antall iterasjoner: 2
Antall observasjoner retningsfeil: 8
Antall observasjoner avstand: 8
Antall observasjoner: 16
Antall ukjente grunnrisskoordinater: 10
Antall ukjente: 10
Rangdefekt: 2
Antall ukjente korrigert: 8
Antall overbestemmelser: 8
Antall korrelasjoner: 8
Feltkvadratsum: 9.10243235
Beregnet std.avvik på vekstenheten: 1.0667
Antatt std.avvik på vekstenheten: 1.0000

Vedlegg 34: Grovfeilsøk høyde 2t + 30 min

TEST AV OBSERVASJONER
UTEJENING I HOYDE
FRI UTJEVENING

<table>
<thead>
<tr>
<th>Fra</th>
<th>Till</th>
<th>Restfeil</th>
<th>Est.grovfeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>dh</td>
<td>-0.002</td>
<td>0.005</td>
</tr>
<tr>
<td>FM1</td>
<td>FM2</td>
<td>dh</td>
<td>0.004</td>
<td>-0.007</td>
</tr>
<tr>
<td>LOTC</td>
<td>FM1</td>
<td>dh</td>
<td>0.017</td>
<td>-0.023</td>
</tr>
<tr>
<td>LOTC</td>
<td>FM2</td>
<td>dh</td>
<td>-0.006</td>
<td>0.023</td>
</tr>
<tr>
<td>MOEC</td>
<td>FM1</td>
<td>dh</td>
<td>0.009</td>
<td>-0.012</td>
</tr>
<tr>
<td>MOEC</td>
<td>FM1</td>
<td>dh</td>
<td>-0.003</td>
<td>0.012</td>
</tr>
<tr>
<td>SKRC</td>
<td>FM1</td>
<td>dh</td>
<td>0.003</td>
<td>-0.015</td>
</tr>
<tr>
<td>SKRC</td>
<td>FM2</td>
<td>dh</td>
<td>-0.013</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Tabellverdi: 6.84 (Student-t, f=3, alfa=0.0032)

OPPSAMLING ETTER TEST AV OBSERVASJONER:
Kategori Ant. obs. Akkumulert (%)

Test/tablel < 1.0 8 100.00
1.0 < Test/tablel < 2.0 0 100.00
2.0 < Test/tablel < 3.0 0 100.00
3.0 < Test/tablel < 3.0 0 100.00
Ukontrollerbar 0 100.00

STATISTIKK
Antall iterasjoner: 2
Antall observasjoner høydeforskjell: 8
Antall observasjoner: 8
Antall ukjente høydekoordinater: 5
Antall tilleggsukjente: 2
Antall ukjente: 7
Rangdefekt: 3
Antall ukjente korrigert: 4
Antall overbestemmelser: 4
Feltkvadratsum: 3.36835719
Beregnet std.avvik på vekstenheten: 0.3848
Antatt std.avvik på vekstenheten: 1.0000

Ingen feil i observasjonsmatrialet er funnet
Vedlegg 35: Ytre pålitelighet grunnriss 2t + 30 min

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td>6745217.085</td>
<td>6278070.969</td>
<td>255.534</td>
</tr>
<tr>
<td>MOEČ</td>
<td>6756528.425</td>
<td>5922337.749</td>
<td>164.704</td>
</tr>
<tr>
<td>SKRC</td>
<td>6723497.774</td>
<td>605431.765</td>
<td>190.189</td>
</tr>
</tbody>
</table>

Ytre pålitelighet - koordinater [meter]

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
<th>SN</th>
<th>SE</th>
<th>SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>6727007.905</td>
<td>599947.560</td>
<td>0.004</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM2</td>
<td>6726860.883</td>
<td>599857.450</td>
<td>0.004</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ytre pålitelighet - målestokk differanser [ppm]

<table>
<thead>
<tr>
<th>Punkt</th>
<th>Forb1</th>
<th>Forb2</th>
<th>Obs.</th>
<th>[meter/gon]</th>
<th>Indre pål.</th>
<th>Ytre pål.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td>D</td>
<td>D LOTC</td>
<td>1 FM1</td>
<td>-0.016</td>
<td>10.01</td>
<td>-0.13</td>
</tr>
<tr>
<td>MOEČ</td>
<td>D</td>
<td>MOEČ</td>
<td>1 FM1</td>
<td>-0.012</td>
<td>10.01</td>
<td>-0.017</td>
</tr>
<tr>
<td>SKRC</td>
<td>D</td>
<td>FM1</td>
<td>1 FM2</td>
<td>-0.00254</td>
<td>82.79</td>
<td>-0.59</td>
</tr>
<tr>
<td>FM1</td>
<td>R</td>
<td>FM1</td>
<td>1 FM2</td>
<td>-0.012</td>
<td>82.45</td>
<td>-41.82</td>
</tr>
<tr>
<td>FM2</td>
<td>D</td>
<td>MOEČ</td>
<td>1 FM1</td>
<td>-0.012</td>
<td>82.45</td>
<td>-41.65</td>
</tr>
</tbody>
</table>

Normparameterne:

<table>
<thead>
<tr>
<th>Normtype</th>
<th>Egendefinert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normklasse</td>
<td>(p= 10.0 ppm k= 10.0 mm)</td>
</tr>
</tbody>
</table>

Ytre pålitelighet - vinkel deformasjoner [ppm]

<table>
<thead>
<tr>
<th>Punkt</th>
<th>Forb1</th>
<th>Forb2</th>
<th>Obs.</th>
<th>[meter/gon]</th>
<th>Indre pål.</th>
<th>YP-V. def.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td>D</td>
<td>SKRC</td>
<td>1 FM1</td>
<td>-0.023</td>
<td>10.01</td>
<td>0.15</td>
</tr>
<tr>
<td>MOEČ</td>
<td>D</td>
<td>FM1</td>
<td>1 FM2</td>
<td>-0.012</td>
<td>10.01</td>
<td>-0.17</td>
</tr>
<tr>
<td>SKRC</td>
<td>D</td>
<td>FM1</td>
<td>1 FM2</td>
<td>-0.00254</td>
<td>82.79</td>
<td>-23.53</td>
</tr>
<tr>
<td>FM1</td>
<td>R</td>
<td>FM1</td>
<td>1 FM2</td>
<td>-0.012</td>
<td>82.29</td>
<td>-23.39</td>
</tr>
<tr>
<td>FM2</td>
<td>R</td>
<td>SKRC</td>
<td>1 FM1</td>
<td>-0.00254</td>
<td>82.29</td>
<td>-23.39</td>
</tr>
</tbody>
</table>

Normparameterne:

<table>
<thead>
<tr>
<th>Normtype</th>
<th>Egendefinert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normklasse</td>
<td>(p= 10.0 ppm k= 10.0 mm)</td>
</tr>
</tbody>
</table>

** STATISTIKK **

Antall iterasjoner	2
Antall observasjoner retnin	8
Antall observasjoner avstand	8
Antall bokstaver	16
Antall ukjente grunnrissskoordinater	4
Antall ukjente	4
Antall overbestemmelser	12
Maksimalt antall punkt pr. sektor	2

** Beregnet std. avvik på vektsn | 0.9864 |
| Antall std. avvik på vektsn | 1.0000 |

** Gratulerer, Alle dobbeltforbindelsene godt av valgt norm i grunnriss!**
Vedlegg 36: Ytre pålitelighet høyde 2t + 30 min

YTRE PÅLITELIGHET
UTJEVNING I HØYDE
TVUNGEN UTJEVNING

GITTE KOORDINATER [meter]
PUNKT N E H
LOT 6745217.085 627870.969 255.534
MOEC 6756258.245 502953.749 164.704
SKRC 6725497.774 605431.765 190.389

NYBESTEMTE KOORDINATER MED MIDLERE FEIL [meter]
PUNKT N E H SN SE SH
FM1 231.483 0.009
FM2 242.465 0.009

YTRE PÅLITELIGHET - KOORDINATER [meter]
KOORDINAT Observasjon....[meter/gon] Indre pål. Ytre pål.
H FM1 SKRC 1 FM1 dh -0.072 -0.021
H FM2 SKRC 1 FM1 dh -0.072 -0.020
Tabellverdi-2.57 (Student-t, f-5, alfa=0.0250)

YTRE PÅLITELIGHET - HØYDEDEFORMASJONER [m]
Forbindelse Observasjon....[meter/gon] Indre pål.
FM1 dh FM2 1 FM2 0.021 0.014 -0.013
FM2 dh FM1 1 FM2 0.021 0.014 -0.013
LOT dh FM1 1 FM2 0.021 0.341 0.021
LOT dh FM1 1 FM2 0.301 0.021
MOEC dh SKRC 1 FM1 -0.072 0.067 0.021
SKRC dh SKRC 1 FM1 -0.072 0.067 0.021
Tabellverdi-2.57 (Student-t, f-5, alfa=0.0250)

Normparametre:
Normtype : Egendefinert
Normklasse : (p= 10.0 ppm k= 10.0 mm)

STATISTIKK
Antall iterasjoner : 2
Antall observasjoner høydeforskjell : 8
Antall observasjoner : 8
Antall ukjente høydekoordinater : 2
Antall ukjente : 2
Antall overbestemmelser : 6
Maksimalt antall punkt pr. sektor : 2
Grenseavstand for nabopunkt : 50000,000
Antall enkelteforbindelser : 16
Antall dobbeltforbindelser : 19
Fellkvadratsum : 5.48176775
Beregnet std. avvik på vektsenheten : 0.9558
Antatt std. avvik på vektsenheten : 1.0000

GRATULERER, Alle enkelteforbindelser godtas av valgt norm i høyde!!
Vedlegg 37: Grovfeilsøk grunnriss 1t + 15 min

TEST AV OBSERVASJONER
DATUM: ELREF89 - SONE 32
UTJEVNING I GRUNNRISS
FRÅ UTJEVNING

<table>
<thead>
<tr>
<th>TEST AV OBSERVASJONER - MULTIPPEL T-TEST</th>
<th>Fra</th>
<th>TIL</th>
<th>Restfeil</th>
<th>Est.grovfeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMI 1 FM2</td>
<td>R</td>
<td></td>
<td>-0.0003</td>
<td>0.0057</td>
<td>0.72</td>
</tr>
<tr>
<td>FMI 1 FM2</td>
<td>D</td>
<td></td>
<td>0.002</td>
<td>-0.008</td>
<td>2.88</td>
</tr>
<tr>
<td>FMI 2 FM2</td>
<td>R</td>
<td></td>
<td>0.00017</td>
<td>0.00025</td>
<td>0.39</td>
</tr>
<tr>
<td>FMI 2 FM2</td>
<td>D</td>
<td></td>
<td>-0.003</td>
<td>0.003</td>
<td>1.13</td>
</tr>
<tr>
<td>LOTC 1 FM1</td>
<td>R</td>
<td></td>
<td>-0.0000</td>
<td>0.0000</td>
<td>0.09</td>
</tr>
<tr>
<td>LOTC 1 FM1</td>
<td>D</td>
<td></td>
<td>0.004</td>
<td>-0.014</td>
<td>2.82</td>
</tr>
<tr>
<td>LOTC 1 FM1</td>
<td>D</td>
<td></td>
<td>0.00001</td>
<td>-0.0000</td>
<td>0.09</td>
</tr>
<tr>
<td>LOTC 1 FM1</td>
<td>D</td>
<td></td>
<td>-0.013</td>
<td>0.014</td>
<td>1.82</td>
</tr>
<tr>
<td>MOEC 1 FM1</td>
<td>R</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.88</td>
</tr>
<tr>
<td>MOEC 1 FM1</td>
<td>D</td>
<td></td>
<td>0.002</td>
<td>-0.007</td>
<td>0.69</td>
</tr>
<tr>
<td>MOEC 1 FM1</td>
<td>D</td>
<td></td>
<td>0.00001</td>
<td>-0.00001</td>
<td>0.09</td>
</tr>
<tr>
<td>MOEC 1 FM1</td>
<td>D</td>
<td></td>
<td>-0.008</td>
<td>0.007</td>
<td>0.69</td>
</tr>
<tr>
<td>SKRC 1 FM1</td>
<td>R</td>
<td></td>
<td>-0.0002</td>
<td>0.0004</td>
<td>0.30</td>
</tr>
<tr>
<td>SKRC 1 FM1</td>
<td>D</td>
<td></td>
<td>0.004</td>
<td>-0.006</td>
<td>0.79</td>
</tr>
<tr>
<td>SKRC 1 FM1</td>
<td>D</td>
<td></td>
<td>0.00001</td>
<td>-0.00001</td>
<td>0.27</td>
</tr>
<tr>
<td>SKRC 1 FM1</td>
<td>D</td>
<td></td>
<td>-0.002</td>
<td>0.006</td>
<td>0.89</td>
</tr>
<tr>
<td>Tabellverdi: 4.39 (Student-t, f=7, α=0.0016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPPSUMERING ETTER TEST AV OBSERVASJONER:
Kategori	Ant.obs.	Akkumulert (%)
1.0 < Test/Tabell | 16 | 100.00
1.0 < Test/Tabell | 0 | 100.00

STATISTIKK
Antall iterasjoner: 2
Antall observasjoner retning: 8
Antall observasjoner avstand: 8
Antall observasjoner høyde: 16
Antall ukjente grunnrisskoordinater: 10
Antall uke: 10
Rangdefekt: 2
Antall ukjente korrigert: 8
Antall overbestemmelser: 8
Antall korrelasjoner: 8
Korrelasjons: 0.1094786
Beregnet std.avvik på vekstenheten: 1.051
Antatt std.avvik på vekstenheten: 1.000

Ingen feil i observasjonsmatrialet er funnet

Vedlegg 38: Grovfeilsøk høyde 1t + 15 min

TEST AV OBSERVASJONER
UTJEVNING I HØYDE
FRÅ UTJEVNING

<table>
<thead>
<tr>
<th>TEST AV OBSERVASJONER - MULTIPPEL T-TEST</th>
<th>Fra</th>
<th>TIL</th>
<th>Restfeil</th>
<th>Est.grovfeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMI 1 FM2</td>
<td>dh</td>
<td></td>
<td>-0.002</td>
<td>0.006</td>
<td>1.52</td>
</tr>
<tr>
<td>FMI 2 FM2</td>
<td>dh</td>
<td></td>
<td>0.006</td>
<td>-0.008</td>
<td>3.52</td>
</tr>
<tr>
<td>LOTC 1 FM1</td>
<td>dh</td>
<td></td>
<td>0.008</td>
<td>-0.013</td>
<td>0.60</td>
</tr>
<tr>
<td>LOTC 1 FM1</td>
<td>dh</td>
<td></td>
<td>-0.003</td>
<td>0.013</td>
<td>0.60</td>
</tr>
<tr>
<td>MOEC 1 FM1</td>
<td>dh</td>
<td></td>
<td>0.009</td>
<td>-0.016</td>
<td>0.74</td>
</tr>
<tr>
<td>MOEC 1 FM1</td>
<td>dh</td>
<td></td>
<td>-0.006</td>
<td>0.016</td>
<td>0.74</td>
</tr>
<tr>
<td>SKRC 1 FM1</td>
<td>dh</td>
<td></td>
<td>0.003</td>
<td>-0.008</td>
<td>0.35</td>
</tr>
<tr>
<td>SKRC 1 FM1</td>
<td>dh</td>
<td></td>
<td>-0.005</td>
<td>0.008</td>
<td>0.35</td>
</tr>
<tr>
<td>Tabellverdi: -6.84 (Student-t, f=3, α=0.032)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPPSUMERING ETTER TEST AV OBSERVASJONER:
Kategori	Ant.obs.	Akkumulert (%)
1.0 < Test/Tabell | 8 | 100.00
1.0 < Test/Tabell | 0 | 100.00

STATISTIKK
Antall iterasjoner: 2
Antall observasjoner høydeforskjell: 8
Antall observasjoner: 8
Antall ukjente høydekoordinater: 5
Antall tilleggsgjente: 3
Antall uke: 7
Rangdefekt: 3
Antall ukjente korrigert: 4
Antall overbestemmelser: 4
Korrelasjons: 0.1094786
Beregnet std.avvik på vekstenheten: 0.7392
Antatt std.avvik på vekstenheten: 1.0000

Ingen feil i observasjonsmatrialet er funnet
Vedlegg 39: Ytre pålitelighet grunnriss 1t + 15 min

YTRE PÅLITELIGHET
DATUM: EUSEPB – SONE 32
UTJEVNING 1 GRUNNRISS
TVUNGEN UTJEVNING

GETTE KOORDINATER [meter]
PUNKT	N	E	H
LOT | 6745217.085 | 627870.969 | 255.534 |
MOEC | 6756285.245 | 592231.749 | 164.704 |
SKRC | 6254597.774 | 605431.765 | 190.189 |

NYBESTEMTE KOORDINATER MED MIDLERE FEIL [meter]
PUNKT	N	E	H	SN	SE	SH
FM1 | 0.003 | 0.002 | 0.003 | 0.002 | 0.002 | 0.002 |
FM2 | 0.003 | 0.002 | 0.003 | 0.002 | 0.002 | 0.002 |

YTRE PÅLITELIGHET - KOORDINATER [meter]
KOORDINAT	Observasjon... [meter/gon]	Indre pål	Ytre pål
N FM1 | MOEC | 1 FM1 | D | -0.019 | 0.005 |
E FM1 | LOTC | 1 FM1 | D | -0.015 | 0.003 |
P FM1 | MOEC | 1 FM1 | D | -0.015 | 0.003 |
N FM2 | SKRC | 1 FM2 | R | -0.00020 | -0.005 |
E FM2 | SKRC | 1 FM2 | D | -0.013 | 0.003 |
P FM2 | SKRC | 1 FM2 | R | -0.00020 | 0.005 |

Tabellverdi=2.20 (Student-t, f=11, alfa=0.0250)

YTRE PÅLITELIGHET - MALESTOKKDIFFERANSER [ppm]
Punkt	Forb1	Forb2	Observasjon... [meter/gon]	Indre pål	Normkrav	YP-M, diff.
LOT | SKRC | FM1 | D LOTC | 1 FM1 | 10.01 | -0.12 |
MOEC | FM2 | 1 FM1 | D FM1 | 0.015 | 10.01 | 0.17 |
SKRC | D SKRC | 1 FM1 | D FM2 | 0.011 | 10.27 | -0.50 |
FM1 | LOTC | 1 FM1 | D FM1 | -0.013 | 82.44 | -39.61 |
FM2 | D FM1 | 1 FM1 | D FM1 | -0.011 | 82.79 | -39.79 |

Tabellverdi=2.20 (Student-t, f=11, alfa=0.0250)

Normparametre:
Normtype: Eegendefinert
Normklasse: (p< 10.0 ppm k= 10.0 mm)

YTRE PÅLITELIGHET - VINKELDEFORMASJONER [ppm]
Punkt	Forb1	Forb2	Observasjon... [meter/gon]	Indre pål	Normkrav	YP-V, def.
LOT | SKRC | FM1 | D LOTC | 1 FM1 | 10.01 | 0.14 |
MOEC | FM2 | 1 FM1 | D FM1 | -0.019 | 10.01 | 0.15 |
SKRC | D SKRC | 1 FM1 | D FM2 | -0.011 | 10.23 | -0.99 |
FM1 | LOTC | 1 FM1 | D FM1 | -0.011 | 82.46 | -19.10 |
FM2 | R FM1 | 1 FM2 | D FM1 | -0.00208 | 82.81 | -19.19 |

Tabellverdi=2.20 (Student-t, f=11, alfa=0.0250)

Normparametre:
Normtype: Egendefinert
Normklasse: (p< 10.0 ppm k= 10.0 mm)

STATISTIKK
Antall iterasjoner : 2
Antall observasjoner retning : 8
Antall observasjoner avstand : 8
Antall observasjoner avstand og retning : 16
Antall ukjente grunnrisskoordinater : 4
Antall ukjente grunnrisskoordinater : 4
Antall overbestemmelser : 12
Maksimalt antall punkt pr. sektor : 3
Grenseavstand for nabopunkt : 500000.000
Antall enkelthandlinger : 16
Antall dobbeltforbindelser : 19
Antall korrelasjoner : 8
Felldiagram : 12.5991712
Beregnet std. avvik på vektenheten : 1.0427
Antatt std. avvik på vektenheten : 1.0000

TEST AV MO
Tabellverdi = 21.02 (Kjikvadrat, f=12, alfa=0.0500)
Beregnet verdi = 12.60

GRATULERER, Alle dobbeltforbindelser godtas av valgt norm i grunnriss!
Vedlegg 40: Ytre pålitelighet høyde 1t + 15 min

YTRE PÅLITELIGHET
UTJEVNING I HØYDE
TVUNGEN UTJEVNING

GITTE KOORDINATER [meter]
PUNKT N E H
LOT 6745217.085 627870.909 235.534
MOE 6746228.245 592253.749 184.784
SKRC 6725497.774 605431.765 190.189

NYBESTEMTE KOORDINATER MED MIDLERE FEIL [meter]
PUNKT N E H SN SE SH
FM1 231.480 0.008
FM2 242.470 0.008

YTRE PÅLITELIGHET - KOORDINATER [meter]
KOORDINAT Observasjon [...][meter/gon] Indre pål. Ytre pål.
H FM1 1 FM1 dh -0.066 -0.016
FM2 1 FM1 dh -0.066 -0.013
Tabellverdi=2.57 (Student-t, f=5, alfa=0.0250)

YTRE PÅLITELIGHET - HØYDEDEFORMASJONER [m]
Forbindelse Observasjon [...][meter/gon] Indre pål.
FM1 1 FM2 dh 0.014 0.014
FM2 1 FM1 dh 0.014 0.014
LOT 1 FM1 dh 0.341 0.016
MOE 1 FM1 dh 0.301 0.016
SKRC 1 FM1 dh 0.067 0.016
Tabellverdi=2.57 (Student-t, f=5, alfa=0.0250)

Normparametre:
Normtype: Egendefinert
Normklasse: (p=10.0 ppm k=10.0 mm)

STATISTIKK:
Antall iterasjoner : 2
Antall observasjoner høydeforskjell : 8
Antall observasjoner : 8
Antall ukjente høydekoordinater : 2
Antall ukjente : 2
Antall overbestemmelser : 6
Maksimalt antall punkt pr. sektor : 2
Grenseavstand for nabopunkt : 500000.000
Antall enkeltforbindelser : 16
Antall dobbeltforbindelser : 19
Pellkvadratsum : 6.22698150
Beregnet std. avvik på vektenheten : 1.0187
Antatt std. avvik på vektenheten : 1.0000

TEST AV M0
Tabellverdi = 12.59 (Kjikkvadrat, f=6, alfa=0.0500)
Beregnet verdi = 6.23

GRATULERER, Alle enkeltforbindelser godtas av valgt norm i høyde!!
Vedlegg 41: Grovfeilsøk grunnriss 30 min + 10 min

<table>
<thead>
<tr>
<th>TEST AV OBSERVAJONER - MULTIPPEL T-TEST</th>
<th>Fra</th>
<th>TIl</th>
<th>Restfeil</th>
<th>Est.grofeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>1</td>
<td>FM2</td>
<td>R</td>
<td>0.00019</td>
<td>0.00058</td>
</tr>
<tr>
<td>FM1</td>
<td>1</td>
<td>FM2</td>
<td>D</td>
<td>0.00002</td>
<td>0.002</td>
</tr>
<tr>
<td>FM1</td>
<td>2</td>
<td>FM2</td>
<td>D</td>
<td>0.001</td>
<td>-0.005</td>
</tr>
<tr>
<td>LOTC</td>
<td>1</td>
<td>FM1</td>
<td>R</td>
<td>0.00000</td>
<td>-0.00000</td>
</tr>
<tr>
<td>LOTC</td>
<td>1</td>
<td>FM1</td>
<td>D</td>
<td>0.004</td>
<td>-0.012</td>
</tr>
<tr>
<td>LOTC</td>
<td>1</td>
<td>FM2</td>
<td>R</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>LOTC</td>
<td>1</td>
<td>FM2</td>
<td>D</td>
<td>-0.009</td>
<td>0.012</td>
</tr>
<tr>
<td>M0EC</td>
<td>1</td>
<td>FM1</td>
<td>R</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>M0EC</td>
<td>1</td>
<td>FM1</td>
<td>D</td>
<td>0.000</td>
<td>0.002</td>
</tr>
<tr>
<td>M0EC</td>
<td>1</td>
<td>FM2</td>
<td>R</td>
<td>-0.00001</td>
<td>0.00001</td>
</tr>
<tr>
<td>M0EC</td>
<td>1</td>
<td>FM2</td>
<td>D</td>
<td>-0.002</td>
<td>-0.000</td>
</tr>
<tr>
<td>SK0C</td>
<td>1</td>
<td>FM1</td>
<td>R</td>
<td>-0.00004</td>
<td>0.00006</td>
</tr>
<tr>
<td>SK0C</td>
<td>1</td>
<td>FM1</td>
<td>D</td>
<td>0.003</td>
<td>-0.006</td>
</tr>
<tr>
<td>SK0C</td>
<td>1</td>
<td>FM2</td>
<td>R</td>
<td>0.00001</td>
<td>-0.00006</td>
</tr>
<tr>
<td>SK0C</td>
<td>1</td>
<td>FM2</td>
<td>D</td>
<td>0.002</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Tabellverdi=4.99 (Student-t, F=7, alfa=0.0016)

<p>| OPPSUMERING EFTER TEST AV OBSERVAJONER: |</p>
<table>
<thead>
<tr>
<th>Kategori</th>
<th>Ant.obs.</th>
<th>Akkumulert (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test/Tabell < 1.0</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>1.0 < Test/Tabell < 2.0</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>2.0 < Test/Tabell < 3.0</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>3.0 < Test/Tabell < 3.0</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>Ukontrollerbar</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

Vedlegg 42: Grovfeilsøk høyde 30 min + 10 min

<table>
<thead>
<tr>
<th>TEST AV OBSERVAJONER - UTJEVNING I HØYDE</th>
<th>Fra</th>
<th>TIl</th>
<th>Restfeil</th>
<th>Est.grofeil</th>
<th>Testverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>1</td>
<td>FM2</td>
<td>dH</td>
<td>0.003</td>
<td>-0.008</td>
</tr>
<tr>
<td>FM1</td>
<td>2</td>
<td>FM2</td>
<td>dH</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td>LOTC</td>
<td>1</td>
<td>FM1</td>
<td>dH</td>
<td>0.003</td>
<td>-0.008</td>
</tr>
<tr>
<td>LOTC</td>
<td>1</td>
<td>FM2</td>
<td>dH</td>
<td>-0.004</td>
<td>0.008</td>
</tr>
<tr>
<td>M0EC</td>
<td>1</td>
<td>FM1</td>
<td>dH</td>
<td>0.005</td>
<td>-0.014</td>
</tr>
<tr>
<td>M0EC</td>
<td>1</td>
<td>FM2</td>
<td>dH</td>
<td>-0.009</td>
<td>0.014</td>
</tr>
<tr>
<td>SK0C</td>
<td>1</td>
<td>FM1</td>
<td>dH</td>
<td>0.008</td>
<td>-0.014</td>
</tr>
<tr>
<td>SK0C</td>
<td>1</td>
<td>FM2</td>
<td>dH</td>
<td>0.006</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Tabellverdi=6.84 (Student-t, F=3, alfa=0.0032)

<p>| OPPSUMERING EFTER TEST AV OBSERVAJONER: |</p>
<table>
<thead>
<tr>
<th>Kategori</th>
<th>Ant.obs.</th>
<th>Akkumulert (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test/Tabell < 1.0</td>
<td>80.00</td>
<td></td>
</tr>
<tr>
<td>1.0 < Test/Tabell < 2.0</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>2.0 < Test/Tabell < 3.0</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>3.0 < Test/Tabell < 3.0</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>Ukontrollerbar</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

STATISTIKK

<table>
<thead>
<tr>
<th>Antall iterasjoner: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall observasjoner høydeforskjell: 8</td>
</tr>
<tr>
<td>Antall observasjoner avstand: 8</td>
</tr>
<tr>
<td>Antall observasjoner: 8</td>
</tr>
<tr>
<td>Antall ukjente høydekoordinater: 10</td>
</tr>
<tr>
<td>Antall ukjente: 10</td>
</tr>
<tr>
<td>Rangefekt: 2</td>
</tr>
<tr>
<td>Antall ukjente korrigert: 8</td>
</tr>
<tr>
<td>Antall overbestemmelser: 8</td>
</tr>
<tr>
<td>Antall korrelasjoner: 8</td>
</tr>
<tr>
<td>Færfekvadratsum: 16.18038994</td>
</tr>
</tbody>
</table>

Beregnet std.avvik på vekstenheten: 1.4222 |
Antatt std.avvik på vekstenheten: 1.0000

Jønig feili i observasjonstriala er funnet.

STATISTIKK

<table>
<thead>
<tr>
<th>Antall iterasjoner: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall observasjoner høydeforskjell: 8</td>
</tr>
<tr>
<td>Antall observasjoner: 8</td>
</tr>
<tr>
<td>Antall ukjente høydekoordinater: 3</td>
</tr>
<tr>
<td>Antall tilleggsukjente: 2</td>
</tr>
<tr>
<td>Antall ukjente: 7</td>
</tr>
<tr>
<td>Rangefekt: 3</td>
</tr>
<tr>
<td>Antall ukjente korrigert: 4</td>
</tr>
<tr>
<td>Antall overbestemmelser: 4</td>
</tr>
<tr>
<td>Færfekvadratsum: 4.44376862</td>
</tr>
</tbody>
</table>

Beregnet std.avvik på vekstenheten: 1.5365 |
Antatt std.avvik på vekstenheten: 1.0000

Jønig feili i observasjonstriala er funnet.
Vedlegg 43: Ytre pålitelighet 30 min + 10 min

<table>
<thead>
<tr>
<th>YTRE PÅLITELIGHET</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATUM: ELEK-89 - SONE 32</td>
</tr>
<tr>
<td>UTJEVNING I GRUNNRISS</td>
</tr>
<tr>
<td>TÆVING UTJEVNING</td>
</tr>
</tbody>
</table>

GITT KOORDINATER [meter]

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td>6745217.085</td>
<td>627870.969</td>
<td>233.534</td>
</tr>
<tr>
<td>MOEC</td>
<td>6756438.745</td>
<td>502113.749</td>
<td>164.704</td>
</tr>
<tr>
<td>SKRC</td>
<td>625497.774</td>
<td>605431.765</td>
<td>190.189</td>
</tr>
</tbody>
</table>

NYBESTEMTE KOORDINATER MED MIDLERE FEIL [meter]

<table>
<thead>
<tr>
<th>PUNKT</th>
<th>N</th>
<th>E</th>
<th>H</th>
<th>SN</th>
<th>SE</th>
<th>SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>FML1</td>
<td>6772007.906</td>
<td>590047.560</td>
<td>0.002</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FML2</td>
<td>6725860.885</td>
<td>598037.449</td>
<td>0.002</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YTRE PÅLITELIGHET - KOORDINATER [meter]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N FML1</td>
<td>SKRC 1 FM2 1 FM2 1 FM2 1 FM2</td>
<td>R -0.00015 0.003</td>
<td></td>
</tr>
<tr>
<td>E FML1</td>
<td>SKRC 1 FM2 1 FM2 1 FM2 1 FM2</td>
<td>D -0.0013 0.003</td>
<td></td>
</tr>
<tr>
<td>P FML1</td>
<td>SKRC 1 FM2 1 FM2 1 FM2 1 FM2</td>
<td>R -0.00015 0.004</td>
<td></td>
</tr>
<tr>
<td>N FML2</td>
<td>SKRC 1 FM2 1 FM2 1 FM2 1 FM2</td>
<td>R -0.00015 0.004</td>
<td></td>
</tr>
<tr>
<td>E FML2</td>
<td>SKRC 1 FM2 1 FM2 1 FM2 1 FM2</td>
<td>D -0.0013 0.003</td>
<td></td>
</tr>
<tr>
<td>P FML2</td>
<td>SKRC 1 FM2 1 FM2 1 FM2 1 FM2</td>
<td>R -0.00015 0.004</td>
<td></td>
</tr>
</tbody>
</table>

Tabellverdi: 2.20 (Student-t, f=11, alf=0.0250)

YTRE PÅLITELIGHET - MALESTOKDIFFERANSEN [ppm]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td>SKRC FM2</td>
<td>FM2 1 FM2 1 FM2 1 FM2 1 FM2</td>
<td>R -0.014 0.10</td>
<td>10.01</td>
<td>0.10</td>
</tr>
<tr>
<td>MOEC</td>
<td>FML FM2</td>
<td>FM2 1 FM2 1 FM2 1 FM2 1 FM2</td>
<td>D -0.006 0.30</td>
<td>10.01</td>
<td>0.12</td>
</tr>
<tr>
<td>SKRC</td>
<td>LOTS FM2</td>
<td>FM2 1 FM2 1 FM2 1 FM2 1 FM2</td>
<td>R -0.006 0.07</td>
<td>10.27</td>
<td>0.47</td>
</tr>
<tr>
<td>FML1</td>
<td>FML FM2</td>
<td>FM2 1 FM2 1 FM2 1 FM2 1 FM2</td>
<td>R -0.006 0.07</td>
<td>82.70</td>
<td>26.64</td>
</tr>
<tr>
<td>FML2</td>
<td>FML FM2</td>
<td>FM2 1 FM2 1 FM2 1 FM2 1 FM2</td>
<td>R -0.006 0.07</td>
<td>82.29</td>
<td>26.49</td>
</tr>
</tbody>
</table>

Tabellverdi: 2.20 (Student-t, f=11, alf=0.0250)

Normparametre:

<table>
<thead>
<tr>
<th>Normtype</th>
<th>Egendefinert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normklasse</td>
<td>(p= 10.0 ppm k= 10.0 mm)</td>
</tr>
</tbody>
</table>

YTRE PÅLITELIGHET - VINNETEORDEREGERJONER [ppm]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td>SKRC FM2</td>
<td>FM2 1 FM2 1 FM2 1 FM2 1 FM2</td>
<td>R -0.013 0.10</td>
<td>10.01</td>
<td>0.09</td>
</tr>
<tr>
<td>MOEC</td>
<td>FML FM2</td>
<td>FM2 1 FM2 1 FM2 1 FM2 1 FM2</td>
<td>D -0.006 0.30</td>
<td>10.01</td>
<td>0.10</td>
</tr>
<tr>
<td>SKRC</td>
<td>LOTS FM2</td>
<td>FM2 1 FM2 1 FM2 1 FM2 1 FM2</td>
<td>R -0.006 0.07</td>
<td>10.23</td>
<td>0.67</td>
</tr>
<tr>
<td>FML1</td>
<td>FML FM2</td>
<td>FM2 1 FM2 1 FM2 1 FM2 1 FM2</td>
<td>R -0.006 0.07</td>
<td>82.98</td>
<td>18.67</td>
</tr>
<tr>
<td>FML2</td>
<td>FML FM2</td>
<td>FM2 1 FM2 1 FM2 1 FM2 1 FM2</td>
<td>R -0.006 0.07</td>
<td>82.45</td>
<td>18.55</td>
</tr>
</tbody>
</table>

Tabellverdi: 2.20 (Student-t, f=11, alf=0.0250)

Normparametre:

<table>
<thead>
<tr>
<th>Normtype</th>
<th>Egendefinert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normklasse</td>
<td>(p= 10.0 ppm k= 10.0 mm)</td>
</tr>
</tbody>
</table>

STATISTIKK

<table>
<thead>
<tr>
<th>Antall iterasjoner</th>
<th>: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall observasjoner retning</td>
<td>: 8</td>
</tr>
<tr>
<td>Antall observasjoner avstand</td>
<td>: 8</td>
</tr>
<tr>
<td>Antall observasjoner</td>
<td>: 16</td>
</tr>
<tr>
<td>Antall ukjente grunnrisskoordinater</td>
<td>: 4</td>
</tr>
<tr>
<td>Antall ukjente</td>
<td>: 4</td>
</tr>
<tr>
<td>Antall overbestemmelser</td>
<td>: 12</td>
</tr>
<tr>
<td>Maksimalt antall punkt pr. sektor</td>
<td>: 2</td>
</tr>
<tr>
<td>Gjennomsnittsavstand for nødbopunkt</td>
<td>: 50000.000</td>
</tr>
<tr>
<td>Antall enkelteforbindelser</td>
<td>: 16</td>
</tr>
<tr>
<td>Antall dobbeltforbindelser</td>
<td>: 19</td>
</tr>
<tr>
<td>Antall korrelasjoner</td>
<td>: 8</td>
</tr>
<tr>
<td>Feilkvadratsum</td>
<td>: 31.86058468</td>
</tr>
<tr>
<td>Beregnet std. avvik på vektenheten</td>
<td>: 1.6798</td>
</tr>
<tr>
<td>Antatt std. avvik på vektenheten</td>
<td>: 1.0000</td>
</tr>
</tbody>
</table>

ERSTATTER, Alle dobbeltforbindelser godtas av valgt norm i grunnriss!
Vedlegg 44: Ytre pålitelighet 30 min + 10 min

<table>
<thead>
<tr>
<th>Vedlikeholdepunkt</th>
<th>N</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTC</td>
<td>6745217.085</td>
<td>255.534</td>
<td></td>
</tr>
<tr>
<td>MOEC</td>
<td>6736258.245</td>
<td>592553.749</td>
<td></td>
</tr>
<tr>
<td>SKRC</td>
<td>6723497.774</td>
<td>190.189</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>E</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMI</td>
<td>231.486</td>
<td>0.008</td>
</tr>
<tr>
<td>FM2</td>
<td>242.470</td>
<td>0.008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H FMI</td>
<td>MOEC</td>
<td>dh 0.062</td>
</tr>
<tr>
<td>H FM2</td>
<td>SKRC</td>
<td>dh -0.066</td>
</tr>
</tbody>
</table>

Tabellverdi=2.57 (Student-t, F=5, alfa=0.0250)

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Observasjon... [meter/gon]</th>
<th>Indre pål.</th>
<th>Normkrav</th>
<th>YP-dh.def.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM1</td>
<td>dh FM1</td>
<td>0.014</td>
<td>0.019 *</td>
<td></td>
</tr>
<tr>
<td>FM2</td>
<td>dh FM1</td>
<td>0.014</td>
<td>0.019 *</td>
<td></td>
</tr>
<tr>
<td>LOTC</td>
<td>dh FM1</td>
<td>0.343</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>MOEC</td>
<td>dh SKRC</td>
<td>0.302</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>SKRC</td>
<td>dh SKRC</td>
<td>0.068</td>
<td>0.017</td>
<td></td>
</tr>
</tbody>
</table>

Tabellverdi=2.57 (Student-t, F=5, alfa=0.0250)

Normparametere:
- Normtype: Egen definert
- Normklasse: (p= 10.0 ppm k= 10.0 mm)

<table>
<thead>
<tr>
<th>Statistikk</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall iterasjoner</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Antall observasjoner hoydeforskjell</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Antall ukjente hoydekoordinater</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Antall ukjente hoydekoordinater</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Maksimalt antall punkt pr. sektor</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Grenseavstand for nabopunkt</td>
<td>50000.00</td>
<td></td>
</tr>
<tr>
<td>Antall enkeltforbindelser</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Antall dobbeltforbindelser</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Feilkvadratsum</td>
<td>51.76967268</td>
<td></td>
</tr>
<tr>
<td>Beregnet std. avvik på vektsehneten</td>
<td>2.9374</td>
<td></td>
</tr>
<tr>
<td>Antatt std. avvik på vektsehneten</td>
<td>1.0000</td>
<td></td>
</tr>
</tbody>
</table>