
Part 22 National Order Database
(Nasjonal ordredatabase)

Håndbok 206VEILEDNING

Vegdirektoratet 2012

Electronic Ticketing

.

Electronic Ticketing

Part 22

National Order Database

2

: : E L E C T R O N I C T I C K E T I N G

Handbooks in the Norwegian Public Road Administration

This is a handbook in the Norwegian Public Roads Administration’s (NPRA) handbook series,
a collection of consecutive publications primarily intended for use within the agency.

NPRA has the main responsibility for authoring and maintenance of the handbooks.

This handbook is only published on www.vegvesen.no.

The NPRA’s handbooks are published on two levels:

Level 1 – Yellow color on the front page – includes regulations, norms and guidelines
 approved by superior authority or by the NPRA by proxy.
Level 2 – Blue color on the front page – includes instructions, text books and road data
 approved by the department authorized for this in the NPRA.

Electronic Ticketing

Nr. 206 Part 22 in the Norwegian Public Roads Administration’s handbook series.

Responsible department: Traffic Management

ISBN 978-82-7207-639-8

E L E C T R O N I C T I C K E T I N G : :

3

Revision History

Version Date Authors Main changes

1 2012.11.05 Kjell-Erik B. Eilertsen,
Karl Ivar Dahl,
Kim Richard Hansen

First version of the document.

4

: : E L E C T R O N I C T I C K E T I N G

Foreword

Handbook 206 concerns electronic ticketing, primarily focused on public transportation.
The handbook is commissioned by the Ministry of Transportation and is financed by the
Norwegian Public Roads Administration and the Ministry of Transportation. The main
purpose of the handbook is to make it easier for the customer to travel by public trans-
portation. An important part of this simplification is coordination of systems for electronic
ticketing on the local, regional and national levels.

The targeted audience for the handbook will be decision makers in public transporta-
tion companies and public agencies. In addition it will address personnel working with
 requirement specifications and acquisition of systems for electronic ticketing.

A complete overview of the contents in Handbook 206 is given in Part 0.

This is part 22 of Handbook 206. The part gives a description of the National Order Database
(NOD) and requirements for clients and systems using it.

The Norwegian Public Roads Administration presupposes that current international
standards and guidelines given in Handbook 206 Electronic Ticketing are followed by
projects for electronic ticketing as instructed by the license authority, ref the Norwegian
law for professional transportation (Yrkestransportloven) and the corresponding regula-
tions for professional transportation (Yrkestransportforskriften) §30, which is elaborated
by the Ministry of Transportation’s circular N-1/2006.

Norwegian Public Roads Administration, July 2012

E L E C T R O N I C T I C K E T I N G : :

5

Table of Contents

Revision History 3
Foreword 4
Table of Contents 5
List of Figures 6

1 INTRODUCTION 7
 1.1 Logical Architecture 7
 1.2 Order Types 8

2 THE NATIONAL ORDER DATABASE MANAGER 9
 2.1 Order Management Process 10
 2.2 Difference Engine 15
 2.3 Transaction Generation 16

3 REQUIREMENTS FOR CLIENT SALES SYSTEMS 19
 3.1 Issuing Orders 19
 3.2 Managing Orders 19
 3.3 Webservice Order Interface Definitons 19

4 REQUIREMENTS FOR NOD CLIENTS 21
 4.1 The Order Delivery Process 21
 4.2 Requirements for User Interface 22
 4.3 NOD Client Interface 22
 4.4 Security 24

5 REQUIREMENTS FOR NOD PLUGINS 25
 5.1 Business Logic 25
 5.2 Mapping of Orders to plugins 25
 5.3 Interface 27
 5.4 Binary Ticket Medium Image Structure 27
 5.5 Transaction Requirements 27

6

: : E L E C T R O N I C T I C K E T I N G

Figure 1.1: Overview of card contents 2

List of Figures

E L E C T R O N I C T I C K E T I N G : : I N T R O D U C T I O N

7

1 Introduction

The National Order Database (NOD) is a central component for supporting online electro-
nic ticketing and Internet sales. Instead of distributing action lists to offline equipment (as
described in HB206 part 21), all orders are stored in a common order database. When a card
is presented a device (client) supporting the NOD, the NOD client will call an online inter-
face to retrieve the orders for that specific card in real time. These clients may be integrated
in existing hardware or established as pick-up devices (PUD) dedicated for this purpose.
The NOD clients will be controlled on a low level by the NOD when performing orders.

An order may be issued targeted for either a contactless card, a mobile telephone client or
a device. In the future also other types of clients may be added.

This document describes how the NOD functions and how it communicates with other parties.

1.1 Logical Architecture
The logical architecture of the NOD solution is shown in fig 1.1. This shows an example
using an Internet ticket sales order to be issued on an NSD contactless smartcard.

Fig 1.1: NOD Logical Architecture

8

I N T R O D U C T I O N : : E L E C T R O N I C T I C K E T I N G

Normally it will be the PTOs’ sales systems that issues orders to the NOD Server via the
PL4 system in the Public Transport Information and Service Hub (PTIS Hub). This process
and its requirements and interfaces are described in detail in chapter 3.

After receiving an order, the NOD Server stores the order and waits for a request for the
corresponding card. When the card is presented on a pick-up device, the device sends the
card id to the NOD Server. The detailed requirements and interfaces for the NOD Client are
described in chapter 4. The NOD Server then retrieves the complete binary card contents
from the PUD, and gives it to the correct plugin together with the order details.

The plugin performs the necessary card level logic and returns a new binary card image
and contents for the transaction. The detailed requirements and interfaces for the plugins
are described in chapter 5. The NOD Server then compares the old and new card image
using a diff engine, and based on this creates the corresponding APDU (Application Pro-
tocol Data Unit) level commands for the PUD. The PUD then retrieves the commands
through a REST interface, leading it step by step through the whole process of writing to
the card. The NOD Server also decides when authentications are necessary and which keys
to authenticate with. Whenever an authentication is required towards the card, the crypto
operations is handled by using the authentication and security server.

When the card writing process is finished, the plugin generates the corresponding transac-
tions on behalf of the PUD, and sends these to the Collect and Forward central. The NOD
Server itself is described in chapter 2.

1.2 Order Types
There will be different types of orders available. Not all order types will be available in
phase 1. The sequence they will be implemented in depends on the needs of PTOs.
•	 Stored	value	reload
•	 Product	sale
•	 Auto	renew	management
•	 Auto	reload	management
•	 Product	deletion
•	 Unblock	card	or	product
•	 Validation
•	 Personalization
•	 Refund	(for	sales	offices)
•	 Cancelation	(for	sales	offices)
•	 Card/application	issuing	(for	sales	offices)
•	 Reconstruction
•	 Garbage	collection
•	 Perform	offline	action	lists
•	 Support	for	ticketing	on	mobile	telephones	using	2D	barcodes	(QR	codes)

When issuing products only NSD (MIFARE DESFire) will be supported in phase 1. In the
future also Ultralight, paper and possibly other ticket media will be supported as well.

E L E C T R O N I C T I C K E T I N G : : T H E N AT I O N A L O R D E R D ATA B A S E M A N A G E R

9

2 The National Order Database Manager

2.1 Order Management Process
The NOD Server uses services in the Public Transport Information and Service Hub (PTIS
Hub) towards the PTO clients. These will exist side by side with other services, e.g. private
action lists and blocking lists.

The orders will be stored there and immediately, put on an execution queue and forwarded
to a separate database for active orders.

2.1.1 State Engine
The state engine describes the different states an order may have, and legal transitions bet-
ween them. The state chart is shown in fig 2.1.

Fig 2.1: Order state chart

An order is set to New when ordered by a PTO at the PTIS Hub AddOrder service. It will
almost immediately be put on the NOD queue and become Distributed. As long as it has
status Distributed it may be cancelled by the PTO through the UpdateOrderGroup service.

When a NOD client is presented with e.g. the card the order is issued to, it retrieves all
order groups with status Distributed, set them to Reserved, and pass them to the correct
plugin(s). The plugin decides if the order may be executed. If it may not be executed at
that time, but maybe in the future, the state is returned to Distributed, thus allowing it to

10

T H E N AT I O N A L O R D E R D ATA B A S E M A N A G E R : : E L E C T R O N I C T I C K E T I N G

be retrieved the next time the card is presented. If an order cannot be executed, now or in
the future, the state will be set to Failed. This will prevent any future attempts to execute
the order.

If it may be executed now, the plugin returns the updated image, which is passed to the Diff
Engine. The Diff Engine creates the APDU (or equivalent) commands to the ticket medium.
The APDU commands are put together in command sets, based on necessary authenticati-
ons. For one order group, only one commit shall be written. Therefore, only one record may
be added to any record file, thus eliminating the possibility for partially executed orders.

When the command set with the Commit command has been sent to the client, the state is
set to Written. If the client returns OK, the state is set to Committed, and the order execu-
tion is complete. If no answer is received, the order will return to Reserved state. The next
time the card is presented, it will be checked to see if the previous attempt to commit was
successful or not. This is done by storing a checksum of the card image as it was when it
was first presented and the checksum of the expected outcome after commit (as created by
the plugin). When the card is presented anew, the checksum of the current card image will
be compared to the stored checksums. If it is the same as the initial, it means the commit
failed, and the anti-tear mechanisms rolled back the changes. The order will then be execu-
ted again. If the checksum is the same as the result from the plugin, it means that the com-
mit was successful, and the state is set to Committed. If it has any other value this means
that something else has happened in between. The card then needs to be inspected manu-
ally and the order state set accordingly afterwards.

Note that the NOD server is not tracking individual Order statuses, but the status of an
entire Order Group. This individual tracking is not possible as execution of several orders
may be merged into a few Client Commands.

The results of individual Nod Client Commands or Plugin responses may however accom-
pany a Group status update to facilitate diagnosis of an execution failure.

2.1.1 Order Group Status Lifecycle

State

Transition

Event Description

DISTRIBUTED This state will transition to the DISTRIBUTED state immediately upon submission to PL4, as all

Order Groups currently are submitted to the NOD immediately.

NEW
When a new ordergroup is added to PL4 it will initially have the NEW status.

E L E C T R O N I C T I C K E T I N G : : T H E N AT I O N A L O R D E R D ATA B A S E M A N A G E R

11

There is currently no support for delayed distribution to the NOD server. Any delays must
be implemented on the PTO side.

DISTRIBUTED
When the Order Group is added to the NOD server queue it will have the DISTRIBUTED
state.	The	state	may	be	set	to	DISTRIBUTED	from	RESERVED	if	the	order	could	not	be	exe-
cuted at this time. This enables another attempt to be made to execute the Order Group.

This is the only state from which it is possible to cancel the distribution.

State Transition Event Description

RESERVED A NOD Client creates a NOD session for the purpose of executing this group.

CANCELLED A PTO Asks PL4 to cancel the distribution.

EXPIRED The Order Group distribution has passed the ExpiredDate of the Order Group.

FAILED For a permanent reason the Order Group should not be distributed any more.

RESERVED
When a NOD Client successfully establishes a NOD Session for an Order Group, the
RESERVED	status	will	be	set.

State

Transition

Event Description

WRITTEN The Commit client command is submitted to the NOD Client, no result is returned yet.

DISTRIBUTED For a temporary reason, the NOD Client or Plugin could not complete the Order Group and

eventual changes are rolled back.

FAILED For a permanent reason the Order Group should not be distributed any more.

WRITTEN
When the command sets executing the Order Group has been sent to the NOD Client the
WRITTEN status will be set.

12

T H E N AT I O N A L O R D E R D ATA B A S E M A N A G E R : : E L E C T R O N I C T I C K E T I N G

State

Transition

Event Description

COMMITTED The Commit client command is submitted to the NOD Client, and the result is confirmed by an

incoming commit result, or deduced by a comparison of the incoming source image with the

target image from the previous NOD Session.

WRITTEN WITH

ERROR

The Commit client command is submitted to the NOD Client, but the result could not be

verified.

RESERVED A NOD Client retries while the previous NOD Session is still active.If the source image is

unchanged from the previous source image, continue as normal.

FAILED For a permanent reason the Order Group should not be distributed any more.

Note that comparisons with previous source and target images are only relevant when a
Nod Client/user aborts the dialogue with the NOD server, and then immediately retries
before the NOD Session times out.

COMMITTED
When a NOD server receives a confirmation that the commit has been successfully execu-
ted by the NOD Client the COMMITTED status will be set.

The Order Group is removed from the NOD by a batch job.

This is an end state.

WRITTEN WITH ERROR
If the NOD server does not receive a confirmation of successful execution of a command
set from the NOD Client before the NOD Session times out, the WRITTEN WITH ERROR
status will be set.

The Order Group is removed from the NOD by a batch job.

This is an end state.

CANCELLED
When a PTO cancels an order in the DISTRIBUTED state using the PL4 order interface the
CANCELLED status will be set.

The Order Group is removed from the NOD by a batch job.

This is an end state.

E L E C T R O N I C T I C K E T I N G : : T H E N AT I O N A L O R D E R D ATA B A S E M A N A G E R

13

FAILED
If the NOD server determines that the order may not be executed now or in the future the
FAILED status will be set.

The Order Group is removed from the NOD by a batch job.

This is an end state.

EXPIRED
The NOD server periodically checks that the ExpiredDate of an Order Group is still valid
for distribution.

The Order Group is removed from the NOD by a batch job.

SYSTEM_ERROR
If an unexpected system error happens during any stage of the Order Group lifecycle, the
Order Group is set directly to this state. The state is used to move an Order Group out of
distribution until the cause has been identified and corrected, so that the Order Group do
not block subsequent Order Groups.

The incident will have to be investigated by the System Administrator or technicians, and
the state will have to be changed manually according to the investigation result in both
NOD and PL4.

The Order Group is NOT removed from the NOD by a batch job, and may therefore be re-
enabled.

State

Transition

Event Description

WRITTEN WITH

ERROR

Manual investigation confirmed that the Order Group possibly has been committed before

failure

FAILED Manual investigation confirmed that the Order Group should be permanently failed.

CANCELLED The Order Group may be cancelled via PL4, so that the traveller may get a refund.

DISTRIBUTED The Order Group may be re-distributed via PL4, so that the traveller may attempt to pick up

the Order Group once more. This should normally not be done unless the error has been

identified and fixed.

This is an end state.

14

T H E N AT I O N A L O R D E R D ATA B A S E M A N A G E R : : E L E C T R O N I C T I C K E T I N G

 NEW DISTRIBUTED RESERVED WRITTEN COMMITTED WRITTEN

WITH

ERROR

CANCELLED FAILED EXPIRED SYSTEM_ERROR

PL4 (temporary) X X X X X X X

NOD X X X (temporary) (temporary) (temporary) (temporary) (temporary) X

2.1.4 Batch Jobs

Nod Session Timeout
A job is periodically releasing NOD Sessions that have not been completed by the NOD
Client for any reason. The period between scheduling of this job is defined as the NOD Ses-
sion Timeout. The NOD Session Timeout is a NOD Server system configuration, but may
be expected to lie between 20-30 seconds.

All	Groups	that	have	status	RESERVED	are	released	from	the	NOD	Session.	This	releases	
the Groups for NOD Distribution to other clients.

All Groups that have status WRITTEN picks up eventual transactions generated by the
plugins and submits this to PL4 with Group status code WRITTEN WITH ERROR, in addi-
tion to an error description. This removes the Group from NOD distribution. The transac-
tions themselves will also set the error flag in the transaction header.

The NOD session itself is removed and further queries by the NOD Client will receive 404
NOT FOUND on URL’s referring to the session.

2.1.2 Order Group Status Codes

The following status codes are defined:
NEW: 0
DISTRIBUTED: 1
RESERVED:	2
WRITTEN: 3
COMMITTED: 4
WRITTEN WITH ERROR: 5
CANCELLED: 6
FAILED: 7
EXPIRED: 8
SYSTEM_ERROR:9

2.1.3 Order Group Status Code Visibility
The status codes are used to indicate Order Group status in PL4 and in the NOD. The table
below indicates which states are visible in PL4 and which states are visible in NOD. By
temporary we mean that the existence if this status is subject to the PL4 and NOD server
implementation, in particular the batch job scheduling. Until the scheduler has executed,
the status may temporarily be visible.

E L E C T R O N I C T I C K E T I N G : : T H E N AT I O N A L O R D E R D ATA B A S E M A N A G E R

15

Expiration
Each Order Group is registered with an ExpirationDate that indicates when the Order
Group should be removed from distribution.

All Groups that have ExpirationDate older than current NOD System time will be set to
EXPIRED. This removes the Groups from NOD distribution.

The order group in PL4 is modified with the status change EXPIRED.

Garbage collection
Order groups that have reached a final state is no longer relevant for NOD distribution.
The NOD may however wish to keep these transactions for a period of time to facilitate
customer support inquiries or debugging. The removal of this data is therefore done by a
customizable	batch	job.

All order groups with status in (COMMITTED, WRITTEN WITH ERROR,CANCELLED
,FAILED, EXPIRED) will be deleted or moved into separate storage.

2.1.5 PL4 Batch Jobs

Transaction distribution
PL4 will continually receive transactions from the NOD that are generated by the plugins.

When a certain amount of transactions are received or a specified time interval has passed,
PL4 will generate IOS-compatible XML export files and store these on a filesystem that is
synchronized	with	the	import-folder	of	the	IOS	system.

A scheduler will check if there are transactions received from NOD to be distributed to IOS.
No more than 10 000 transactions will be distributed per file.

Only transactions belonging to Order Groups with status COMMITTED or WRITTEN
WITH ERROR should be distributed.

To decide which transactions have been distributed a fileID is generated. This fileID is
updated on every row ready to be distributed. This will prevent other incoming transac-
tions to be added to the file.

The file generated is a xdr file on the same format that PL4 imports from IOS.

2.2 Difference Engine
The implementation of a difference-engine is not part of the NOD specification, but is
described here to give a better understanding of how the NOD works.

16

T H E N AT I O N A L O R D E R D ATA B A S E M A N A G E R : : E L E C T R O N I C T I C K E T I N G

The difference engine in its most basic form identifies the differences between the card
image delivered by the NOD client and the target image calculated by the plug-in. The
main purpose for the diff-engine is to communicate this difference to the medium such as
a DESFIRE Card.

Since the difference engine works with images, this allows several plugins to be chained,
and a single difference can be calculated across the work of several plugins.

This means that there will be developed one difference engine for the namespace http://
ioas.no/nod/client/commands/desfire/apdu that generates the NOD Client dialogue
containing	the	APDU	commands	needed	to	realize	the	difference	in	the	DESFIRE	images	
with	APDU	commands.	Another	difference	engine	may	be	developed	to	realize	differences	
on Ultralite cards and images with commands that belongs to this namespace.

Which diff-engine will be chosen depends on the capabilities that the NOD Client supports
and the physical media presented to it.

2.2.1 Command Decorators
In	addition	to	realizing	a	change	on	the	target	medium,	a	difference	engine	will	also	com-
municate with the NOD Client itself, for example by blinking lights, sound etc. These com-
mands are generated by the Command Decorators, one decorator for each namespace the
NOD Client supports. These decorators have the opportunity to inject commands into the
NOD Client dialogue when specific difference engine events occurs such as start, commit,
failure etc.

For example, if a specific NOD Client supports writing a receipt to paper, a Command
Decorator will be attached to the difference engine that inserts a command to the printer in
its own custom namespace at the difference engine commit event. This decorator will only
be attached to the difference engine if the NOD Client declares that it supports this through
the capability declaration.

Decorators	and	Diff-engines	can	be	mixed;	a	buzzer	decorator	could	be	used	both	by	the	
Desfire diff-engine and the Ultralite diff-engine.

2.3 Transaction Generation
All plugins may generate transactions according to the DIS specification.

When a card is presented to the NOD Client, the card image is retrieved from the card
together with the NOD Client context parameters. This is passed to the plug-in together
with the order description.

E L E C T R O N I C T I C K E T I N G : : T H E N AT I O N A L O R D E R D ATA B A S E M A N A G E R

17

When the plugin has modified the source image according to the order, the target image
must be returned together with eventual transactions according to the DIS specification.
The rules for how these transactions are generated are the same as described in HB206 part
19. Orders shall be managed in the same manner as actions.

The Plugin Interface specification has moved the transaction details into a separate name-
space to allow for future changes in accordance to DIS changes without breaking the NOD
Plugin interface. This means that different plugins may support different versions of the
DIS specification in transitional periods, as long as IOS still supports importing transac-
tions from the given DIS version.

The generated transaction will be submitted to the Collect & Forward system (IOS) by the
NOD Server when the Order Group status transitions to COMMITTED, FAILED or WRIT-
TEN WITH ERROR. The NOD server will set the transaction attribute TransactionHeader.
TransactionStatus accordingly.

18

T H E N AT I O N A L O R D E R D ATA B A S E M A N A G E R : : E L E C T R O N I C T I C K E T I N G

E L E C T R O N I C T I C K E T I N G : : R E Q U I R E M E N T S F O R C L I E N T S A L E S S YS T E M S

19

3.1 Issuing Orders
New orders are generated by calling the AddOrder service. In addition to the order data,
the ordering company must provide its internal order reference. This reference is the same
as used for actions, and must be unique between both orders and actions. The order refe-
rence will be reported as part of the ActionID in the resulting transactions. The order con-
tents will be checked towards the corresponding XSD. If it passes it will be forwarded to
the NOD Server. The NOD Manger does not have any functionality in regard of payment
handling. All payments must therefore be handled by the ordering PTO before the AddOr-
der service is called.

3.2 Managing Orders
After issuing an Order by creating an Order Group, the Order group can only be cancelled.
This is done by updating the Order Group in PL4 to status CANCELLED. All refunds and
customer management due to this is the PTO’s responsibility.

3.3 Webservice Order Interface Definitions
The following webservice interfaces are implemented in the PTIS Hub to support NOD
Orders:

•	 AddOrders
•	 GetOrderGroups
•	 UpdateOrderGroup

See App D for a detailed description of the different services.

3.3.1 AddOrders
The AddOrders interface allows a PTO to add a NOD Order. The Order will then be dis-
tributed to the NOD Server and made available to NOD Clients. XML Schema validation
is performed on the input. PL4 will perform a mapping operation that will decide which
NOD Server Plugin should process the order, this decision is based on the input data.

The request and response xml is specified by the AddOrdersRequest and AddOrdersRe-
sponse elements in the OrderServices.xsd XML Schema.

3 Requirements for Client Sales Systems

20

R E Q U I R E M E N T S F O R C L I E N T S A L E S S YS T E M S : : E L E C T R O N I C T I C K E T I N G

3.3.2 GetOrderGroups
The GetOrderGroups interface allows a PTO to retrieve a list of order groups based on a set
of search criteria. Note that PTIS Hub will also have a configurable maximum value that
regulates the amount of order groups the client can ask for.

The request and response xml is specified by the GetOrderGroupsRequest and GetOrder-
GroupsResponse elements in the OrderServices.xsd XML Schema.

3.3.3 UpdateOrderGroup
The UpdateOrderGroup interface allows a PTO to set the order group status to ”Cancel-
led”.

The request and response xml is specified by the updateOrderGroupRequest and update-
OrderGroupResponse elements in the OrderServices.xsd XML Schema.

E L E C T R O N I C T I C K E T I N G : : R E Q U I R E M E N T S F O R N O D C L I E N T S

21

4 Requirements for NOD Clients
The characteristics of NOD client may vary as NOD Clients will be embedded in hardware
with varying capabilities. The most common NOD clients will be the following:

•	 Stand-alone pick-up device (PUD)
•	 These devices should as a minimum have two LEDs, red and green, a 2x16 characters-

display and a speaker.

•	 Integrated client in validators
•	 It is not recommended to integrate the NOD client in validators due to latency rea-

sons. Since all presented cards must be looked up online, this will add substantially to
the validation time and should only be used when time is not critical. If a NOD client
is integrated in a validator, the result of the order will normally be shown at the same
time as validation information. In such a case only 16 characters is available for order
feedback, for a complete session. If several order groups have been performed, still
only one line of 16 characters may be displayed.

•	 	 Integrated	client	in	ticket	vending	machines	(TVM)
•	 	When	integrating	the	NOD	client	in	a	TVM	it	can	be	done	either	by	implementing	it	as	

a separate button/menu choice or by looking up all cards online. Which is most suita-
ble may vary.

•	 Integrated client in driver’s consoles
•	 When integrating the NOD client in a driver’s console it should be a separate button/

menu choice for this. It is not recommended to look up all cards online. It should only
be done on the customer’s request.

•	 Integrated in mobile telephones

•	 Integrated client in manned sales terminals
 When integrating the NOD client in a sales terminal the sales terminal must on itself
 find the relevant ticket media ID (card number) and use this when issuing the order.
 Then it must use the same ID to retrieve the orders from the NOD Server.

4.1 The Order Delivery Process
When a card is presented the NOD client is responsible for the card activation, including
the	 full	 anti-collision	 loop	 (complete	 chip	 id	 is	 required)	 and	 initialization	 commands	
(RATS and PSS). The NOD Client shall select the CardIssuer_DF and read the cardNum-
ber32Bits, sending it to the NOD Server. Afterwards the master DF shall be selected. The
command sequence from the NOD Server requires the card to be selected and activated,
standing in the master DF (root) and not authenticated.

22

R E Q U I R E M E N T S F O R N O D C L I E N T S : : E L E C T R O N I C T I C K E T I N G

After posting the card id to the NOD Server through the REST interface (see App A and
B for detailed interface description) the NOD Server will return available order groups.
These will be ordered by registration date. The NOD client shall always perform the orders
in the sequence given by the NOD Server, by posting a request to the interface.

4.2 Requirements for User Interface
All NOD clients must fulfil the following minimum requirements:

1. Text feedback capability, minimum 16 character text display, preferably 2x 16 charac-
ters or larger displays/screens. If only 1x or 2x text display is available, also red and
green LEDs shall be implemented. Yellow LED may be implemented, but will not be
used	by	NOD	Server.	For	other	screen	sizes	LEDs	are	optional.

2. 	 Speaker	 solution,	 able	 to	 either	 play	WAV	 (preferred)	 files	 or	 to	 receive	 playback	
command	sets	 consisting	of	one	or	more	 frequency	 (Hertz)/duration	 (milliseconds)	
instructions.	WAV	files	will	be	sent	by	the	NOD	Server,	but	may	be	cached	locally.	The	
same file name will never be used for different sounds.

3. 	 Easily	recognizable	RF	antenna	area.

4.3 NOD Client Interface
The NOD client interface is exposed as a REST interface (Representational State Transfer),
using the HTTPS protocol. The REST interface builds on the NOD common REST interface
specification. This is further described in app A. The main services are shown in ch 4-2.3.

4.3.1 Capabilities
Different NOD Clients will have different capabilities in regards of which orders that it is
possible to perform:

•	 Supported	media	(NSD	(DESFire),	Ultralight,	2D	barcode,	paper	etc)
•	 Communication	(GPRS,	Edge,	3G,	LAN	etc)
•	 Type	of	terminal	(self-serviced,	sales	office,	validator,	dedicated	PUD,	mobile	telephone	etc)
•	 Terminal	specification
 o Screen
	 	 •	 Full	PC	screen	(TVM,	sales	office)
 May show detailed info for each order in several groups.
	 	 •	 Small	LCD	(color	or	B/W)
 Only show summary info for each order group.
	 	 •	 Text	display	(1x16	or	2x16)
 Only show summary info for all order groups.

E L E C T R O N I C T I C K E T I N G : : R E Q U I R E M E N T S F O R N O D C L I E N T S

23

 o LED (red, yellow, green)
 o Sound
	 	 •	 WAV	capability
	 	 •	 Simple	speaker

The capability code is a declaration of the physical and logical capabilities of the NOD Cli-
ent. This declaration is used for the following purposes:

•	 Filtering: Only distribute Order Groups that are relevant for the NOD Client (e.g don’t
distribute Groups requiring specific hardware to clients that don’t have it).

•	 Choice of Difference Engine: Choose a difference engine that produces commands that
can be written to the card with the given NOD Client.

•	 Command Decorators: Only introduce Commands that communicates with the NOD
Client Equipment from namespaces the NOD Client explicitly supports. (e.g don’t
generate BUZZER commands for units with no speakers).

•	 	Optimization:	Provide	optimization	hints	that	the	NOD	server	may	use	to	streamline	
the response.

For more information on the filtering, see ch 5.2 regarding mapping of orders to plugins.

The list of capability codes is described in App B.

Other capabilities may be defined in the future. The Registrar is responsible for maintai-
ning a complete list of capabilities used for the capability flags in the REST interface.

4.3.2 Interface Context Parameters
The context represents context-relative information that the NOD Client shall provide to
the NOD Server and Plugin to enable processing of an Order Group. The context contains
dynamic values that the NOD server cannot derive from static sources. One such example
is the physical location of a NOD Client that is located on a bus, this may needed for a plu-
gin	to	calculate	zone-related	tariffs.

The context values will primarily be forwarded to the NOD Plugin that is processing the
Order, so the list of available context properties will grow over time as plugins are developed.

The list of context parameters is described in App B.

User language is also part of the NOD Client context but shall be passed as part of the
HTTP Header information. The user language is the chosen user language of the termi-
nal.	Some	types	of	terminals,	e.g.	TVMs	support	several	languages.	When	such	terminal	
are used as NOD clients the messages from the NOD will as far as possible be in the same
language as the user have chosen. NOD will initially only support Norwegian, but will be

24

R E Q U I R E M E N T S F O R N O D C L I E N T S : : E L E C T R O N I C T I C K E T I N G

expanded with English in the future. Phrases not available in the chosen language will be
returned in the next language in the priority sequence.

4-3.3 REST Interface
The order retrieval interface on the NOD Server uses a REST interface, based on the stan-
dard HTTP 1.1 protocol. Which order groups that are returned to the client are filtered
based on the client’s capabilities. The returned order groups shall be executed in the sequ-
ence returned by the NOD Server.

The NOD Client commands are returned from the NOD whenever the NOD Client should
execute commands on the card. The commands are scoped to different namespaces accor-
ding to the following:

•	 The	ticket	medium	presented	(DESFire,	Ultralight,	Mobile	etc)
•	 The	capabilities	of	the	NOD	Client	(support	of	sound,	retains	card	physically	etc)
•	 The	version	of	the	NOD	Client	API	the	Client	supports.

Ideally, no NOD Client should receive a response with an unsupported namespace, as
orders requiring the namespace should be filtered out already in the GET /groups REST
call according to the NOD Client Capabilities.

The detailed REST interface specification is given in appendix A and B.

4.4 Security
For all NOD Clients basic HTTP authentication and HTTPS will be required.

E L E C T R O N I C T I C K E T I N G : : R E Q U I R E M E N T S F O R N O D P L U G I N S

25

5.1 Business Logic
Plugins can be used to implement various types of functionality. The first to be implemen-
ted will be the HB206 plugin for managing NSD travel cards. The plugin will then receive
the incoming ticket medium image, order group description and context information from
the NOD client. Only one order group may be processed at a time. Based on this, the plu-
gin is responsible for returning an updated ticket medium image, corresponding transac-
tion objects and user information to be displayed by the NOD client. When updating the
image, the same rules apply as for other ticketing equipment. For NSD this is described in
HB206 part 18.

Other relevant plugins may be for implementing 2D barcodes, MIFARE Ultralight or sup-
port for NFC telephones.

The	user	information	must	be	adapted	to	the	NOD	client	capabilities	in	regard	of	size	and	
complexity.

5.2 Mapping of Orders to Plugins
The mapping is not strictly an interface specification, as the management of mappings is
not exposed as services. The mapping procedure is however needed to understand how
orders are connected with their respective plugins, and it indirectly describes the mini-
mum	functional	granularity	of	a	plugin:	A	plugin	cannot	support	orders	more	specialized	
than what can be mapped uniquely by PL4.

When an Order is submitted to PL4, a decision has to be made which plugin the Order
should be processed by. PL4 should not have to inspect the OrderDescription itself, as this
will require PL4 to be able to parse the description.

A mapping happens for each order in the order group, this means that orders in one order
group can be executed by different plugins, in the strict sequence that the orders were
added to the group.

Some of the scenarios that are enabled by mapping are:

•	 When a new version of a plugin supporting new products is rolled out, existing unde-
livered Orders should still be processed by the previous plugin while the new plugin
should be in effect for new Orders at a specific date.

•	 Different versions of a plugin may also require different versions of the validating
schema.

5 Requirements for NOD Plugins

26

R E Q U I R E M E N T S F O R N O D P L U G I N S : : E L E C T R O N I C T I C K E T I N G

•	 Different PTOs may want the same product to be processed by different plugins.
•	 A new plugin only should be operative in a specific test network-ID.
•	 Many Orders are common, new plugins should only have to implement the missing

functionality while existing ”basic” plugins take the rest.
•	 An Order should be processed by a plugin, but should not be distributed to all Nod

Clients, as some are older models unable to process the commands. (For example, the
Client does not support the physical card required for this order)

This requires a flexible and configurable mapping of an incoming Order against a specific
plugin.

The following fields must always be submitted to PL4 in addition to the OrderDescription:

•	 Action	Type
•	 Company	ID
•	 Network	ID
•	 Template	ID
•	 Purchase	dateAdditional	Required	Capabilities	of	the	NOD	Client,	these	are	optional	
 additional restrictions specified by the PTO at submission.

All incoming orders will be matched against a mapping table that allows wildcards for
specific values.

5.2.1 OrderMapping Example

Action Type Company

ID

Network

ID

Template

ID

From Date To Date Minimum

Capability

Requirement

Plugin URI Example

SVRACLedREC * * * 01.01.2012 * 0000000000000

001

http://localhost:8080/nod_hb206_plugin/
services/2

PSAACLedREC 3 578000 * * 31.12.2013 0000000000000

001

http://localhost:8080/nod_hb206_plugin/
services/2

MobileTicket * * * * 31.12.2012 000000001 http://localhost:8080/nod_mobile_plugin
/services/2

* 3 <TEST

NETW>

* * * 101101101011 http://localhost:8080/nod_hb206_plugin/
services/3

E L E C T R O N I C T I C K E T I N G : : R E Q U I R E M E N T S F O R N O D P L U G I N S

27

The following rules apply:

If an Order matches both a wildcard and a specific value, the most specific value mapping
is chosen (the one with the fewest wildcards).

If an Order matches two mappings with the same amount of wildcards, an error is returned

The validation schema for the order description is retrieved by PL4 from the plugin itself
on the URL <Plugin URI>/resources/orderSchema.xsd

When an order matches a single mapping, the Order Description is validated against the
Plugin Schema, and submitted to the NOD for distribution by the matching plugin.

The incoming Additional capabilities of the NOD Client are merged with the Minimum
Capability Requirements of the mapping, and the sum is the required NOD Client capabi-
lities submitted to the NOD.

5.3 Interface
The complete, detailed interface between the NOD Server and the plugin is described in
App C.

5.4 Binary Ticket Medium Image Structure
The binary ticket medium image structure will be different for different ticket mediums.
In phase 1 only MIFARE DESFire will be supported. The XSD for this object is described in
NODPluginImgDESFire.xsd.

5.5 Transaction Requirements
The transactions returned from the plugin must be defined according to HB206 part 19 and
the corresponding ticket medium. An updated XSD for each purpose will be made availa-
ble from the Registrar.

28

R E Q U I R E M E N T S F O R N O D P L U G I N S : : E L E C T R O N I C T I C K E T I N G

Appendices

Appendix A: Common REST Interface Specification
Appendix B: NOD Client REST API
Appendix C: NOD Plugin Interface Specification
Appendix D: NOD Webservices Specification
Appendix E: NOD Feedback
Appendix F: Static Order Group staticDesfireContents

E L E C T R O N I C T I C K E T I N G : : A P P E N D I X A : C O M M O N R E S T I N T E R FA C E S P E C I F I C AT I O N

29

Description
This document specifies the common parts of the interface that all REST APIs will follow. The
following specification applies for all NOD REST services unless explicitly declared otherwise.

HTTP-Version/1.1 Protocol Parameters
The NOD server is designed to support HTTP content negotiation. This has numerous
benefits such as backwards compatibility to existing clients during changes as well as
protocol-support for future content types in future NOD clients. There is initially little to
negotiate, but it is important the NOD Clients are designed with this negotiation in mind
as support for other content will be added (and possibly be removed) over time.

Common supported Request Headers
The default values specifies what the Server assumes if the header is not provided.

Header Default Current Alternatives Description

Accept */* text/plain, application/xml The requested encoding of the response data. NOD
currently supports text/plain for simple services and
application/xml for xml content. In the future this
may be expanded with support for binary encodings
such as application/fastinfoset or application/exi.

Accept-
Charset

utf-8 None The requested character set for the response text.
All text-based requests and responses to NOD should
be encoded in UTF-8.

Accept-
Language

no None The requested language used in feedback messages,
dictionary entries etc.

Connection Keep-
Alive

close Specifies that the physical connection should be kept
open for subsequent requests.
Keep-Alive is default in HTTP 1.1, so only add this
header when the client knows that no further
communication is required. It is normally the NOD
server that uses this header in the final response to
the NOD Client to terminate the SSL connection.
The actual Keep-Alive duration is a Server-side
configuration setting, subject to performance tuning.

Authorization base64(NodClientID:Password) All NOD clients must specify their Client IDs and
Password as BASIC authentication for all requests in
accordance with RFC2617.

X-NODClient-
Capabilities

0 A string representing the capabilities of the NOD
Client. This header must be present in all requests to
the NOD Server that adapts to Client Capabilities

Appendix A: Common REST Interface
Specification

30

A P P E N D I X A : C O M M O N R E S T I N T E R FA C E S P E C I F I C AT I O N : : E L E C T R O N I C T I C K E T I N G

The NOD will over time support other header value alternatives and the Client should
ask for the preferred values with the default last. For example; A Nod Client on a device
that allows language preferences should signal this by sending Accept-Language: en;q=1,
no;q=0.9 In this case English feedback messages will be returned in the future when the
NOD supports it. The actual language of returned content will be specified in the Content-
Language response attribute.

Common Response Headers
The default values specifies what the the Client should assume if the header is not provided.

Header Default Current Alternatives Description

Content-Type text/plain;charset=utf-8 application/xml The actual content datatype of the response
data.

Content-
Language

no None The actual content language of the response
data.

Retry-After Any number of seconds This field may be returned on any response
in connection with HTTP Errorcode 503
(Service Unavailable).
The client MUST wait at least the specified
number of seconds before resubmit to avoid
overloading the server.

Connection Keep-Alive close Specifies that the physical connection should
be kept open for subsequent requests.
Keep-Alive is default in HTTP 1.1, so only
specify close when the server knows that no
further communication is required.

Common Service Parameters
Most data is encoded according to the associated XML Schema specification of the data
structure the REST service uses. There are however a number of re-occurring parameters
that are submitted as request parameters.

Note that the parameter datatype is String, even when they initially only contain integers.
This is to enable future flexibility and scalability. For example, a numeric sequence is a
bottleneck in a highly scalable system. Therefore the NOD Client should not assume these
values to be integers, in sequence, or numeric at all. This means that a Command Set ID
might be 1-10 today, but may change to UIDs in the future. A MediaSerialNumberID may
be numeric today, but may also be strings to identify new types of media that use a different
kind of identifier.

E L E C T R O N I C T I C K E T I N G : : A P P E N D I X A : C O M M O N R E S T I N T E R FA C E S P E C I F I C AT I O N

31

ParamName Type Description

mediaSerialNumberID String The identification ID of the physical media presented to the NOD Client,
typically the MediaSerialNumber of a DESFIRE Card. Treated as string to enable
future flexibility.

capabilityCode String A code describing provided capabilities or required capabilities. See separate
description of this parameter.

nodSessionID String A generated ID representing a globally unique NOD Session.

groupID String A generated ID uniquely representing a group of Orders that should be
executed as one transaction.

commandSetID String A generated ID representing a specific Command Set in the dialogue between
the NOD Client and Server, unique relative to the groupID.

HTTP Return codes
These are generic responses, when the result code should be understood in the context of a
given service, the error code is described in the relevant service specification.

Code Description Comment

200 OK The request is completed

201 Created The request has been fulfilled and resulted in a new resource
being created

303 See Other The response should be retrieved from the provided URL

400 Bad request The server was unable to parse one or more parameters, for
example an illegal integer

401 Unauthorized Basic authentication failed

403 Forbidden The resource is forbidden for the authenticated client

404 Not Found The resource does not exist

405 Method not allowed Unsupported HTTP method used, such as GET when the service
requires POST.

406 Not Acceptable The accept-headers specified requirements that cannot be met.

409 Conflict The resource is already reserved by a different Client

410 Gone The resource has been permanently removed. Used for example
when the NOD server decides to fail an Order Group perma-
nently.

503 The server is currently unavailable
(because it is overloaded or down
for maintenance)

This may be returned for any number for system-related reasons
such as a system overload. Resubmitting the request MUST
respect the Retry-After attribute.

505 HTTP Version Not Supported Only HTTP-Version/1.1 is supported

32

A P P E N D I X C : N O D P L U G I N S : : E L E C T R O N I C T I C K E T I N G

A plugin is a flexible extension of the NOD server that may serve many purposes that are
currently unknown. The requirements use the auxiliary verbs MAY, SHOULD and MUST
deliberately to communicate this flexibility within the specification. It is up to the indivi-
dual plugin provider to decide what of the optional requirements are required in a speci-
fic situation.

Scope
This plugin interface specification describes the requirements for the functional interfaces
required to provide plugin functionality to the NOD Server. A plugin must however also
comply with other non-functional requirements such as performance monitoring, audit
logging, quality reviews and performance requirements in order to qualify for deployment
in a production setting. These requirements are subject to the plugin request for tender, and
are not part of this specification.

This specification does not specify the functionality of the plugins or the contents of the
orders they are expected to process (what the plugin should do with a given order), just the
common plugin interface that all plugins must adhere to.

Requirements

NOD Plugin definition
•	 The Plugin is a component deployed on the NOD server that executes a given plu-

gin command. The primary command is execution of an Order in an Order Group by
modifying an incoming card image and returning the modified image.

•	 The Plugin is the only part of PL4 and NOD server that is able to parse the contents of
an Order that is submitted to PL4 (in OrderDescription).

•	 The Plugin is uniquely identified and located by a plugin URI, for example
HTTP://127.0.0.1/nod/plugins/hb206/v2

•	 The Plugin URI is associated with an incoming Order at submission
•	 The NOD Server provides the plugin with the contents of the card being processed

(CARD IMAGE) as well as a context describing attributes of the physical NOD Client
(location etc)

•	 The Plugin REST inferface is stateless; all requests are independent, and the same requ-
est should always return the same result. This requirement is not absolute to enable
functionality such as fraud detection.

•	 Plugins can be chained; the output card image of one plugin can be used as input card
image for the next.

Appendix C: NOD Plugins

E L E C T R O N I C T I C K E T I N G : : A P P E N D I X C : N O D P L U G I N S

33

NOD Plugin Deployment requirements
•	 A NOD Plugin must expose a REST API at the plugin URI (the URI must therefore be

a URL) to execute Plugin Commands. See specificationabove.
•	 A NOD plugin must expose its own administrative HTTP interface at the {/admin}

root.
•	 The plugin must give access to resources such as the XML schema that will be used by

PL4 to validate incoming Orders during mapping before submitting them to the NOD.
•	 A plugin must explicitly document the widest mapping it supports, so that the PL4-

configured Order mappings against the plugin is the same as, or a subset of the sup-
ported mappings.

•	 The web application containing the plugin is a self-contained application;
 o If the plugin requires data from registers, databases etc to execute an Order, these
 resources should be provided by the Application server independently of the
 NOD server.
 o When a plugin requires external resources, the plugin developer must also
 provide the necessary infrastructure such as a database installation. This is is
 plugin implementation specific, and not covered by this specification.
•	 In principle any technology may be used to implement the Web Application; Java WAR

files, .NET Web Applications or Apache CGI scrips may all be used as long as they
implement the REST interfaces. Any requirements restricting this further must be part
of the plugin request for tender, and is not part of this specification.

Plugin Configuration
While the plugin command execution is stateless, the Plugins may still have state related to
the configuration of the plugin. For example, a plugin may use a local database containing
the	current	zone	and	fare	information	in	order	to	execute	certain	orders.	Changes	to	this	
configuration will have immediate and retroactive effect on all order groups that already
have been submitted to the NOD, and should be avoided unless the consequences have
been carefully evaluated by all parties.
•	 If	a	plugin	has	configurable	state,	the	complete	configuration	of	the	plugin	should	be
 versionable.
•	 The	plugin	URI	must	be	used	to	indicate	to	the	plugin	which	version	of	the	configura-		
 tion a plugin command should be executed according to.
 o For example, the URL HTTP://127.0.0.1/nod/plugins/hb206/v2 indicates that the
 plugin at HTTP://127.0.0.1/nod/plugins/hb206 should execute according to con-
 figuration version /v2.

34

A P P E N D I X C : N O D P L U G I N S : : E L E C T R O N I C T I C K E T I N G

•	 If	the	Plugin	exposes	an	administrative	interface	that	allows	runtime	modification	of		 	
 the configuration, the updated configuration should be made effective only on a new
 URL eg. at/v3.
 o A plugin may however allow replacing an existing configuration version to correct
 configuration errors for existing Orders.
•	 If	the	Plugin	exposes	resources	that	allows	runtime	modification	of	the	configuration,	
 the updated resources should be made available on a new URL eg. at/v3.

After a versioning of the plugin configuration has occurred, the PL4 mapping should be
updated by the PL4 administrator to map future incoming orders to the new URL, thus
allowing existing mapped orders to be processed according to the old configuration.

NOD Plugin Security requirements
•	 A plugin is expected to be deployed in a safe and secure environment. No part of the

REST API must be exposed to any party except the NOD Server or administrative func-
tions.

•	 The plugin ADMIN interface should not be exposed to any party except the Plugin
Administrator.

•	 The plugin ADMIN interface must perform its own HTTP authentication of the Plugin
Administrator if it exposes sensitive functionality.

•	 The plugin may choose to protect resources, and may even allow updating of resources
by letting a client POST new versions. The rules for PluginConfiguration must howe-
verbefollowed.

•	 If a future plugin is deployed on a server other than the physical NOD servers, a secu-
rity evaluation must be performed to secure the communication adequately.

NOD PluginRecommendations
•	 A	plugin	should	be	packaged	and	deployed	as	an	independent	web	application	from		 	
 other plugins. Multiple operative versions of a given plugin may be bundled in the
 same web application archive.
•	 A	plugin	should	have	failover	support.

E L E C T R O N I C T I C K E T I N G : : A P P E N D I X C : N O D P L U G I N S

35

Plugin Namespaces
The following namespaces are currently used by NOD Plugins:

Associated Client Namespace Used by Description

http://ioas.no/nod/plugin/commands * All plugins must support Plugin
Commands

http://ioas.no/nod/plugin/commands/processOrder HB206Plugin Plugins used for Order execution
must support this namespace

http://ioas.no/nod/plugin/transaction HB206Plugin Plugins producing DIS transac-
tions must use this namespace

http://ioas.no/nod/plugin/image/desfire HB206Plugin Plugins producing or returning
DesfireImage datastructures must
use this namespace.

http://ioas.no/nod/plugin/commands/getDesfireImage-
ContentsPlugin

DesfireContents Used by the DesfireContents
plugin to describe the contents of
an image

http://ioas.no/plugin/commands/message HB206Plugin Used by plugins to return local-
ized feedback to the NOD Client

NOD Plugin Commands
All plugins must accept commands from the namespace http://ioas.no/nod/plugin/
commands for execution, in a similar fashion to NOD Client Commands. The list of com-
mands	may	then	be	specialized	with	specific	namespaces	for	different	plugin	functionality.

The commands always have a context element that includes relevant values provided by
the NOD Client context.

36

A P P E N D I X C : N O D P L U G I N S : : E L E C T R O N I C T I C K E T I N G

1-1.1 Example

Plugin ProcessOrder Request with a DesFire Source image

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<ns5:commands xmlns:ns2=”http://ioas.no/nod/plugin/commands/getDesfireImage-
Contents”
xmlns:ns3=”http://ioas.no/nod/plugin/context”
xmlns:ns4=”http://ioas.no/nod/plugin/commands/processOrder”
xmlns:ns5=”http://ioas.no/nod/plugin/commands”
xmlns:ns6=”http://ioas.no/nod/plugin/transaction”
xmlns:ns7=”http://ioas.no/nod/plugin/image/desfire”>
 <context>
 <ns3:pluginContext>
 <property>
 <key>capabilityCode</key>
 <string>11010101</string>
 </property>
 ...
 </ns3:pluginContext>
 </context>
 <command>
 <ns4:processOrder>
 <srcImage>
 <ns7:image>
 <application>
 <applicationName>TransportDF</applicationName>
 ...
 <file>
	 	 	 	 	 	 	 <fileName>T_StoredValue</fileName>
 <content>10270000</content>
 </file>
 ...
 </application>

 ...
 </ns7:image>
 </srcImage>
	 	 	 <orderDescription>PD94bWwgdmVyc....</orderDescription>
 </ns4:processOrder>
 </command>
</ns5:commands>

E L E C T R O N I C T I C K E T I N G : : A P P E N D I X C : N O D P L U G I N S

37

Plugin Response (Target Image and DIS N Transaction returned to NOD Server)

<ns4:commands xmlns:ns2=”http://ioas.no/nod/plugin/image/desfire”
xmlns:ns3=”http://ioas.no/nod/plugin/commands/getDesfireImageContents”
xmlns:ns4=”http://ioas.no/nod/plugin/commands”
xmlns:ns5=”http://ioas.no/nod/plugin/context”
xmlns:ns6=”http://ioas.no/no/plugin/image/desfire/contents”
xmlns:ns7=”http://ioas.no/nod/plugin/commands/processOrder”
xmlns:ns8=”http://ioas.no/nod/plugin/dis/n”
xmlns:ns9=”http://ioas.no/nod/plugin/orderdescription”>
 <command>
 <ns7:processOrder>
 <targetImage>
 <ns2:image>
 ...
 <application>
 <applicationName>TransportDF</applicationName>
 ...
 <file>
																					<fileName>T_StoredValue</fileName>
 <content>05290000</content>
 </file>
 ...
 </application>
 </ns2:image>
 </targetImage>
 <transaction>
 <ns8:pluginTransaction>
 <ns8:metadata>
																		<ns8:disVersion>N</ns8:disVersion>
 </ns8:metadata>
 <ns8:disTransaction>PD94bWwg...</ns8:disTransaction>
 </ns8:pluginTransaction>
 </transaction>
 </ns7:processOrder>
 <result>200</result>
 </command>
</ns4:commands>

38

A P P E N D I X C : N O D P L U G I N S : : E L E C T R O N I C T I C K E T I N G

1-1.2 NOD Plugin Command Result Codes
Each command returns individual results codes. The result codes used by plugin com-
mands follows loosely the number series and error codes in the HTTP specification. This
is to improve future compatibility with unknown command sets and capabilities. Note
that future plugins may use additional codes, but this must be coordinated with the NOD
Server.

The following series are currently supported by the NOD server:

Status
Code

Description

1xx Information from the Plugin/Server. The contents or results will not trigger any NOD Server state
changes.

100 Information from plugin

2xx OK. This series indicates that the NOD Plugin command was successfully received, understood, and
accepted.

200 Execution of the Command was OK.

3xx Redirection. There are currently no plans to use this series.

4xx NOD Server Error. This series is for errors where the NOD Server seems to have erred. The original
command should be included with the command result if possible. The Order Group should not be
distributed by the NOD Server anymore.

400 Bad Request, the NOD Plugin could not parse the command. The NOD server should not attempt to
resubmit this Plugin Command without modifications. As the NOD Server never should perform an
illegal request to the plugin the Order Group must be failed.

401 Command not implemented, the command can not be executed by the NOD Plugin. This may indicate
a wrong mapping configuration and the Order Group must be failed.

5xx NOD Plugin Error. The Plugin is aware that it erred or is incapable of performing the command. The
original command should be included with the command result if possible. The Plugin Command may
still be re-submitted by the NOD Server.

500 Internal error, an unexpected error occurred on the Plugin.

501 Configuration Error, this may typically be corrected in the Plugin Admin interface so the OrderGroup
should not be failed. Note that this error may enable an Order Group to ”block” for subsequent orders.

E L E C T R O N I C T I C K E T I N G : : A P P E N D I X C : N O D P L U G I N S

39

1-2 NOD Plugin REST and ADMIN API
The Plugin document root is the plugin URI, for example HTTP://127.0.0.1/nod/plugins/
hb206/v2, the exposed services are relative to this URI.

Method URL Payload/Filter Return Values Description

POST /command/execute Plugin command plugin command
result

The plugin executes and returns the
result of a command. Currently only the
processOrder command is defined.

GET /resources/order-
Schema.xsd

The schema
describing a
valid order for
this plugin

Plugins processing orders from PL4 must
expose this resource.
This XML Schema is used by PL4 to vali-
date incoming orders before mapping
them against this plugin, and must be
available to PL4 without authentication.

* /resources/* A resource name A plugin
resource

The plugin may expose resources below
this URI to allow RESTful manipulation
of these resources. The manipulated
resources must respect the Configura-
tion Versioning requirements.

* /admin The administrative HTML-based inter-
face for the plugins must be located
below this address, and present its
welcome page on this URL. This may
simply return a redirection.

REST Service /command/execute

Description
Executes the provided commands from namespace http://ioas.no/nod/plugin/com-
mands according to the business rules implemented by the plugin.

The typical case is execution of an Order and return of an updated card image using the
command defined in NODPluginProcessOrder.xsd, but other plugin commands may be
developed over time.

40

A P P E N D I X C : N O D P L U G I N S : : E L E C T R O N I C T I C K E T I N G

Note that this service is not strictly a REST service, as is does not actually create any
persistent	entities	as	a	result	of	this	POST.	POST	is	needed	simply	because	of	the	size	and	
complexity of the input data structure. The plugin is stateless with respect to this services,
and /command/execute simply exposes a calculation as a service.

Note that the context provided in the commands element contains the entries submitted by
the client in the client context. The plugin should use these values when relevant, for exam-
ple	using	locale	and	capabilityCode	when	returning	localized	messages	to	NOD.

Special cases

None

URL
POST /command/execute

Supported Request Headers
Headers in addition to the Common REST Interface Specification (App A):

Header Default Current Alternatives Description

Accept application/xml none The returned data structure currently supports XML
only.

Parameters
A valid XML-encoded document according to the plugin schema NodPluginCmd.xsd.

Return Values
HTTP Code 200
The XML document with the updated image, transaction and eventual dictionary info
according to the plugin_schemain Attachment 1 - NodPluginCmd.xsd.

E L E C T R O N I C T I C K E T I N G : : A P P E N D I X C : N O D P L U G I N S

41

Response Headers
Headers in addition to the Common REST Interface Specification (App A):

Header Default Current Alternatives Description

Content-Language NO none The Content language in eventual localized feedback
from the plugin (dictionary etc)

HTTP Return codes
Codes in addition to the Common REST Interface Specification (App A):

Code Description Comment

200 OK

1-2.1 Example (Content-Type: application/xml):

Plugin Request (Source Image and Order are provided by the NOD Server)

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<ns2:commands xmlns:ns2=”http://ioas.no/nod/plugin/commands”
 xmlns:ns4=”http://ioas.no/nod/plugin/dis/j”
xmlns:ns5=”http://ioas.no/nod/plugin/image/desfire”>
 <command>
 <processOrder>
 <srcImage>
 <ns5:image>
 <application>
 <applicationName>TransportDF</applicationName>
 <file>
														<fileName>T_StoredValue</fileName>
 <content>0000000000000000</content>
 </file>
 </application>

42

A P P E N D I X C : N O D P L U G I N S : : E L E C T R O N I C T I C K E T I N G

 </ns5:image>
 </srcImage>
						<orderDescription>PD94bWwgdmVyc2lvbj0iMS4wIiBlbmN....</orderDescription>
 </processOrder>
 </command>
</ns2:commands>

Plugin Response (Target Image and Transaction returned to NOD Server)

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<ns2:commands xmlns:ns2=”http://ioas.no/nod/plugin/commands”
 xmlns:ns4=”http://ioas.no/nod/plugin/dis/j”
xmlns:ns5=”http://ioas.no/nod/plugin/image/desfire”>
 <command>
 <processOrder>
 <targetImage>
 <ns5:image>
 <application>
 <applicationName>TransportDF</applicationName>
 <file>
														<fileName>T_StoredValue</fileName>
 <content>03E8</content>
 </file>
 </application>
 </ns5:image>
 </targetImage>
 <transaction>
 <disj:disTransaction xmlns:disj=”http://ioas.no/nod/plugin/dis/j”>
 <etcEtc>Contents of a DIS J transaction</etcEtc>
 </disj:disTransaction>
 </transaction>
 </processOrder>
 <result>200</result>
 </command>
</ns2:commands>

E L E C T R O N I C T I C K E T I N G : : A P P E N D I X C : N O D P L U G I N S

43

REST Service /resources/*

Description
This service exposes versioned resources made available by the plugin.

The purpose of this interface is to enable easy integration between the plugin and other
systems such as PL4, administration, surveillance and automation systems. Different
plugins may wish to expose different data to the surrounding systems.

For example: A plugin may expose performance statistics to a surveillance system as resources.
The only required resource is currently {/resources/orderSchema.xsd}. This URI must
return the XML Schema that should be used by PL4 to validate incoming orders before
mapping them against this version of this plugin. All plugins that are capable of processing
orders must provide a valid schema description at this URI.

Resources should be cached on the client side according to the Cache-Control header to
avoid unnecessary load on the plugin.

Sensitive resources may require authentication.

Special cases

The Plugin may support modification of resources as well. However, the rules for con-
figuration versioning must be followed; the modified resources should not be made
available under the current version URI.

For example: The Administrative interface of the plugin may operate by retrieving and
manipulating the exposed resource file (e.g {/resources/config.xml}) that represents the
plugin configuration state. This will in turn enable easy automatic migration of configuration
from TEST to PRODUCTION by an automation system.

Modifying resources is out of scope for the plugin interface specification as it is considered
part of the administrative interface of the plugin.

In the rare case that an existing configuration must be modified with immediate retroac-
tive effect (for example due to a configuration error), the plugin may return HTTP 301 to
permanently redirect the NOD Server and other clients to a different URI containing a
different version number.

44

A P P E N D I X C : N O D P L U G I N S : : E L E C T R O N I C T I C K E T I N G

URL
GET /resources/<resourceName>

Supported Request Headers
Headers in addition to the Common REST Interface Specification (App A):

Header Default Current Alternatives Description

Accept */* Specified by the
individual resource

Some resources may be exposed in several encodings, this is up to
the plugin implementation.

Parameters
The Resource name

Return Values
HTTP Code 200
The XML Schema describing a valid order description for this plugin.

Example (Content-Type: application/xml):
<?xml version=”1.0” encoding=”utf-8” ?>
<xs:schematargetNamespace=”http://io.no/nod/plugins/hb206/v2”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
 <xs:element name=”order”>
 <xs:complexType>
 <xs:sequence>
...

E L E C T R O N I C T I C K E T I N G : : A P P E N D I X C : N O D P L U G I N S

45

Response Headers
Headers in addition to the Common REST Interface Specification (App A):

Header Default Current Alternatives Description

Content-
Language

NO none The Content language in eventual feedback from the plugin (dic-
tionary etc)

Cache-
Control

none max-
age=<seconds>,
must-revalidate

The period for which the plugin guarantees that this resource will
be valid, this should always be considered to avoid unnecessary
lookups by external systems. Note however that the effectiveness
of HTTP 301 is reduced if resources are cached for a long period of
time.

HTTP Return codes
Codes in addition to the Common REST Interface Specification (App A):

Code Description Comment

200 OK

301 MovedPermanently Used by the plugin to indicate that a different resource configura-
tion should be used. The client must resubmit its request to the
specified URL.

46

A P P E N D I X E : N O D F E E D B A C K : : E L E C T R O N I C T I C K E T I N G

The NOD supports different kinds of feedback to the NOD Client. This document descri-
bes the following feedback mechanisms:

•	 Messages
•	 Buzzer
•	 LED
•	 Parallel	execution

NOD Message Feedback
The NOD Client message command should enable NOD Clients to display context-sensitive
localized	messages	adapted	to	the	NOD	Client	screen	capabilities.	In	addition	to	providing	
text, the message should also provide the NOD Client the possibility of adapting to specific
messages, for example by displaying graphics for certain message categories.

To provide high quality text feedback to the NOD Client, several parts of the NOD System
must be involved.

•	 NOD	Client	command:	A	command	that	conveys	a	message	to	the	Client
•	 NOD	Server:	Default	messages	generated	by	the	NOD
•	 NOD	Plugins:	Specific	messages	generated	by	the	plugins
•	 PL4	Addorder:	Custom	override	of	messages	by	the	calling	PTO.

NOD Client Message Command

The NOD Client command message defined in namespace http://ioas.no/nod/client/
commands/message enables displaying messages on the NOD Client, and is typically
combined with parallel support, for example by flashing LEDs while displaying the message.

In it’s basic form, the message will contain the default messages from the NOD message
register.

The messages will be adapted to the client capabilities as far as possible using the following
input:

•	 HTTP	Header	Accept-Language	submitted	by	the	NOD	Client
•	 The	Capability	Codes	describing	the	screen	size	of	the	NOD	Client.

Appendix E: NOD Feedback

E L E C T R O N I C T I C K E T I N G : : A P P E N D I X E : N O D F E E D B A C K

47

The following rules apply:

•	 The	message	is	UTF-8	encoded.
•	 The	client	should	not	support	special	characters	such	as	newline.	Clients	supporting
 textdisplay over several lines will receive one <line> element for each line in the message.

Elements
msgID
The attribute msgID contains a code representing the message (see below)

line
Each	line	contains	a	localized	message	that	should	be	displayed	as	one	continuous	line	on	
the NOD Client screen.

Duration
The duration element specifies how long the message should be displayed in milliseconds.
The following rules apply:

•	 The	message	should	be	displayed	as	long	as	duration	specifies	(in	ms).
•	 If	the	card	is	removed	from	the	NOD	Client,	the	message	should	be	aborted	immediately.
•	 If	 a	min	 value	 is	 provided,	 the	message	 should	 be	 displayed	 at	 least	 this	 duration	
 regardless of whether the card has been removed or not.

NOD Clients may check for msgID series or specific msgIDs to perform additional custo-
mizations	on	the	client	side.	In	the	case	of	specific	codes	the	NOD	Client	must	consult	the	
list of msgIDs a given Plugin or the NOD itself may return.

Example of a NOD Client message command
Display two lines of text on the NOD Client for 4 seconds. If the ecard is removed from the
NOD Client while the message is displayed, the message should at least be displayed for
2 seconds.

 <command cmdID=”7”>
 <msg:message msgID=”hb206.200”>
 <line>tPurse kreditert 50kr</line>
 <line>og enkeltreise aktivert</line>
 <duration min=”2000”>4000</duration>
 </msg:message>
 </command>

48

A P P E N D I X E : N O D F E E D B A C K : : E L E C T R O N I C T I C K E T I N G

NOD Server
The NOD server provides default messages to the NOD Client. Each message has a msgID,
and may be overridden by more specific feedback from the plugins or the Order Group
itself	(see	below).	The	text	content	of	a	msgID	is	localized	and	may	be	changed	runtime	by	
the NOD Administrator.

The main job for the NOD Server is to replace its default messages with custom messages
if provided, and this mechanism is based on the Message IDs.

The message ID of a message is a 3-digit code for the given message, prefixed by the
module from which it originates. A module is typically a plugin, but may also be the NOD
system itself. For example, msgIDs that are generated by the HB206 plugin will be prefixed
by HB206, and a complete msgID may therefore be HB206.201. The NOD Server uses the
prefix NOD.

Both the prefix and the code are decided by the plugin itself, but the combination must
be globally unique. This means that different plugins may use the same code for different
messages, as long as they use different prefixes.

The following rules apply:

•	 NOD	Establishes	the	default	return	message	(eg.	NOD.200	Order	Group	executed	OK)
•	 If	the	plugin	returns	a	message,	the	NOD	default	message	will	be	replaced	if	the	code	is
 on the same or a more important series (eg HB206.203: NOK 150 added to tPurse replaces
 NOD.200 Order Group executed OK).
•	 If	multiple	Orders	are	executed	as	one	Order	Group	and	all	message	codes	are	on	the
 same series, NOD will return its default message for this series.
•	 If	the	Order	Group	itself	provides	custom	messages,	the	current	message	will	be	replaced	
 with the custom message, but only if the msgID is identical to the current message.
 (eg HB206.203: tPurse lower limit reached. 150,- added. replaces HB206.203: NOK 150
 added to tPurse)

NOD Message IDs
To enable generic handling of messages by the NOD Clients, the message codes must fol-
low the command result code series of the plugin. The below list includes the current NOD
Codes, but also includes example HB206 codes to make the intentions clearer:

E L E C T R O N I C T I C K E T I N G : : A P P E N D I X E : N O D F E E D B A C K

49

Status
Code

Description Module
NOD

Module HB206
(examples)

1xx Information from the Module. The message has not triggered any state
changes.

100 Information to traveller X

101 Nothing to do. X

2xx OK This series indicates that whatever action the message describes, it was
executed OK.

200 Order Group executed OK X

201 Product written X

202 TPurse modified X

3xx Redirection The NOD Server want to direct the Traveller to another resource

300 See other X

4xx NOD Server Error This series is for errors where the NOD Server is unable to
execute the Order Group. The Order Group is removed from dristribution.

400 Internal Server Error X

5xx NOD Client Error The NOD Server decided that the client is incapable of
executing the Order Group. The Order Group may still be distributed by the
NOD Server.

500 Unable to deliver Order Group X

501 No space left on media X

Note that the message text may be modified through the Admin interface of the modules.
The text above is just examples. Also note that additional codes may be introduced in the
future.

Plugin Message extension
A plugin does not have to support messages. In this case, the NOD default messages will
be used. The plugins may provide additional, more detailed messages by using the message
command with the http://nod.ioas.no/plugin/commands/message namespace extension.

The following rules apply:

•	 The	message	should	be	localized	by	the	plugin	according	to	the	locale	context	key.
•	 The	number	and	length	of	lines	must	be	adapted	to	the	NOD	Client	capabilities

50

A P P E N D I X E : N O D F E E D B A C K : : E L E C T R O N I C T I C K E T I N G

NOTE: The combined msgID is considered part of the plugins external interface. NOD Clients
may	check	for	specific	msgIDs	to	perform	additional	customizations	on	the	client	side,	so	
modules must not change the semantic meaning of a given code unless this is coordinated
with the NOD Clients. Each plugin must provide a list of the msgIDs it may produce as
part of its specification.

See the Plugin interface description for more details.

Example of a plugin message
<processorder>
 <message msgID=”HB206.203” >
 <line>tPurse credited NOK 200,-</line>
 <line>Remaining tPurse NOK 350,-</line>
 </message>
...
</processorder>

PL4 AddOrder custom message override
While	 the	 plugins	may	 give	 relatively	 specialized	messages,	 they	may	not	 be	 very	user-
friendly without having access to registers to convert codes to product names etc. In addition;
If an Order Group contains several Orders, a single plugin cannot describe what the entire
Order Group execution has achieved as a plugin always executes in the context of a single
order.

To facilitate high-quality user feedback the PTO may therefore provide custom messages
that overrides the messages given by NOD or its Plugins.

For example, resultcode NOD.200 is default ”Order Group Executed”’ but the OrderDescrip-
tion of the Order may override this message with NOD.200: Automatisk påfylt reisepenger
NOK 200 i hht avtale.

The following rules apply when the NOD decides what messages to display:

•	 The	locale	must	match,	or	the	default	is	chosen
•	 The	msgID	must	match
•	 All	lines	matching	the	screen	capabilities	of	the	NOD	Client	is	chosen
•	 If	no	screen	capabilities	match,	the	default	line	is	chosen

See the PL4 PTO Client documentation for details of this service.

E L E C T R O N I C T I C K E T I N G : : A P P E N D I X E : N O D F E E D B A C K

51

Example of a PL4 AddOrder message override supporting default and specific screen
capabilities as well as an english localization
...
 <soapenv:Body>
 <ord1:AddOrdersRequest xmlns:ord1=”http://services.ws.pl4.io.no/orderdomain”>
 <ord1:mediaSerialNumberID>1200006222</ord1:mediaSerialNumberID>

 <message>
 <msgId>HB206.200</msgId>
 <line>
 <value>200kr påfylt reisepenger</value>
 </line>
 <line>
 <screen>011,010</screen>
 <value>Automatisk påfylt reisepenger</value>
 </line>
 <line>
 <screen>011,010</screen>
 <value>NOK 200 i hht avtale</value>
 </line>
 <line>
 <screen>011</screen>
 <value>God tur!</value>
 </line>
 </message>
 <message>
 <locale>en</locale>
 <msgID>HB206.200</msgId>
 <line>
 <value>OK 200 added to tPurse</value>
 </line>
 </message>
 ...
 </ord1:AddOrdersRequest>
 </soapenv:Body>

52

A P P E N D I X E : N O D F E E D B A C K : : E L E C T R O N I C T I C K E T I N G

NOD Client LED Support
The NOD Client command led defined in namespace http://ioas.no/nod/client/com-
mands/led enables blinking a coloured led on the NOD Client, and is typically combined
with	parallel	support,	for	example	by	flashing	LEDs	while	sounding	the	buzzer.

Note that this LED command is used by 3 different capabilities, one for each colour. The
NOD will only return a led command with a colour supported by the Client Capabilities.

Elements

colour
The colour of the led that should blink

duration
The	duration	in	milliseconds	the	buzzer	should	sound

pause
The interval in milliseconds between eventual repetitions. Note that the pause should also
be appended after the last repetition.

repeat
The	number	of	times	the	buzzer	should	sound

LED Example

Light the red led 1 second, 4 times with a 100ms pause between and after.

<command cmdID=”5”>
 <led:led xmlns:led=”http://ioas.no/nod/client/commands/led”
xsi:schemaLocation=”http://ioas.no/nod/client/commands/led NODCommandLED.
xsd”>
 <colour>red</colour>
 <duration>1000</duration>
 <pause>100</pause>
 <repeat>4</repeat>
 </led:led>
</command>

E L E C T R O N I C T I C K E T I N G : : A P P E N D I X E : N O D F E E D B A C K

53

NOD Client Buzzer Support
The	NOD	Client	command	buzz	defined	in	namespace	http://ioas.no/nod/client/com-
mands/buzzer	 enables	making	 a	 buzzing	 sound	 on	 the	NOD	Client,	 and	 is	 typically	
combined	with	parallel	support,	for	example	by	flashing	LEDs	while	sounding	the	buzzer.

Elements

freq
The	frequency	in	Hz	of	the	buzzer

duration
The	duration	in	milliseconds	the	buzzer	should	sound

pause
The interval in milliseconds between eventual repetitions. Note that the pause also should
be appended after the last repetition.

repeat
The	number	of	times	the	buzzer	should	sound

Example
Make	a	buzzing	5kHz	sound	for	one	second,	repeat	3	times	with	a	0.1	sec	pause	between	
and after.

<command cmdID=”7”>
	 <buzz:buzz	 xmlns:buzz=”http://ioas.no/nod/client/commands/buzzer”	
xsi:schemaLocation=”http://ioas.no/nod/client/commands/buzzer	 NODCommand-
Buzzer.xsd”>
 <freq>5000</freq>
 <duration>1000</duration>
 <pause>100</pause>
 <repeat>3</repeat>
	 </buzz:buzz>
</command>

54

A P P E N D I X E : N O D F E E D B A C K : : E L E C T R O N I C T I C K E T I N G

Parallel execution of NOD Client Commands on the NOD Client
Some commands may be important to process in parallell to other client commands. For
example a light should flash while another operation is performed. To facilitate this, the
command parallel from the namespace http://ioas.no/nod/client/commands/parallel
may wrap a new set of commands. These commands should be executed in parallel by the
NOD Client.

The following rules apply:

•	 All	commands	contained	in	a	parallel	command	set	must	complete	before	subsequent	
 commands are processed.
•	 Parallel	commands	must	always	be	initiated	in	the	same	sequence	as	they	are	returned
 from the NOD Server.
•	 A	parallell	 command	with	 expectedresult=false	 should	 not	 have	 to	 complete	 before
 eventual NOD server communication. This enables a NOD Client to communicate with
 the NOD while eg a LED is blinking.

Resource collisions

If two parallel commands access the same physical resource on the NOD Client, the conflic-
ting commands must be executed in sequence. It is up to the NOD Client to decide when
a resource collision has occurred, but the returned result for these commands must be 201
(’Execution of the command was OK, but could not be executed in parallel).

Parallel Execution Example
Light the red and yellow LEDs in parallel, then execute next command.
<commands>
 <command cmdID=”4” expectedResult=”false”>
 <parallel:parallel>
 <commands>
 <command cmdID=”5” expectedResult=”false”>
 <led:LED>
 <led>red</led>
 <duration>1000</duration>
 <pause>100</pause>
 <repeat>4</repeat>
 </led:LED>
 </command>

E L E C T R O N I C T I C K E T I N G : : A P P E N D I X E : N O D F E E D B A C K

55

 <command cmdID=”6” expectedResult=”false”>
 <led:LED>
 <led>yellow</led>
 <duration>2000</duration>
 <pause>100</pause>
 <repeat>4</repeat>
 </led:LED>
 </command>
 </commands>
 </parallel:parallel>
 </command>
 <command cmdID=”7”>
 ...
 </command>
</commands>

56

A P P E N D I X F : S TAT I C O R D E R G R O U P S TAT I C D E S F I R E C O N T E N T S : : E L E C T R O N I C T I C K E T I N G

Executing the ”staticDesfireContents” order group enables a NOD client to retrieve a more
logical representation of the contents on an ecard.

•	 When	this	order	group	is	executed	via	the	POST	/group/staticDesfireContents/
 nodsession NOD REST interface the NOD server will direct the NOD Client to read
 a complete card image.
•	 The	NOD	Server	will	then	transmit	the	card	image	data	in	a	nod	image	plugin	
 command XML according to the NODPluginImgContentsDesfire.xsd schema from
 namespace http://ioas.no/no/plugin/image/desfire/contents.
•	 The	NOD	image	contents	plugin	will	the	extract	information	from	the	provided	card	
 image and generate a logical overview of information stored on the ecard in an XML
 format according to the NODPluginImgContentsDesfire.xsd schema.
•	 The	NOD	Server	extracts	 the	 logical	card	contents	 (base64	encoded)	and	produces	a
 client response XML according to the NODCommandDesfireContents.xsd schema.

Example NOD Client Request
POST	 http://ec2-79-125-44-161.eu-west-1.compute.amazonaws.com:8080/nod/client/
group/staticDesfireContents/nodsession/ HTTP/1.1
Accept-Encoding:	gzip,deflate
Content-Type: application/xml
Authorization:	Basic	dGVzdDp0ZXN0
Content-Length: 697

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
 <ns6:context xmlns:ns6=”http://ioas.no/nod/client/context”>
</ns6:context>

Example NOD Server Response
HTTP/1.1 201 Created
Server: Apache-Coyote/1.1
location:	 http://ec2-79-125-44-161.eu-west-1.compute.amazonaws.com:8080/nod/client/
group/staticDesfireContents/nodsession/cd6aa1ce-bc8a-4f8f-90ec-3571395a8dcb/cmdset/3
Date: Wed, 07 Dec 2011 07:47:02 GMT
Content-Type: application/xml
Transfer-Encoding: chunked

Appendix F: Static Order Group staticDesfire-
Contents

E L E C T R O N I C T I C K E T I N G : : A P P E N D I X F : S TAT I C O R D E R G R O U P S TAT I C D E S F I R E C O N T E N T S

57

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<ns3:commands xmlns:ns3=”http://ioas.no/nod/client/commands” xmlns:ns9=”http://
ioas.no/nod/client/commands/desfirecontents”>
 <command cmdID=”36” expectedResult=”false”>
 <ns9:desfireContents>
	 	 	 <imageDescription>PD94bWwgdmVyc2lvbj0iMS4wIiB....</imageDescription>
 </ns9:desfireContents>
 </command>
</ns3:commands>

Example Decoded ImageDescription, as returned in the NodClientCommand desFire-
Contents
<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<ns7:imageContents xmlns:ns3=”http://ioas.no/nod/plugin/commands”
xmlns:ns5=”http://ioas.no/nod/plugin/commands/getDesfireImageContents”
 xmlns:ns7=”http://ioas.no/no/plugin/image/desfire/contents” >
 <contractListFree>7</contractListFree>
 <contract>
 <networkId>5734400</networkId>
 <providerId>3</providerId>
 <tariff>2751</tariff>
 <template>140</template>
 <passengerTotal>1</passengerTotal>
 <autorenew>true</autorenew>
 <priceAmount xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:nil=”true” />
 <validityEndDate>2010-04-20+02:00</validityEndDate>
 <originStationId xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:nil=”true” />
 <destinationStationId xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:nil=”true” />
 <viaStationId xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:nil=”true” />
 <status>3</status>
 </contract>
 <expiryDate>2015-12-31+01:00</expiryDate>
	 <storedValue>1840</storedValue>
</ns7:imageContents>

Håndbøker bestilles fra:

Statens vegvesen Vegdirektoratet
Publikasjonsekspedisjonen

Boks 8142 dep.
0033 Oslo

Telefon: 02030
Faks: 22 07 37 68

publvd@vegvesen.no

ISBN 978-82-7207-639-8

	Revision History
	Foreword
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Logical Architecture
	1.2 Order Types

	2 The National Order Database Manager
	2.1 Order Management Process
	2.1.1 Order Group Status Lifecycle
	2.1.2 Order Group Status Codes
	2.1.3 Order Group Status Code Visibility
	2.1.4 Batch Jobs
	2.1.5 PL4 Batch Jobs

	2.2 Difference Engine
	2.2.1 Command Decorators

	2.3 Transaction Generation

	3 Requirements for Client Sales Systems
	3.1 Issuing Orders
	3.2 Managing Orders
	3.3 Webservice Order Interface Definitions
	3.3.1 AddOrders
	3.3.2 GetOrderGroups
	3.3.3 UpdateOrderGroup

	4 Requirements for NOD Clients
	4.1 The Order Delivery Process
	4.2 Requirements for User Interface
	4.3 NOD Client Interface
	4.3.1 Capabilities
	4.3.2 Interface Context Parameters
	4-3.3 REST Interface

	4.4 Security

	5 Requirements for NOD Plugins
	5.1 Business Logic
	5.2 Mapping of Orders to Plugins
	5.2.1 OrderMapping Example

	5.3 Interface
	5.4 Binary Ticket Medium Image Structure
	5.5 Transaction Requirements

	Appendix A: Common REST Interface Specification
	Appendix C: NOD Plugins
	Appendix E: NOD Feedback
	Appendix F: Static Order Group staticDesfire-Contents

