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SUMMARY 
 

 

The underlying causes and processes of reinforcement corrosion are quite 

well investigated and understood, however, there are some aspects not 

extensively investigated.  One such aspect is the effect of temperature on 

the corrosion process in concrete, and especially the corrosion behaviour in 

the low temperature range.   

 

Concrete due to its porous nature has pore solution present in a liquid state, 

even at very low temperatures in its smallest pores.  Given the presence of 

liquid, and provided oxygen is present, it is likely that corrosion is possible 

at even very low temperatures.  

 

In Norway where a considerable number of concrete structures are directly 

exposed to climatic conditions below 0°C, the effect of low temperatures 

on corrosion is an important topic.   

 

During the course of this study, corrosion of steel in concrete was indirectly 

investigated by monitoring thermal effects on two of the main parameters 

for steel corrosion in concrete, cathodic reaction rate and the electrical 

resistivity of concrete.  The experiments were performed on two concrete 

mixes (water/binder – ratio (w/b) of 0.4 and 0.6) for various curing 

conditions. The experimental programme can be summarised as follows:  
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• The cathodic reaction rate 

o Stationary polarisation 

 Polarisation:  -0.6 V/MMO           

 Temperature range: -40°C ≤ T ≤ 40°C  

 Intervals:   5°C change every 24 hours 

 Moisture content:  55% ≤ DCS ≤ 99%  

o Cathodic polarisation curves  

 Scanning interval:  0 V/MMO – -1.2 V/MMO 

 Scan rates:   0.1 V/15 minutes,  

0.1 V/ 24 hours 

 Temperature:  20°C, 0°C and -20°C 

 

• The electrical resistivity of concrete 

o Measurement techniques:  

 Electrochemical Impedance Spectroscopy  

 Positive Feedback 

 Potential Square Pulse 

o Temperature (constant):  20°C, 2°C, -14°C and -28°C 

o Moisture content:   30% ≤ DS ≤ 100%  

 

The thermal response of these two corrosion parameters provides valuable 

indications on actual embedded corroding systems.   

 

The results from the cathodic reaction rate experiments show that the 

cathodic reaction rate at stationary polarisation of -0.6 V/MMO 

(approximately -0.5 V/SCE) decreases with decreasing temperature.  The 

cathodic reaction rate at -40°C is about 5 to 8% of the corresponding 
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reaction rate at 0°C, and at +40°C the reaction rate is increased to between 

150 to 650% the rate at 0°C.  In general, the changes are largest for the 

concrete with w/b ratio of 0.6, which has a much higher initial reaction rate 

(at 0°C) than w/b 0.4.  

 

In the temperature range -40°C ≤ T ≤ 0°C the thermal changes in the 

cathodic reaction rate followed the Arrhenius law quite well. The 

calculated activation energy constants were in the range 2500 – 5000 K 

confirming values already reported.  No clear and uniform correlation 

between the activation energy constants and the properties of the concretes 

was found.  However, considerable hysteresis effects for the variants with 

the initial highest moisture contents were found.  These effects were 

attributed to ice formation in the largest capillaries.  The amount of ice in 

the concretes was determined by low temperature calorimetry. This verified 

the presence of quite substantial amounts of ice at the lowest temperatures 

(-40°C). 

 

In the temperature range 0°C ≤ T ≤ 40°C the thermal changes in the 

cathodic reaction rate did in some cases follow the Arrhenius law and in 

some cases not.  The reaction rate appeared to approach an upper limit.  

This may be due to decreasing solubility of oxygen for increasing 

temperature, and that the reaction is decelerated by the supply of reactants.  

The effect appeared to be strongest for the concrete with w/b ratio of 0.4. 

This observation strengthens the indication of transport and accessibility 

related deceleration.  Inhibition of the reaction increasingly occurred for 

temperatures higher than 20°C. 
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The cathodic polarisation experiments (0 to -1.2 V/MMO) indicated that 

the equilibrium potentials of the electrodes were quite unaffected by 

temperature.  Furthermore, the cathodic reaction rate showed a Tafel region 

with slopes in the range (-0.1 to -0.2 V/decade) which is similar to reported 

values for oxygen reduction on platinum (-0.12 V/decade).  The variation 

from the ideal slope was attributed to changes in the oxide layers and 

interfering red-ox reaction due to the presence of a passive oxide layer and 

impurities on the electrode surface.  In the low overpotential range (0 to -

0.3 V) the polarisation behaviour appeared relatively unaffected by 

temperature.  Only small changes in the equilibrium potential were 

observed for decreasing temperatures.  These changes may have been 

introduced by forgoing polarisation. 

 

The fast scan rate (-0.1 V every 15 minutes) generally induced higher 

values for the reaction rate than the slow scan rate (-0.1 V every 24 hours).  

The results are more or less parallel showing the same trend.  However, one 

should be aware that the fast scan rate is in the first peak of the 

potentiostatic transient while the slow scan rate is assumed to be in a more 

or less quasi steady state.  Of practical reasons (time) the fast scan rate was 

chosen for further polarisation experiments. 

 

At decreasing temperatures the reaction rate approaches a situation similar 

to concentration polarisation at increasing overpotentials.  This situation 

occurred on cathodic overpotentials more negative than -0.3 V and the 

effect appeared to be magnified for decreasing temperatures.  This indicates 

that even though the solubility of oxygen in water increases for decreasing 
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temperatures the effect of increased concentration of dissolved oxygen did 

not increase its availability at low temperatures.   

 

The lowest temperature for these polarisation experiments was -20°C and 

only small amounts of ice should be present at this temperature.  The small 

amounts of ice were presumably not enough to affect the reaction rate 

profoundly. 

 

It must be emphasised that the cathodic polarisation curves are presented 

without automatic compensation for the ohmic drop.    

 

The results from the electrical resistivity of concrete experiments show that 

the electrical resistivity of concrete is greatly affected by both temperature 

and the moisture condition of the concrete.  

 

In general, the electrical resistivity of concrete increases with decreasing 

temperature and follows the Hinrichson-Rasch law (diversion of the 

Arrhenius law) quite well.  The calculated activation energy constants from 

the results were in the range 2000 – 5000 K and appear to be relatively 

unaffected by the initial moisture content and the concrete quality.   

 

The totally saturated specimens had non-linear behaviour in the Arrhenius 

plots.    The non-linear behaviour was attributed to ice formation in the 

largest capillaries.  

 

The electrical resistivity increases strongly with decreasing moisture 

content.  Below certain moisture content levels the resistivity increases 
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very much stronger with decreasing moisture content. At higher moisture 

contents than these critical levels, the increase appears to be dependent on 

the mix characteristics (i.e. w/b ratio, silica content, cement content).  At 

moisture contents lower than these critical levels the increase appears to be 

independent of the mix characteristics. The results, using some 

assumptions, indicate that a critical thickness of the conductive adsorbed 

water layers were reached at the breaking levels, forcing the conductive 

pathways into very small pores where the conduction is hindered by 

restricted mass transport. 

 

By combining the effects of temperature and moisture condition on 

electrical resistivity, it was found that the moisture content had a similar 

effect for all the four constant temperatures investigated.  The temperature 

resulted in a shift towards a higher level for decreasing temperatures, 

indicating that the moisture sensitivity is independent of temperature.  

 

Measurements by Electrochemical Impedance Spectroscopy (EIS) gave 

information on the concrete’s dielectric properties.  In general, a typical 

impedance spectrum for concrete could be described by a suppressed 

semicircle that indicated that the concrete had distributed relaxation times.   

 

The distributed relaxation times indicate several parallel conductive phases, 

i.e. the impedance describes the different phases of conduction in concrete 

(e.g. cement particles, liquids, and adsorbate).  The magnitude of the 

suppression was not much affected by temperature. 
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In addition, the results showed that the frequency at maximum capacitance 

was decreasing for decreasing temperatures.  This indicates that the 

frequency corresponding to zero capacitive contribution also had a similar 

temperature dependency.  The results indicate that the appropriate 

measurement frequency for obtaining the actual resistance of the concrete 

decreases for decreasing temperature.   

 

Furthermore the dielectric constant appears to increase for increasing 

moisture content.  Due to limited data it is not possible to be conclusive; 

however, this trend is coherent with the theory.  The calculated dielectric 

constants were in the range 10 – 15. 

 

Resistivity was measured using three techniques, where two of the 

techniques were compared: EIS and Positive Feedback.  EIS measurements 

were regarded as “true”, and the comparison revealed a rather limited range 

of resistivities (up to 17 kΩm) which could be reliably measured with 

positive feedback. 

 

Using the results from the experimental work and making some 

assumptions, it can be concluded that corrosion rate decreases strongly with 

decreasing temperature, although this reduction cannot be quantified. 
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The main conclusions of this study are: 

 

1) The cathodic reaction rate of passive steel embedded in concrete 

decreases with decreasing temperature. 

 

2) Ice formation in the capillaries generates a considerable hysteresis 

effects on the cathodic reaction rate of steel in concrete.  

 

3) The cathodic polarisation behaviour of steel is temperature 

dependent. 

 

4) The electrical resistivity of concrete increases with decreasing 

temperature. 

 

5) The electrical resistivity of concrete is governed by the moisture 

condition of concrete, increasing with decreasing moisture 

content. 
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NOTATIONS, UNITS AND ABBREVIATIONS 
 

 

Symbol Unit Description and/or definition 

a [K] activation energy constant 

A [K] activation energy constant 

A [m2] area 

A [sec-1] constant  

A [-] scaling factor (Arrhenius law) 

Ae [m2] area of the electrode 

Ccem [kg m-3] cement in the dosage 

c [kg m-3] concentration 

C [kg m-3] oxygen concentration in the pore solution  

ci [mole m-3] concentration of ions 

const [-] constant (scaling factor/mathematics)  

CSH [-] Calcium – Silicate – Hydrates  

DCS [-] Degree of Capillary Saturation 

DS [-] Degree of Saturation 

Di [m2 sec-1] diffusion coefficient of species 

Dox [m2 sec-1] oxygen diffusion coefficient  

e 1.6·10-19 C electron charge 

E [V] potential 

E [V m-1] strength of the electrical field  

Ea [kJ mole-1] activation energy  

Ea [V] anodic potential 

Ec [V] cathodic potential 

Eeq [V] equilibrium potential 
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Symbol Unit Description and/or definition 

F [-] constant  

F 96485 C/mol Faradays constant (1F = e · NA) 

F [-] Formation factor 

I [A] current  

i [A/m2] current density 

I0 [A] cell current at temperature T0  

i0 [A/m2] exchange current density  

ia [A/m2] anodic (dissolution)current density 

ic µA/cm2 cathodic (reduction) current density 

ic [A/m2] cathodic current density 

iL [A/m2] limiting current density 

k [-] shape factor for the aggregate particles 

k [sec-1] thermal velocity factor 

kp kg/m moisture permeability coefficient 

L [m] length 

Le [m] effective path 

m [-] shape factor 

NA 6.02·1023 mol-1 Avogadro number 

R [Ω] electrical resistance of the section 

R 8.315 J/K mol gas constant 

R1 [Ωm] electrical resistivity at temperature T1

R2 [Ωm] electrical resistivity at temperature T2

RH [%] Relative Humidity (abbreviation for text) 

rm [m] meniscus radius of water 

Ro [Ωm] electrical resistivity of the porous rock 

when saturated with water 
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Symbol Unit Description and/or definition 

Rw [Ωm] electrical resistivity of the water contained 

in the porous rock 

RΩ [Ω] electrical resistance 

T [°C or K] temperature 

t [s] time 

T [-] tortuosity 

S [kg/m3] total amount of solids in the dosage: 

(cement + additions + aggregates) 

ui [m2 V-1 s-1] ionic mobility 

Va [-] volume fraction of particles 

vi [m s-1] Ionic migration rate 

Vm [-] volume fraction of the matrix 

wes [%] evaporable water 

Wnf [%] non-frozen water 

Wg [-] cement content factor (1- Ccem /S) 

x [m] distance 

z [-] valence of ions 

α [-] coefficient of temperature for the material 

αcement paste [-] coefficient of temperature, without 

aggregates in the mix 

αdosage [-] coefficient of temperature for the tested 

dosage 

β [-] kinetic parameter (transfer coefficient) 

βe [-] symmetry factor 

δ [m] thickness of the diffusion layer 

ϕ [%] Relative Humidity (for equations) 
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Symbol Unit Description and/or definition 

σ [N/m2] tension (also surface tension) 

∆E [V] potential difference  

∆T [K] temperature difference (T0 - T) 

ηc [V] cathodic overpotential 

ηL [V] overpotential for concentration 

polarisation 

κ [Ω-1m-1] electrical conductivity 

ρ [Ωm] electrical resistivity ( /R A lρΩ Ω= ⋅ ) 

ρ0 [Ωm] electrical resistivity at a temperature of 

reference T0 (normally 25°C) 

ρa [Ωm] electrical resistivity of the particles 

ρm [Ωm] electrical resistivity of the matrix 

φ [-] fractional volume of the water contained 

in the rock 
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INTRODUCTION 
 

 

This chapter gives the background and the objectives for the thesis and the 

experimental work.  An overview of the thesis is given at the end of the 

chapter. 

 

 

 

1.1 Background 
 

 

Concrete normally provides reinforcing steel with excellent corrosion 

protection. The highly alkaline environment in concrete results in the 

formation of a very stable passive film on the reinforcement.  In addition, 

concrete can be proportioned to have a low permeability, reducing the risk 

of penetration of aggressives and increasing the electrical resistivity.  High 

electrical resistivity impedes the flow of electrochemical corrosion 

currents. 

 

The major cause of severe corrosion of steel reinforcement is penetration of 

chloride ions through the concrete and on to the steel. In marine 

environments the threshold (critical for corrosion) chloride content at the 

depth of the reinforcement is often reached only a few years after 

installation/construction.  
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Widespread use of de-icing salts can also reduce the service life of concrete 

structures on or along the roads.  Chloride induced corrosion in concrete 

causes localised attack or so-called pitting.  Corrosion of reinforcing steel 

in concrete may also be initiated by carbonation.  CO2 in the atmosphere 

reacts with Ca(OH)2 and the CSH phase in concrete, thereby reducing the 

pH in concrete to near neutral. The intensity of the corrosion is normally 

much lower for corrosion due to carbonation compared to chloride induced 

corrosion.  

 

The economical consequences due to corrosion of steel in concrete are 

substantial. The corrosion problem must be considered as one of the largest 

single infrastructure problems facing industrialised countries.  

 

For steel embedded in atmospherically exposed concrete the only likely 

cathode reaction is reduction of dissolved oxygen given in Equation 1.1.  

The corresponding anodic dissolution of steel is normally written as in 

Equation 1.2. 

 

½ O2+ H2O + 2e- → 2OH-   (Equation 1.1) 

 

Fe → Fe2+ + 2e-     (Equation 1.2) 

 

When iron is dissolved it reacts with oxygen and forms ferrous hydroxide, 

ferric hydroxide and later hydrated ferric oxide as shown in Equations 1.3, 

1.4 and 1.5 respectively.  This means that for both anodic and cathodic 

reactions, the water and oxygen content are controlling factors.  
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Fe2+ + 2OH- → Fe(OH)2   (Equation 1.3) 

 

4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3 (Equation 1.4) 

 

2Fe(OH)3 → Fe2O3⋅H2O + H2O  (Equation 1.5) 

 

Another significant parameter is temperature.  The effect of temperature on 

corrosion has previously been investigated [1, 2]. These investigations, 

however, have focused on temperatures higher than water freezing point, 

and very few results on lower temperatures have been reported.  

 

In the Nordic countries a substantial percentage of the most important 

infrastructure is located in areas with several months with mean 

temperatures lower than 0oC.  Previously, it has been generally accepted 

that rebar corrosion will not propagate during these cold periods due to 

temperature control of the corrosion processes.  Observations of significant 

current flows in cathodic protection systems, even in very low temperatures 

(-15oC or lower), questions the assumption of no propagation at low 

temperatures.   

 

This project was initiated by The Norwegian Public Roads Administration 

(NPRA) as a part of a national programme "The lifecycle of concrete 

structures" 
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1.2 Objectives  
 

The main objectives for the project have been to: 

 

1. Investigate the effect of temperature on the cathodic reaction rate.   

Establish the correlation between temperature and the cathodic reaction 

rate and evaluate if this reaction governs the corrosion rate. 

 

2. Investigate the effect of temperature on electrical resistivity and other 

electrical properties of concrete. 

Find a correlation between electrical resistivity and other electrical 

properties of concrete and temperature.  Define effect of porosity and 

moisture content. 

 

3. Estimate the effect of temperature on the corrosion rate. 
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1.3 Scope of work 
 

Corrosion of steel is in general dependent on four elements:   

 

1. An anode where the metal is oxidised 

2. A cathode where a reduction process occurs 

3. An electrical contact between the anode and the cathode 

4. An ionic conduction pathway provided by an electrolyte 

 

This thesis is built based around the four above mentioned elements.  By 

concentrating on elements 2 and 4 it is expected to find a relation between 

temperature and the expected corrosion behaviour of embedded steels in 

concrete. 

 

In the following paragraphs the layout of the thesis is given.  

 

Chapter 2 defines the basic theories concerning corrosion of steel in 

concrete.  A certain level of general understanding of corrosion is expected 

of the reader; hence, the detailing level of basic theories is kept to a 

minimum.  At the end of the chapter a starting point for the experimental 

work is given. 

 

Chapter 3 is a summary of the experimental work performed within the 

scope of this study.  The different materials, experiments and equipment 

used are described in detail.   
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Chapter 4 presents the results and the associated discussion of these from 

the effect of temperature on the cathodic reaction rate.   

 

Chapter 5 presents the results and associated discussion on the influence of 

temperature, moisture and concrete quality on the electrical resistivity of 

concrete.  Some evaluations of the temperature influence on other electrical 

properties are also given.   

 

Chapter 6 ties the observations from both chapter 4 and 5 together and 

estimates the effect of temperature on corrosion of steel in concrete.  The 

obtained results are compared with results available in the literature.   

 

Chapter 7 is the overall conclusions within the framework of the study.   
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2 
 

THEORETICAL BACKGROUND 
 

 

This chapter gives the theoretical background for this project.  The 

cathodic processes and the kinetics of the cathodic reactions are reviewed 

along with properties affecting the electrical resistivity of concrete.   

 

 

 

2.1 Introduction and starting point for the literature review 
 

 

The surface of a corroding metal contains both anodic and cathodic sites, 

and acts as a mixed electrode.  In general, the mixed metal theory [3] states 

that on the anodic sites the metal atoms pass into the solution as positively 

charged, hydrated ions (anodic oxidation) and the excess of electrons flows 

through the metal to cathodic sites.  To form a cathodic area, an electron 

acceptor, like dissolved oxygen or hydrogen ions, must be present to 

consume the excess electrons released by the oxidation reaction at the 

anodic locations (cathodic reduction).    

 

These two reactions form an electrochemical couple and describe the metal 

corrosion process as a combination of an anodic oxidation, such as 

dissolution of iron, and a cathodic reduction, such as oxygen reduction. 
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The electrons released at the anodic site must be consumed elsewhere on 

the metal surface establishing the corrosion reaction.  The process is 

completed by the transport of ions through the aqueous phase, leading to 

the formation of corrosion products at the anodic sites.  These corrosion 

products can either be soluble (e.g. ferrous chloride) or insoluble (e.g. rust, 

hydrated ferric oxide) [4]. 

 

To summarise; corrosion of steel requires a complete cell established by 

four main elements: an anode, a cathode, an electrical connection and an 

electrolytic contact between the reaction sites.   

 

To monitor the anodic reaction directly can be problematic. To measure the 

anodic reaction rate the electrode needs to be polarised around its corrosion 

potential either by an incremental polarisation change (linear polarisation) 

or by a short term electrical pulse (galvanostatic pulse).  Such change in 

polarisation introduces more uncertainties and obstructs repeated 

measurements until the system has returned to its new equilibrium state. In 

addition repeated measurements of the instantaneous anodic reaction rate 

indicate that the anodic reaction rate may vary greatly according to Tuutti 

[5].  

 

The focus of this literature review is mainly the processes occurring at the 

cathodic electrode and the electrical resistivity of concrete.   

 

For further details on theoretical background for this review it is referred to 

the reference list [1-10]. 
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2.2 Cathodic reactions in concrete 
 

 

In alkaline and oxygen rich electrolytes, such as atmospherically exposed 

concrete, the overall corrosion reaction can be a single reduction process or 

a combination of reduction processes along with dissolution of iron.  The 

most frequent cathodic reaction in atmospherically exposed concrete is 

reduction of oxygen [1 – 9] expressed by Equation 2.1. 

 

4 – electron pathway: 2 22 4 4O H O e OH− −+ + →  (Equation 2.1) 

 

According to Yeager [11] this reaction may go directly (direct 4 – electron 

pathway) as given by Equation 2.1 or by a secondary state producing an 

instable super oxide (peroxide pathway), as expressed in Equation 2.2. 

 

Peroxide pathway: 2 2 22O H O e HO OH− −+ + → + −  (Equation 2.2) 

 

 

The peroxide pathway is either completed by a further reduction reaction 

(Equation 2.3) or a decomposition reaction (Equation 2.4): 

 

 

Reduction reaction: 2 2 2 3HO H O e OH− −+ + → −

2

 (Equation 2.3) 

 

Decomposition reaction: 22 2HO OH− −→ + O  (Equation 2.4) 
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The sum of reactions for the peroxide pathway is in both cases equivalent 

to the sum of reactions for the direct 4 – electron pathway.  The distinction 

of these two parallel pathways may be quite marginal.  Superoxide [(O2
-)ads, 

(HO2)ads] and peroxide [(O2H-)ads, (H2O2)ads] adsorbed states may be 

involved in both reaction pathways but the peroxide pathway favours the 

adsorbed state especially when impurities are present at the electrode 

surface.  It is therefore likely that the oxygen reduction in concrete involves 

superoxide and/or peroxide formation.  

 

In more localised corrosion a combination of oxygen reduction and 

reduction of protons (H+
 - ions) and/or water may occur.  In severely 

localised corrosion, termed “pitting” corrosion, reduction of protons will be 

the main contributor for the cathodic reaction due to lack of oxygen.  

Decreasing oxygen concentrations leads to large cathodic overpotentials 

and therefore favours these reactions.  Proton reduction (Hydrogen gas 

formation) is given in Equation 2.5 and water reduction in Equation 2.6.  

 

 

Proton reduction: 22 2H e H+ −+ →  (Equation 2.5) 

 

Water reduction: 2 22 2 2H O e H OH− −+ → +  (Equation 2.6) 

 

   

These electrode reactions occur mainly in the low potential range (lower 

than -0.9 V/SCE).    
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Another aspect of interest is the effect of the passivating oxide and 

hydroxide layer generated on the electrode surface of embedded steels in 

concrete, commonly termed passive film.   

 

These oxihydroxides generate due to the alkalinity of the pore water.  The 

pore water has a pH in the range 12 – 14 dependent on the properties of the 

concrete mix and exposure.  

 

Sato [12] stated that the formation of a passive film is an ongoing and self-

maintaining process mainly dependent on the potential difference, ∆E, at 

the oxide/solution interface.    

 

 

 expa
zFi const E

RT
β⎛= ⋅ ⋅ ∆⎜

⎝ ⎠
⎞
⎟  (Equation 2.7) 

 

Where:  

 

ia anodic current density [A/m2] 

const constant (scaling factor)   

β kinetic parameter (transfer coefficient)  

z valence (number of electrons)  

∆E Potential difference on the 

oxide/solution interface 

[V] 

T Temperature [K] 

R Gas constant 8.315 J/K mole 

F Faraday constant 96 485 C/mole 
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Equation 2.7 is derived from the Butler Volmer Equation.  The constant, 

const represents the exchange current density, but has been regarded as a 

constant for later mathematical manipulation.  The kinetic parameter, β, 

represents the anodic transfer coefficient. 

 

The anodic (dissolution) current density has been observed to be 

independent of the electrode potential in acidic solutions [12].   

 

The potential difference in the oxide/solution interface is determined by the 

following electrochemical reaction [12]:  

 

 

 2
2 2ox aqH O O H− += +  (Equation 2.8) 

 

 

Hence, it is directly influenced by the pH in the solution [12]:    

 

 ln[ ]RTE const H
F

+∆ = +  (Equation 2.9) 

Where:  

∆E Potential difference on the 

oxide/solution interface 

[V] 

const constant   

[H+] concentration of hydrogen ions   

T Temperature [K] 

R Gas constant 8.315 J/K mole 

F Faraday constant 96 485 C/mole 
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By combining Equations 2.7 and 2.9 a linear-logarithmic correlation 

between the anodic dissolution current density and the pH of the solution is 

given [12]: 

 

 log( )ai const z pHβ= − ⋅  (Equation 2.10) 

 

Where:  

 

ia anodic current density [A/m2] 

const constant   

β kinetic parameter (transfer coefficient)  

z valence (number of electrons)  

 

 

Potentiostatic experiments performed by Pruckner [13] showed that this 

dependency is near linear-logarithmic also in alkaline aqueous solutions   

(Figure 2. 1). 
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Figure 2. 1 Dependency on the anodic dissolution current in the passive 

regime on pH. (Current density in logarithmic presentation). 

After Pruckner [13]. 

 

 

The formation of a passive film is dependent upon the presence of 

dissolved oxygen in the pore water solution.  The stability of the passive 

film is limited in presence of aggressive ions.  Breakdown of the passive 

state generally occurs due to presence of chloride ions in sufficient amounts 

or due to decreasing pH.   

 

Andrade, Merino, Nóvoa, Pérez and Soler [14] characterised the passive 

layer on iron in alkaline solutions as generally formed with a dense inner 

layer at the electrode surface mainly consistent of magnetite (Fe3O4), and 

more amorphous outer layer consisting of γ-Fe2O3 and bound water.  The 
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two phases have nearly the same oxygen sub lattice with Fe2+ and Fe3+ 

occupying only slightly different octahedral and tetrahedral interstices.   

 

Stratmann, Bohnenkamp and Engell [15] stated that the oxidation of Fe3O4 

to γ-Fe2O3 is a reversible process. 

 

 2
3 4 2 33 4Fe O Fe O Fe eγ 2+ −⋅ + +  (Equation 2.11) 

 

The bound water molecules in combination with the polymer like frame of 

γ-Fe2O3 form a physical barrier for diffusion of iron ions.  Due high 

conductivity the reduction processes at the oxide/solution interface is 

maintained by a very low anodic dissolution current density. 

 

How these oxides and hydroxides interact in the total cathodic reaction 

when polarised is not clear in the reviewed literature.  However, it is 

probable since the oxidation of Fe3O4 to γ-Fe2O3 is a reversible process, 

that some conversion of oxides will take place under polarised conditions 

and act in the total reaction.  

 

Recent research performed by Vennesland [16] shows that heavy polarised 

steel (chloride extraction) in concrete gained thickness of the oxide layer as 

a result of the polarisation.  These observations support the theory of 

interaction in the total cathodic reaction.  
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2.3 Factors controlling the cathodic reaction rate 
 

 

 
2.3.1 Cathodic polarisation and reaction kinetics 
 

How much the electrode is polarised is related to its overpotential, η (the 

driving force).  Increased cathodic overpotential, ηc, results in an increase 

in cathodic reaction rate.  This is measured as an increase in current density 

on the electrode.  If there is plentiful supply of reactants (e.g. dissolved 

oxygen) then the relationship between current density and the overpotential 

can be described by the Butler-Volmer Equation [3]: 

 

 0
c

F
RT

ci i e
β η−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (Equation 2.12) 

Where:  

 

ic cathodic current density [A/m2] 

i0 exchange current density  [A/m2] 

β transfer coefficient  

ηc cathodic overpotential [V] 

T Temperature [K] 

R Gas constant 8.315 J/K mole 

F Faraday constant 96 485 C/mole 

 

For equation 2.12 to be valid the overpotential must be sufficiently 

negative (numerically greater than (RT/βeF)).  If it is assumed that the 

energy barrier at the electrode surface is symmetrical (βe = 0.5) then the 
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overpotential has to be numerical greater than -50 mV at room temperature 

(293 K). 

 

Funahishi and Young [17] listed the major steps involved in cathodic 

polarisation of steel in concrete (seen in context of cathodic protection): 

 

1. The supply of oxygen is ensured by oxygen dissolving into the 

concrete pore solution from the surrounding atmosphere. 

 

2. Oxygen is transferred by diffusion through the concrete pore solution 

from the concrete surface towards the reaction sites of the concrete  

3. Oxygen reaches the adjacent areas of the cathodic electrode 

 

4. The reaction on the cathodic electrode is one or both of the 

following: 

 

a. Oxygen is reduced at the cathodes existing on the steel, and 

hydroxide ions are produced given that the steel potential is 

more positive than the hydrogen equilibrium potential 

 

b. The anodic sites on the cathodic polarised steel (mixed metal 

electrode) decrease due to the supply of electrons 

 

5. The hydroxide ions that are generated by oxygen reduction are 

transported away from the steel interface by diffusion and the 

electrostatic field generated by the cathodic protection system.  
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When the rate of the cathodic reaction is controlled by steps 4a and 4b, the 

cathodic polarisation is controlled by activation polarisation.  However, if 

the rate of the reaction is limited by mass transport (steps 1-3 and step 5) 

the cathodic reaction rate is controlled by concentration polarisation.  

   

When the current density approaches a limiting value (iL) this can be 

caused by either one or a combination of inhibited transport of dissolved 

oxygen to the electrode surface and limited transport of hydroxide from the 

electrode surface. This is a situation referred to as concentration 

polarisation.  The magnitude of iL will then depend on environmental 

factors such as temperature.   

An Evans diagram illustrating concentration polarisation is given in    

Figure 2. 2. 
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Figure 2. 2 Polarisation curve for an electrode process such as oxygen 

reduction under concentration polarisation. Based on Page 

[4]. 

 

The O2 – concentration in the pore liquid affects both the driving force (the 

overpotential) and the activity.  By decreasing the O2 concentration the 

absolute value of the potential will increase, but the activity (current 

density) will decrease.  

 

An example showing the effect of oxygen concentration on value of Ecorr 

for passive steel in concrete is given in Figure 2. 3.  
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Figure 2. 3 Evans Diagram showing the effect of oxygen concentration on 

the value of Ecorr of passive steel rebar. Based on Page [4]. 

 

 

From Figure 2. 3 it is indicated that the cathodic polarisation curves will 

change by decreasing oxygen concentrations and that the equilibrium 

potentials of the electrode also will decrease by decreasing O2 – 

concentrations.
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The theory behind concentration polarisation in the Nernst diffusion layer 

gives a relationship between overpotential and current density involving 

concentration polarisation for a cathodic reaction at 25°C [3]: 

 

 0.059

log
L

L
L

iz i
i

η =
⎛ ⎞

⋅ −⎜ ⎟
⎝ ⎠

 (Equation 2.13) 

Where:  

 

ηL overpotential for concentration polarisation [V] 

z valence (number of electrons)  

i Current density [A/m2] 

iL limiting current density [A/m2] 

 

 

Equation 2.13 has its origin in Nernst Equation where the concentration is 

replaced by the current density generated by the concentration gradient [3].   
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The limiting current density can be calculated as follows (for oxygen 

reduction) according to Bockris et al. [3]: 

 

 4L ox
Ci F D
δ

⎛ ⎞= − ⋅ ⋅ ⎜ ⎟
⎝ ⎠

 (Equation 2.14) 

Where:  

iL limiting current density [A/m2] 

F Faraday constant 96 485 C/mole 

Dox oxygen diffusion coefficient  [m2/sec] 

C oxygen concentration in the pore 

solution  

[kg/m3] 

δ thickness of the diffusion layer [m] 

 

Equation 2.14 is derived from Fick’s first law of diffusion. 

 

By Equations 2.13 and 2.14 it is possible to calculate the limiting current 

density and the corresponding overpotential; however, the practical value 

of such calculations is minimal.  In practice, the rate of the cathodic 

reaction could partially be controlled by mass transfer (bulk diffusion of 

oxygen) and partially by kinetics of the anodic reaction (mixed metal 

electrode). In addition oxides on the surface of the electrode may inhibit the 

oxygen diffusion (through the oxide layer) to the electrode surface.  

 

Funahishi and Young [17] stated that the limiting current density and the 

corresponding overpotential would be difficult to estimate due to several 

influencing parameters. 
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Jäggi, Elsener and Böhni [18] stated that from the open circuit potential 

until the diffusion limiting current occurs the kinetics of the cathodic 

oxygen reduction is mainly controlled by charge transfer.  This region is 

often termed: Tafel region.  In this region the current potential correlation 

is linear – logarithmic.  The ideal Tafel gradient for oxygen reduction (on 

platinum without diffusion) is -0.12 V/decade [3].   

 

However, polarisation curves recorded in an electrochemical flow cell by 

Jäggi, Elsener and Böhni [18] indicated that the Tafel gradient may change 

presumably not affected by diffusion phenomena. They reported Tafel 

gradients in the range from -0.222 to -0.239 V/decade dependent on the 

temperature ranging from 5 to 47°C.  The Tafel gradients showed no 

uniform change by temperature, found from their published results. 

 

The same authors found that the age of the passive film (and presumably 

the thickness of it) inhibits oxygen reduction compared to oxygen reduction 

on platinum.  This inhibition increased with prolonged age of the passive 

film. 
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2.3.2 Temperature effect on the cathodic reaction rate 
 

The effect of temperature on systems dependent upon the presence of 

oxygen is complicated since there are two conflicting factors: 

 

Factor 1: Most aqueous solutions are in contact with the atmosphere and 

contain oxygen.  The saturated solubility of oxygen in pure 

water at 25°C is only about 10-3 mol/dm3 and the solubility 

decreases significantly by increasing temperature according to 

Funahishi and Young [17].  The relationship between 

temperature and the solubility of oxygen in pure water in the 

temperature range 0°C – 80°C is shown in Figure 2.4. 
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Figure 2. 4 The solubility of oxygen in water for 1 atm and 0.2 atm 

pressures of oxygen. After Funahishi and Young [17]. 
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Factor 2: Oxygen diffusion in concrete increases by increasing 

temperature according to Vennesland [20].  The temperature 

related increase of the transport of oxygen may compensate 

for the reduced solubility of oxygen in water. 

 

In addition to the oxygen availability the chemical reduction reaction itself 

has a temperature dependency.  In 1889 S.A Arrhenius found that a change 

in temperature changes the rate of a chemical reaction exponentially [3]: 

 

 
aE

RTk A e
⎛ ⎞−⎜
⎝

⎟
⎠= ⋅  (Equation 2.15) 

 

Where:  

 

k thermal velocity factor [sec-1] 

A constant  [sec-1] 

Ea activation energy  [kJ/mole] 

R Gas constant 8.315 J/K mole 

T Temperature [K] 

 

 

At higher temperatures, the probability that two molecules will collide is 

higher. This higher collision rate results in a higher kinetic energy, which 

has an effect on the activation energy of the reaction. The activation energy 

is the amount of energy required to ensure that a reaction happens.   
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The quantity of the activation energy for a given reaction expresses 

temperature dependency (or sensitivity) for the reaction.  

The temperature sensitivity of many chemical reactions can be explained 

by the Arrhenius equation; however, it cannot be regarded as a universal 

law.    

  

For an electrochemical process such as oxygen reduction the temperature 

influence on the resulting current would then be [19]: 

 

 0

1 1

0

a
T TI I e

⎛ ⎞⎡ ⎤
− −⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝= ⋅ ⎠  (Equation 2.16) 

 

Where:  

 

I cell current at temperature T [A] 

I0 cell current at temperature T0  [A] 

a activation energy constant [K] 

T / T0 Temperature [K] 

 

 

The activation energy constant, a, is equal to (Ea/R) in the Arrhenius 

equation (Equation 2.15). 

 

The cathodic oxygen reduction and especially its temperature dependency 

have not been studied extensively.   However, Jäggi, Böhni and Elsener 

[19] showed that the activation energy constant, a (according to Equation 

2.16), for oxygen reduction is in the range of 4310 K in simulated pore 
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solution (pH 13.5) and slightly lower in mortar (4250 K).  The anodic and 

cathodic partial reactions temperature dependency was shown to be similar 

to that of the overall macrocell current.   

By numerical modelling of the macrocell current with the polarisation 

curve of the anodic and cathodic partial reactions along with the mortar 

resistivity, Jäggi, Böhni and Elsener [19] achieved to calculate the 

temperature influence on the macrocell current.  These numerical 

calculations were in good agreement with their experimental research.  The 

experiments were performed in the temperature range of 0°C to +50°C. 

 

Vennesland [20] investigated the effect of temperature on the oxygen 

transport through submerged concrete by stationary polarisation.  He found 

an increase in current density from 0.5 mA/m2 to 1.2 mA/m2 for an increase 

of temperature from 1°C to 30°C.  If it is assumed that this increase follows 

Arrhenius, then the increase would correspond to an activation energy 

constant of about 2500K calculated from Equation 2.16.   

 

Vennesland [20] further found that the activation energy for the diffusion 

constants for oxygen in concrete in the same temperature interval was 

15kJ/mole.  This corresponds to an activation energy constant of 

approximately 1800K.  He concludes that temperature has a substantial 

effect on the oxygen reduction at steel embedded in concrete.  

 

The activation energy constant for diffusion of oxygen for oxygen was 

found to be lower than that of the oxygen reduction process.  This 

observation may be an indicator of that the diffusion of oxygen is less 

temperature dependent than the reduction process.  It is then probable that 
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the availability of reactants (dissolved oxygen) would not impair the 

reaction at lower temperature.  Since oxygen diffusion has not been studied 

at temperatures below 0°C no direct conclusion can be taken from the 

available literature.  

  

Elsener, Flükiger, Woytas and Böhni [21] reported on-site measurements in 

a temperature range from -10°C to 18°C.  In this range they observed an 

increase in macrocell current density from 5.5 mA/m2 to 22 mA/m2 

corresponding to an activation energy constant of 3789K.  

 

Raupach [22] states that the influence of temperature on the corrosion rate 

can not be generally described by an activation energy constant due to its 

dependency of several other parameters.  Especially, it is very dependent 

on the degree of water saturation.  

 

The found activation energy constants found in the literature give little 

basis to conclude on an appropriate level of activation energy constants.  It 

is, however, clear that the cathodic reaction rate and related phenomena 

show a temperature dependency and that the activation energy constant is 

in the range 2500K – 5000K.  This quite extensive range of activation 

energy constants indicates that the reaction is not only the influencing 

parameter, substantiating the statement of Raupach [22]. 
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2.3.3 Influence of the moisture condition of concrete on the cathodic 
reaction rate 

 

The moisture content of concrete defines the amount of pores that contains 

water, either totally water filled or as adsorbed layers on the pore walls. 

The amount of pores which contains water strongly influence the concretes 

overall ability to transport charged particles.  In order for oxygen reduction 

to occur, water has to be present both on the cathodic electrode surface and 

also interconnected with the corresponding anode.  The continuity of these 

wet pores will influence the rate of the reaction.   

 

Andrade, Alonso and Garcia [23] stated that the moisture level appeared to 

have the dominant effect on the rebar corrosion process. They state that 

with ideal conditions for oxygen availability at the electrode surface the 

reaction could be inhibited by the amount of active surface.  It appears as 

the moisture contents could be correlated to the part of the pores giving the 

contact to the electrodes (reaction sites).  At a critical low moisture content 

the electrode connection is dried out, and no reaction is possible.  

 

Due to these dry spaces the amount of active electrode surface will 

decrease, a process that is found as a decrease in the overall reaction 

current, although the premises for oxygen availability improves.  Normally, 

the reaction rates are related to the full surface of the exposed steel, while 

in some cases the actual active surface may be very much smaller. 
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Andrade, Alonso and Garcia [23] illustrated this by four cases of humidity 

and the corresponding active surface for reaction.  Since their 

investigations mainly were performed with eyes to the correlation between 

oxygen availability and the corrosion rate of steel in concrete their 

conclusions are not directly transferable to cathodic reaction rate. However, 

the amount of surface available for the cathodic reaction to proceed is 

clearly a rate determining step for the cathodic reaction. 



 THEORETICAL BACKGROUND 31 

 

Figure 2. 5 Scheme of the moisture content evolution in concrete pores,    

a) low humidity, b) medium humidity, c) high humidity and      

d) saturated conditions.  After Andrade, Alonso and Garcia 

[23]. 

Funahishi and Young [17] found that in highly dried concrete (dried for 72 

hours at 50°C) the cathodic reaction process appeared to be controlled by 
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the diffusion of hydroxide ions produced on the steel surface because of the 

thin electrolyte existing on the steel surface.  Furthermore, they found that 

the polarisation behaviour in wet concrete is completely different from that 

of steel in simulated pore solution.  

 

Raupach [24], however, stated different results than Funahishi and Young 

[17] in his investigations. Here it is stated that the effect of wetting could 

be separated in four different cases.   

 

1. “Permanently dry conditions (RH less than 100% and no further 

wetting) lead to that the O2 – diffusion was not significant.  The 

cathodic and anodic polarisation resistances control the reaction 

rate.” 

 

2. “Short-term water application (wetting by spray, fog, splashed water 

or in natural form of a rain shower) did not lead to oxygen 

deprivation at the steel surface”.  In this case he found that the 

change in the conductivity of the concrete cover lead to changes in 

the reaction rate. 

 

3. “Long-term water application (wetting in such a manner that the 

reinforcement is in totally saturated concrete) lead to oxygen 

deprivation at the steel surface and lead to a considerable decrease 

in cathodic reaction rate.” 
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4. “Permanently water saturated (total water saturation of the entire 

probe/structural part etc.) lead to control of the cathodic reaction 

rate by diffusion of oxygen to the electrode surface.” 

 

Since these investigations are not directly comparable it is difficult to draw 

any conclusion on the effect of moisture state on the cathodic reaction rate 

other than for totally saturated conditions where oxygen diffusion seems to 

dominate the reaction rate; and that the active reaction surface of the 

electrode must be dependent upon the amount of water present in the pores.   

 

The extremes (saturated and extremely dry) appear to be relatively well 

defined, however, on intermediate and more relevant moisture contents the 

information in the reviewed literature is scarce.  

  

 

2.3.4 Influence of the concrete properties on the cathodic reaction rate 
 

The concrete properties are important for the cathodic reaction rate by 

means of availability of oxygen at the electrodes and removal of hydroxide 

from the electrode.  Both these processes are assumed to be dominated by 

diffusion.   

 

Previously, diffusion has been discussed in terms of electrochemistry, i.e. 

how the species move in the diffusion layer surrounding the electrodes.  

The bulk concrete itself has different properties for transport of species and 

these are most likely related to the moisture conditions in concrete as much 

as the layout of the pore system.  
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The transport of gases, water or ionised aqueous solutions in concrete takes 

place through pore spaces in the cement paste matrix or in micro cracks.  A 

variety of different physical and/or chemical mechanisms may occur 

simultaneously.  Considering the variations in pore sizes, pore filling and 

temperature, it is likely that the transport of media through concrete is not 

dominated by a single mechanism according to [26].    

 

An experimental investigation of the transport characteristics of a given 

concrete is therefore limited to measured effective values.  It is impossible 

to elude secondary mechanisms occurring.  The flow of media must be 

considered as one single dominating mechanism in a model in order to 

interpret the obtained values.  Despite the fact that possibly a large part of 

the transport is due to coterminous transport processes.      

 

It is probable that the concrete properties are determining the transport 

conditions in concrete.  However, it has not been found any direct 

information on how the physical properties of concrete affect the cathodic 

reaction rate directly.  It is supposed that since the layout of the concrete 

pore system is very important for the transport mechanisms it is also very 

important for the availability of oxygen at the cathodic electrode as well as 

it is important for the removal of hydroxide ions from the cathodic 

electrode. 

 

The electrolytic contact between the anodic- and the cathodic electrode is 

vital for the overall reaction rate of the corrosion reaction as stated in 

Chapter 1.    
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Since the information available on the effect of concrete properties on the 

cathodic reaction especially it is referred to section 2.6 where these 

properties are discussed in terms of effect on electrical resistivity.  The 

same parameters that affect the electrical resistivity are assumed to have a 

reversed effect on the cathodic reaction rate. 
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2.4 Electrical resistivity of concrete 
 

 

The electrical resistivity is defined by Esbach and Souders [27] as the 

electrical resistance of a conductor of unit volume and constant cross 

section in which the current is continuously and uniformly distributed. 

 

It can be viewed more simply as the electrical resistance between two 

opposing faces of unit cube of material.  This is the volume resistivity, and 

if some current leaks along the surface of conductor, then a surface 

resistivity factor must be taken into account according to Harper [28].  The 

electrical resistivity, ρ, can be found by: 

 

 R A
L

ρ ⋅
=  (Equation 2.17) 

 

Where:  

 

 ρ electrical resistivity  [Ωm] 

R electrical resistance of the section [Ω] 

A area defined by the opposing electrodes [m2] 

L distance between the electrodes [m] 

 

The electrodes have to be identically sized. The distance between the 

electrodes, L, should ideally be as small as possible to ensure linear current 

distribution.  
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In Figure 2. 6 an illustration of a unit cube for measuring the electrical 

resistivity is given.  In a cube where all sides are equal (and 1), the 

measured R is equal to ρ. 

 

Figure 2. 6 A principal illustration of a unit cube for resistivity 

measurements 

 

The range of the electrical resistivity of a porous material such as concrete 

depends very much on its moisture state.  A very wet concrete may act as a 

semi – conductor (ρ ≈ 101 Ωm) while an oven dried concrete may act more 

or less as an insulator (ρ > 106 Ωm) according to Whiting and Nagi [29].  

The effect of moisture on the electrical resistivity will be discussed in 

section 2.6.    
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Concrete is a composite material, containing several components which 

electrical properties varies and the ideal theory of uniformly and 

continuously distributed current can not be used directly. 

 

 

2.4.1 Ionic mobility, ionic strength and the electrical resistivity of 
solutions 

 

Measurements of the electrical resistance of an electrolyte are performed 

by applying a voltage between two electrodes.  This voltage results in an 

electrical field, E; in the solution that causes forces to the ions in the 

solution.  The positive ions (cations) will migrate towards the negative 

electrode and the negative ions (anions) migrate towards the positive 

electrode.   The rate of the movement of ions (ionic migration rate) is 

proportional to the electrical field by [21]: 

 

 i i iv u z E= ⋅ ⋅  (Equation 2.18) 

 

Where:  

 

vi Ionic migration rate [m s-1] 

|zi| valence of ions [-] 

ui ionic mobility [m2 V-1 s-1] 

E strength of the electrical field [V m-1] 

 

The total current generated by the mass transport (the migration) is 

proportional to the strength of the field and the charge of the ion transport. 
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 i i iI F A E c u z= ⋅ ⋅ ⋅ ⋅ ⋅∑  (Equation 2.19) 

 

Where:  

 

I total current through the cross section [A] 

F Faradays constant (96 487) [A s mole-1] 

A cross sectional area [m2] 

E strength of the electrical field [V m-1] 

ci concentration of ions [mole m-3] 

|zi| valence of ions [-] 

ui ionic mobility [m2 V-1 s-1] 

 

The conductivity (i.e. the reciprocal of the electrical resistivity) of the 

solution will be: 

 

 1
i i iF c u zκ

ρ
⎛ ⎞

= = ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

∑  (Equation 2.20) 

 

 Where:  

κ electrical conductivity [Ω-1m-1] 

ρ electrical resistivity [Ωm] 

F Faradays constant (96 487) [A s mole-1] 

ci concentration of ions [mole m-3] 

|zi| valence of ions [-] 

ui ionic mobility [m2 V-1 s-1] 
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A relation between the diffusion coefficient and the ionic mobility can be 

found as: 

 

 
| |

i
i

i

RT uD
z F

⋅
=

⋅
 (Equation 2.21) 

 

Where:  

 

Di diffusion coefficient [m2 sec-1] 

R Gas constant 8.315 J/K mole 

T Temperature [K] 

F Faradays constant (96 487) [A s mole-1] 

|zi| valence of ions [-] 

ui ionic mobility [m2 V-1 s-1] 

 

 

To estimate the individual contributions of the various species and their 

concentrations to the overall electrical conductivity of the solutions appears 

to be of little practical value.  The electrical resistivity of pore solution 

normally is about 0.1 Ωm, while concrete resistivity seldom is less than    

20 Ωm.  Considering the big difference between the resistivity of the 

conductive solution and the composite as a whole, a small change in the 

electrolytic resistivity of the pore liquids is assumed to be of minor 

importance. 
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2.4.2 Concrete electrical resistivity theories 
 

 

A variety of theories and models have been developed to explain the 

electrical resistivity of concrete.  These models can be divided in two 

categories.   

 

1. Composite materials theories.  These theories attempt to predict 

resistivity as a function of the resistivity of each component of the 

composite and their volume and/or size factors. 

 

2. Empirical models. By fitting experimental results to simple 

equations, coefficients for particular materials can be established. 

 

 

Composite Materials Theories 

 

Maxwell [30] was one of the first to attempt to explain electrical properties 

of composite materials in the 19th century. Originally, his attempts were 

derived in terms of conductivity. The Maxwell relationship can be shown 

in terms of electrical resistivity as shown in Equation 2.27. 
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−−
=

+ +
 (Equation 2.22) 

Where:  

 ρm electrical resistivity of the matrix [Ωm] 

ρ electrical resistivity of the composite [Ωm] 

ρa electrical resistivity of the particles [Ωm] 

Va volume fraction of particles [-] 

 

Aggregate resistivities may vary greatly [31] due to water adsorption, 

however, most concrete specifications limit sources to generally hard, low-

adsorption aggregates.   

 

Most of these aggregates have resistivities larger than 103 Ωm, while the 

resistivity of the matrix is several orders of magnitude lower [32, 34, 35].   

For practical applications the aggregate resistivity can be considered as 

infinite.   
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If Va is expressed as 1-Vm, then the Maxwell relationship reduces to: 

 

 3
2

m
m

m

V
V

ρ ρ −
=  (Equation 2.23) 

 

Where:  

 

 ρm electrical resistivity of the matrix [Ωm] 

ρ electrical resistivity of the composite [Ωm] 

Vm volume fraction of the matrix [-] 

 

 

Maxwell assumed that the particles were spherical and that the fractional 

volume of aggregate is so small that there are no interactions among the 

flowlines of current around the particles.   
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Fricke [33] deduced a similar equation for uniform ellipsoidal particles (the 

particles are still assumed non-conductive): 

 

 ( )1 m
m

m

k V
k V

ρ ρ
+ −

=
⋅

 (Equation 2.24) 

 

Where:  

 

 ρm electrical resistivity of the matrix [Ωm] 

ρ electrical resistivity of the composite [Ωm] 

k shape factor for the aggregate particles [-] 

Vm volume fraction of the matrix [-] 

 

 

In Equation 2.18, Fricke introduced a shape factor, k, to describe the shape 

of the ellipsoids.  For spherical particles, k = 2, and for a particular sand 

investigated by Fricke, k = 1.4 was found. 

 

The resistivity of a composite consisting of non-conductive particles 

embedded in a conductive matrix may also be expresses in terms of an 

effective path, Le.  Since the current must travel a tortuous path because of 

obstructing particles, the effective path is longer than the dimension of the 

composite in the direction of the current [32]. 
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Noting that the cross-sectional area of the matrix in a unit-cube is 

numerically equal to Vm, the resistivity of the composite may be written 

according to Monfore [32]: 

 

 m e

m

L
V

ρρ =  (Equation 2.25) 

Where:  

 

 ρm electrical resistivity of the matrix [Ωm] 

ρ electrical resistivity of the composite [Ωm] 

Le effective path [m] 

Vm volume fraction of the matrix [-] 

 

 

Tortuosity, T, a term frequently used to describe the structure of rocks is 

related to the effective path, by Equation 2.31 [32]: 

 

 
2

eLT
L

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (Equation 2.26) 

Where:  

 

T tortuosity [-] 

Le effective path [m] 

L apparent path length [m] 
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L is the apparent path length,  i.e. the actual dimension of the composite in 

the direction of the current flow. 

 

Since the volume fraction of aggregates in concrete often exceeds 70% 

Maxwell’s assumption of no interaction in current field from aggregates 

clearly is not a valid assumption.   

 

Whittington et al [34] states that these theories would probably represent 

quite well the results for mortars since a mortar may be regarded as a 

single-size particle system in a conductive cement paste matrix. Monfore 

[32] did such experiments on mortars and found a fairly good agreement 

between his experimental results and the predictions from the models.   For 

concrete, however, these models probably would fail due to the presence of 

various particle sizes present in the conductive cement paste matrix.   
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Empirical models – Formation factor approach 

 

In studies of porous rock in oil-bearing reservoirs, Archie [36] found a 

relationship between the resistivity of the saturated rock and the resistivity 

of the fluid with which it was saturated.  This ratio is termed the formation 

factor, F, in the relation known as Archie’s law: 

 

 mo

w

RF
R

ϕ −= =  (Equation 2.27) 

 

Where:  

 

F Formation factor [-] 

Ro electrical resistivity of the porous rock 

when saturated with water 

[Ωm] 

Rw electrical resistivity of the water 

contained in the porous rock 

[Ωm] 

φ fractional volume of the water 

contained in the rock 

[-] 

m shape factor [-] 

 

This equation is purely empirical, and is not substantiated in any physical 

models.   
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Archie’s law were later generalised [37, 38]: 

 

 mF A ϕ−= ⋅  (Equation 2.28) 

 

where F and φ are as defined in Equation 2.32 and A is an additional 

dimensionless constant. 

 

Whittington et al. [34] applied Archie’s law for concrete, defining F as the 

ratio of the measured resistivity of the concrete to the resistivity of the 

cement paste and φ as the volume fraction of cement paste in the concrete.  

By performing experiments on moist cured samples of relatively high w/b 

ratios concretes (w/b 0.6 and 0.8) Whittington et al. [34] found the values 

of the constants to be A = 1.04 and m = 1.2 for concrete. 

 

In investigations by Jackson [38] and Morrely and Ford [39] the constant A 

was in most cases fairly constant and close to 1 while m varies with the 

particular mixture characteristics.   
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2.5 Relationship between corrosion rate of embedded 
 reinforcements and electrical resistivity of concrete 
 

 

The level of resistivity needed to prevent corrosion has been examined in 

various studies, with varying results.  Most studies confirm that a resistance 

of 50 Ωm or lower will very likely result in corrosion occurring according 

to Elkey and Sellevold [40].  The level of resistivity for adequate protection 

against corrosion is more clouded.  Several studies states that adequate 

protection is achieved at resistivity levels higher than 100 Ωm.  While 

others suggest values up to 600 Ωm.   

 

Berke et al. [41, 42] discovered two specimens with severe corrosion at 

resistivity levels of 430 Ωm and 730 Ωm, respectively.  To define a level of 

adequate protection against corrosion is not easy, and a wider range must 

be considered.  A suggestion for protection limit could be 1000 Ωm, but 

this has to be confirmed by a large statistical study according to Elkey and 

Sellevold [40]. 

 

The relationship between corrosion current and electrical resistance is 

given in Figure 2.8 after Cabrera et al. [43] 
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Figure 2. 7 Relation between corrosion current and resistance. After 

Cabrera et al. [43] 

 

Andrade and Alonso [1] presented the relationship between the corrosion 

rate and the electrical resistivity for both laboratory measurements on 

mortar specimens (Figure 2.9) and measurements performed on real 

concrete structures (Figure 2.10).  For both cases the results show a scatter, 

however, indicating a critical resistivity of about 1000 Ωm for corrosion 

confirming the above suggested protection limit. 
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Figure 2. 8 Dependence of Icorr on electrical resistivity of carbonated 

mortars fabricated with several cement types.  The scatter 

does not enable an accurate relationship.  After Andrade and 

Alonso [1]. 
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Figure 2. 9 Relationships found in real structures (confined sensors) 

between Icorr and the resistivity. After Andrade and Alonso 

[1]. 

 

Based on the results, Andrade and Alonso [1] characterised the risk of 

corrosion in respect to electrical resistivity.  
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Table 2. 1 Characterisation of the corrosion risk level at various ranges 

of electrical resistivity according to Andrade and Alonso [1].  

Resistivity is conversed from [kΩcm] to[Ωm]. 

Resistivity [Ωm] Risk levels 
 

> (1000 – 2000) 
The corrosion rate values will be very low even if the 

concrete is carbonated or chloride contaminated 

100 – 1000 Low to high corrosion rate 

< 100 Resistivity is not the controlling parameter for the 

corrosion rate 
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2.6 Factors influencing the electrical resistivity of concrete 
 

 

2.6.1 Influence of the concrete mix proportions on the electrical 
resistivity of concrete 

 

The electrical resistivity of concrete is related to the microstructure of the 

cement matrix, its pore structure, porosity and pore size distribution. It is 

also a function of the concentration of ions and their mobility in the pore 

solution [44, 45]. 

 

The cement chemistry, cement content, w/b-ratio and use of admixtures are 

factors which influence the microstructure of the cement matrix of concrete 

as well as the ionic strength of the pore water.  Any influence on these 

properties affects the electrical resistivity of the concrete. 

 

Although the resistivity of the concrete is mainly governed by the cement 

paste, changes in the aggregate type and amount influence the electrical 

resistivity [32]. 

 

Cement type 

 

It has been shown by several authors [32, 46, 47] that cement containing 

high amounts of tricalcium aluminate (C3A) generates higher resistivities 

than comparable cements with lower C3A content.   
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Monfore [32] attributed this to the absence of calcium hydroxide in the 

hydration products of C3A.   The difference is most profound at early ages 

due to the immediate formation of ettringite during hydration of C3A. 

When comparing high-alkali and low-alkali cements Monfore [32] further 

found that the alkali content did not appear to have any practical 

significance on the electrical resistivity of concrete. 

 

Cement content 

 

Any changes in the in the volume fraction of cement matrix will lead to a 

change in the electrical resistivity of concrete.  The resistivity is mainly 

influenced by the properties of the cement matrix, or the cement paste, as 

mentioned in the introduction of this section.  The cement content and the 

w/b ratio used in the concrete mix determine the volume fraction of the 

cement paste.  An increase in the cement content will lead to a decrease in 

electrical resistivity. 

 

Huges et al. [48] found by measuring the electrical resistivity on 12 

concrete mixes with various cement contents (300kgs/m3 – 400kgs/m3) that 

an increase in cement content decrease the electrical resistivity.  This 

decrease was almost 20% as cement content increased from 300kgs/m3 to 

400kgs/m3 for a concrete having a w/c of 0.5, and almost 25% for a 

concrete having a w/c of 0.55 by the same change in cement content. 

 

 

 

 



56 DR.ING THESIS BY JAN-MAGNUS ØSTVIK  
  

Water – cement (binder) ratio 

 

Water – cement ratio (or water – binder ratio) is one of the most important 

parameters controlling the performance of concrete.  It has a significant 

effect on the strength and durability characteristics of concrete. 

 

This parameter plays an important role for the microstructure of the cement 

paste and the ionic strength of the pore water solution.  Evidently, this 

parameter is decisive for the development of the electrical resistivity of 

concrete.  

 

Monfore [32] found that the resistivity increases as w/c – ratio decreases.  

The electrical resistivity of a cement paste having a w/c of 0.4 was about 

double that of a paste having a w/c of 0.6.  The same trend has been 

verified by several authors [48, 49]. 

 

The electrical resistivity of cement paste is very much lower than that of 

concrete made of the same paste.  It can be close to 1/5 of the companion 

concrete resistivity in some cases according to Whiting and Nagi [29]. 
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Aggregates 

 

It was stated in section 2.4.2 that the electrical resistivity of aggregate is 

very much higher than that of the cement paste.  The electrical resistivity of 

aggregates depends on their water absorption abilities. Monfore [32] 

measured the electrical resistivities of several aggregates typically used for 

concrete.  He found a correlation between water absorption and electrical 

resistivity.  Sandstone and limestone that may absorb close to 10% by 

weight have quite low resistivities while marble and especially granite 

absorb little water and therefore sustain very high resistivities. 

 

There is no specific study on the effect of type of aggregate on the 

electrical resistivity of concrete.  One would expect that the resistivity of a 

concrete made with limestone aggregate would be less than that of a 

concrete made with granite aggregate, all other things being equal.  

 

The amount of aggregate in a concrete mix is assumed to affect the 

electrical resistivity.  Hughes et al. [48] measured the electrical resistivity 

of concretes containing a range of aggregate contents.   They expressed the 

aggregate content as a multiple of the cement content.  When the aggregate 

content was increased from 2.92 to 4.36 the resistivity increased from 48.6 

to 57.3 Ωm, an increase of about 18%.  
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Silica fume additive 

 

Silica fume is a by-product of the reduction of high-purity quarts with coal 

in electric furnaces in the production of silicon and ferrosilicon alloys.  

Silica fume consists of very fine vitreous particles with very high surface 

area compared to portland cement (approximately 100 times smaller). 

 

Because of its very fine particles and pozzolanic characteristics, silica fume 

creates a very fine pore structure and a low ionic concentration in the pore 

solution [41].  This leads to a significant increase in electrical resistivity.  

 

The influence of silica fume on the electrical resistivity increases by 

decreasing w/c ratios.  Berke et al. [42] found an increase in resistivity of 

more than an order of magnitude by adding 15% silica fume (by mass of 

cement) compared to a similar mixture without silica fume additive (1400 

Ωm compared to 130 Ωm). The mixture had a w/c ratio of 0.38.   

 

 

2.6.2 Influence of the curing and construction practices on the 
electrical resistivity of concrete 

 

The effects of curing regime and construction practices are not directly 

found in the literature.  The changes in electrical resistivity relates to other 

properties more dominant.  The pure effects from the casting and curing are 

not so easily extracted since the effect of the concrete’s microstructure, 

moisture content and ambient temperature are more dominant with respect 

to the electrical resistivity.  The effects of environmental aspects will be 

thoroughly discussed in the following.  
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2.6.3 Influence of moisture on the electrical resistivity of concrete 
 

Moisture content is the most dominant factor for the electrical resistivity of 

concrete.  Since almost all of the electrical current is distributed in the 

aqueous phase in concrete, the amount of water available for this 

distribution is highly dominant.  When some of this pore water evaporates 

(dries out) there is less water for distributing the current flow, hence, the 

electrical resistivity increases.   

 

It has been stated in the introduction of Chapter 2.4 that oven dried 

concrete acts as an insulator (ρ > 106 Ωm) while saturated concrete acts as a 

semi – conductor (ρ ≈ 101 Ωm).  This large difference in electrical 

resistivity has been verified by several authors [29, 40-44]. 

 

Hunkeler [45] indicates that the conductivity of concrete drops to 

practically zero at a relative humidity of approximately 40%.   The binder 

phase in concrete still contains significant amounts of water at this RH.  

However, the water in the pores is essentially non-conductive.  This effect 

is most likely due to surface forces that demobilises the ions dissolved in 

the pore water.  

 

Hammond and Robson [47] measured the electrical resistivity of an oven-

dried concrete to 400 MΩm.  This large electrical resistivity is well in the 

range of insulators.  This confirms the theory of that the conduction of 

current passes in the aqueous phase.  Still this is an extreme case in which 

no conclusions can be made up on.  
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Gjørv, Vennesland and El-Busiady [49] studied the effect of moisture 

content on concrete specimens and related the moisture content to degree of 

water saturation. They studied water saturation from 40% to 100% and 

found the resistivities to change from 30 – 60 Ωm at 100% saturation to 1 – 

60 kΩm at 40% saturation.  The difference between low and high w/c ratios 

in electrical resistivity by drying was most pronounced for the lower levels 

of saturation. 

 

An extraction of their results is given in Figure 2. 10. 
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Figure 2. 10 Effect of water-saturation on electrical resistivity of concrete.  

Extracted from Gjørv et al. [49]. 

 

Elkey and Sellevold [40] investigated the effect of moisture on the 

electrical resistivity.  They reported a dramatic increase in resistivity in the 

range of  40 – 60% saturation. They suggested that at this point the pore 
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system begins to lose continuity.  This results in a more substantial change 

in available electrical flowpaths.  

 

Sellevold, Larsen and Blankvoll [58] studied the electrical resistivity of 

samples taken from a post tensioned concrete bridge (Gimsøystraumen 

Bridge, balanced cantilevered box construction) after 14 years of service in 

severe marine climate.  The samples were initially water saturated, then 

dried to the desired degrees of saturation.  The electrical resistivity was 

determined as a function of degree of capillary saturation 

(70%<DCS<100%).   The resistivities ranged from 100 Ωm at 100% 

saturation to 500 Ωm at 70% saturation.  The in-situ degree of saturation 

was in the range of 80 – 90% which would correspond to concrete 

resistivities of 250 – 150 Ωm.  
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Figure 2. 11 Influence of moisture content on electrical resistance of 

Portland Cement Concretes, after Woelfl and Lauer [59] 

 

Woelfl and Lauer [59] investigated the influence of moisture content on the 

electrical resistance for concretes of various w/c ratios, additives and 

entrained air contents.  Their results are shown in Figure 2. 11. 
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2.6.4 Influence of temperature on the electrical resistivity of concrete 
 

Like all materials the electrical resistivity of concrete is affected by 

temperature.  This phenomenon is complicated by the change in the pore 

water chemistry that occurs along with change in temperature.  According 

to McNeill [60] the temperature dependency is almost entirely dependent 

upon the behaviour of the electrolyte (pore water in concrete).  At higher 

temperatures, more ions will dissolve into the pore water, and then 

precipitate as the solution cools.  

 

As temperature increases, the viscosity of the fluid decreases, increasing 

the mobility of the conducting ions. This leads to a decrease in electrical 

resistivity of the porous material.  

 

The fundamental variation of phenomena such as resistivity by temperature 

can be expressed by the Hinrichson-Rasch Law [61]: 

 

 2 1

1 1

2 1

A
T TR R e

⎛ ⎞
−⎜ ⎟

⎝= ⋅ ⎠  (Equation 2.29) 

Where:  

R1 electrical resistivity at temperature T1 [Ωm] 

R2 electrical resistivity at temperature T2 [Ωm] 

T1 temperature  [K] 

T2 temperature  [K] 

A activation energy constant [K] 
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Figure 2. 12 shows a composite plot of data collected by Woelfl and Lauer 

[59] and data from Monfore [32] superimposed on a curve developed by 

Spencer [62]. This shows the multiplying factor needed to change a 

resistance taken at other temperatures to that measured at 70°F (21.1°C). 

The conformity of these independent studies suggests that the temperature 

phenomenon is independent of other concrete aspects such as porosity, 

cement content, w/b ratio etc.  

 

Figure 2. 12 Spencer’s temperature reduction curve, after Woelfl and 

Lauer [57] 

 

 

Hope and Ip [63] investigated the influence of temperature on resistivities 

of concretes across a range of w/c ratios.  The concretes were cured at 70°F 

(21.1°C) for 54 days at 100% RH, and then placed over a salt solution at 

75% RH for additional 14 days.  The concretes were exposed to a series of 

different temperatures and the resistivities were measured. 
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Figure 2. 13 Influence of temperature on electrical resistivity of concrete 

across a range of w/c ratios, after Hope and Ip [63]. 

 

Figure 2. 13 shows the results Hope et al. found.  These results confirm the 

findings of Woelfl and Lauer [59] since the lines representing the mixes are 

more or less parallel.  The data correspond to the Hinrichson-Rasch Law 

with an activation energy constant of approximately 2900 K for all mixes.  

 

Monfore [32] found this constant for cement pastes to 2200 K while Elkey 

and Sellevold [40] note that the activation energy constant can vary from 

2000 – 5000 K in some cases.  This represents a temperature sensitivity of  

3 – 5% per °C at 21°C which varies by moisture content.  Decreased degree 

of saturation leads to an increased temperature sensitivity.   This creates a 

second order problem if both moisture content and temperature is varying. 
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Castellote, Andrade and Alonso [64] standardised the electrical resistivity 

of mortar and concrete specimens at various temperatures to an equivalent 

resistivity at 25°C by the equation: 

 

 0 T 0ρ ρ α ρ= + ⋅ ∆ ⋅  (Equation 2.30) 

 

Where:  

 

ρ electrical resistivity at temperature T [Ωm] 

ρ0 electrical resistivity at a temperature of 

reference T0 (normally 25°C) 

[Ωm] 

α coefficient of temperature for the 

material 

[-] 

∆T temperature difference (T0 - T) [K] 
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The coefficient of temperature for the material was characterised by the 

equation: 

 

  cement paste dosage Wg Fα α= + ⋅  (Equation 2.31) 

 

Where:  

 

αcement paste coefficient of temperature, without 

aggregates in the mix 

[-] 

αdosage coefficient of temperature for the tested 

dosage 

[-] 

Wg (1-Ccem/S) [-] 

Ccem cement in the dosage [kg/m3] 

S total amount of solids in the dosage: 

(cement+additions+aggeregates) 

[kg/m3] 

F constant [-] 

 

The values of the constant, F were determined numerically, and the 

resulting two expressions for standardisation were: 

 

In the case, T<25°C: 
6 2

0 02 (1 0.664 0.825 ) ( ) 0E T T Wg Tρ ρ− ⋅ ∆ ⋅ + + ⋅ ∆ − ⋅ ⋅ ∆ ⋅ − =ρ

ρ

  (Equation 2.32) 

 

In the case, T>25°C: 
0 2

0 05 (1 0.0564 0.064 ) ( ) 0E T T Wg Tρ ρ− ⋅ ∆ ⋅ + + ⋅ ∆ − ⋅ ⋅ ∆ ⋅ − =   (Equation 2.33) 
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2.6.5 Measurement techniques and Testing methods 
 

There are many aspects around measurements of electrical resistivity that 

need to be concerned when evaluating results.  The electrical apparatus and 

the circuitry are very important factors. For materials such as concrete 

interaction of the current loading ions occurs at the interface between 

electrode and electrolyte.  When DC measurements are used a polarisation 

of the electrochemical double layer occurs due to these interactions.  This 

leads to a false reading of the current response from the potential deviation. 

In addition a net transport of ions (migration) occurs due to the one-

directional electrical field. 

  

The arrangement and contact media used for the electrodes are important 

factors to consider.   If the contact between the concrete and the electrodes 

is improperly done, a transition resistance is introduced in the system.  This 

is often very hard to separate out, and may lead to erroneous results.  

 

A wide variety of specimen types, electrode arrangements and testing 

methods have been used in the various studies of the electrical resistivity of 

concrete.  Elkey and Sellevold [40] summarised a number of these 

investigations and sorted the parameters (Table 2.2). In the following a 

brief discussion of the main parameters is given. 
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Table 2. 2 Summary of laboratory test methods for electrical resistivity of 

concrete, based on Elkey and Sellevold [40] with additions. 

Study Voltage type Frequency Specimen 
description 

Electrode 
type 

Method of 
contact 

Andrade 
and Alonso 
1995 [1] 

Galvanostatic 
Pulse 

Not available On site,  
Cylinders in 
Lab. 

Ring disc 
(stainless 
steel) 

Wet sponge 

Monfore, 
1968 [32] 

DC 4-10 V 
AC 2-8 V 

0.1-10 kHz Cubes (1” 
and 4”) 

Brass plates 
(external) 

Stiff 
graphite gel 

Hammond 
& Robson, 
1955 
[47] 

DC 55-3kV 
AC  
 

0.002-25 kHz Cubes (4”) 
Prisms 
(4x4x1”) 
 

Brass plates 
(external) 
 

Stiff 
graphite gel 

Hughes, 
1985 
[48] 

DC 4-8 V 
AC 10V 
 

1 kHz Cubes (150 
mm) 
 

Brass plates 
(external) 

Fluid 
cement-
paste  
(w/c = 0.5) 

Woelfl and 
Lauer, 1979 
[59] 

AC 6 V 
 

60 Hz Prisms 
(1x2x6”) 
 

slim rods 
(material 
N/A) 

Cast in 
 

Hauck, 
1993 
[62] 

AC 
 

Not available Cylinders 
(Ø100 mm x 
51 mm) 

iron mesh 
(external) 
 

Electrolytic 
solution 

Hope, 1985 
[65] 

AC 1 kHz Prisms 
(25x25x100 
mm) 

Brass or 
steel 
rods 

Cast in 
 

Bracs, 1970 
[66] 

Not available Not available Cubes (6”) Steel wire Cast In 
 

Cabrera, 
1994 [43] 

AC 10V 1 kHz Cubes (100 
mm) 
 

Brass plates 
(external) 

Fluid 
cement 
paste 

Schissl, 
1993 
[67] 

AC 120 Hz Not available Multi-ring 
electrode 

Cast in 

Hansson, 
1983 [68] 
 

DC 3-9 V 
 

 Prisms 
(90x70x50 
mm) 

Perforated 
steel plates 
(30x30mm) 

Cast in 
 

Bhargava 
and 
Rhenstrom, 
1978 [69] 

AC 0.5-1.5 V 
 

0.1-50 kHz 
 

Prisms 
(40x40x160 
mm) 
 

Hardened 
Cement 
paste w/Pt 
black 

Cast in 
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Voltage and frequency 

 

Measurements of the electrical resistivity of concrete have been performed 

using both direct current (DC) and alternating current (AC) at various 

frequencies.  As initially mentioned application of a DC current causes a 

back electromotive force (back EMF), which alters the resistance readings.  

Migration will also occur due to this continuous electrical field, thereby 

altering the chemical composition of the electrolyte locally.  

 

Most authors use AC current based techniques to eliminate the difficulties 

obtained by the DC current based ones.  A variety of frequencies is found 

in the literature, ranging from 2Hz [47] to 50 kHz [69].  Bhargava and 

Rhenstrom [69] found by applying different voltages and frequencies that 

below 1 kHz some difference occurred between the various amplitudes 

(0.5, 1 and 1.5 V).  On higher frequencies no such difference was found.   

 

It is generally accepted that a measurement frequency of 1 kHz is 

appropriate for measuring the electrical resistance through a concrete 

volume.  

 

 

Specimen size and shape 

 

In terms of electrical resistivity a term “the bigger is better” would be 

appropriate.  In a large sample inhomogeneities would play a lesser role for 

the measurements representing a large concrete mass.  However, it is 

practically difficult and time consuming to condition such large specimens.  
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In Table 2.1 there are large variations on the specimen sizes and shapes.  

No conclusion on geometry can be given; it depends on the aims and 

objectives for the individual projects.  

  

 

Electrode type and arrangement 

 

The type and arrangement of electrodes determines the measurement 

quality and the reliability of the resistivity calculations.  Face to face plate 

(or mesh) electrodes of intimate contact (or embedded) with the concrete 

would ideally give an excellent result due to a well defined concrete 

volume measured upon. While a rod or a point electrode would yield 

difficulties in calculating the electrical resistivity since the concrete volume 

is more uncertain.   

Normally, metal electrodes are used for resistivity measurements.   Either 

brass or steel plate electrodes applied on the surface of the specimen, or 

mesh electrodes embedded in the concrete while casting.  Internal 

electrodes have the advantage of a consistent contact zone, while external 

electrodes may be affected by the amount of force applied to ensure 

appropriate contact.  Elkey and Sellevold [40] noticed a decrease in 

resistivity when a greater force was applied to ensure contact.  Their 

observation indicates that the contact zones for external electrodes less 

consistent than for internal electrodes. 
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2.7 Concluding remarks and starting point for the 
experimental work 

 

 

The literature review given in the previous sections has shown that the 

cathodic reaction rate and the electrical resistivity depend on many 

parameters, especially on moisture content of the concrete and the 

temperature.  For both subjects the knowledge is high, but very little 

information on low temperatures was found in the literature.   

 

The effect of freezing temperatures on the concrete system is yet uncertain.  

Furthermore the concrete is a porous system which may allow water 

unfrozen at very low temperatures.  This may allow corrosion to occur in 

the low temperature range.   

 

Motivated in the above and the information obtained by the literature 

review, an experimental programme was developed.  Details on the 

experimental programme are outlined in the following chapter. 
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3 
 

EXPERIMENTAL PROGRAMME 
 

 

This chapter gives an overview of the experimental programme and details 

on specimen design, sample preparation, mix proportion and test methods.   

 

 

 

3.1 Introduction 
 

The experimental programme consists of two separate parts: 

 

• Cathodic reaction rate – temperature dependence (CRR) 

 

• Electrical resistivity – temperature dependence (ER) 

 

In the first part the aim was to simulate a corrosion process by polarising an 

embedded black steel electrode system in concrete, and monitor the effect 

of temperature on the resulting current. This part is referred to as “CRR” in 

the following.  Concrete samples with a 3-electrode system have been 

exposed to temperatures in the range from -40 °C up to +40 °C under 

constant polarisation of -0.6V/MMO.   

 

In the second part measurements of the electrical resistance were 

performed on concrete slices with varying moisture contents and curing 

conditions.  This part is named “ER” in the following. The measurements 



 EXPERIMENTAL PROGRAMME 75 

have been performed by electrochemical impedance spectroscopy, positive 

feedback measurements and potential square pulse measurements.  All 

measurements were performed at four constant temperatures between      

+20 °C and -28 °C.  The effect of concrete composition, moisture state and 

curing conditions were investigated. 

 

 

3.1.1 Choice of concrete qualities, curing and handling 
 

Since many of the Norwegian concrete structures suffering from 

reinforcement corrosion were built in the nineteen seventies and early 

nineteen eighties it was decided to test one concrete quality based on know-

how from that time, and to compare this to a modern high quality concrete.  

 

The concrete qualities were both cast using the same cement type HSOPC 

(CEM I 52.5 LA).  This cement type was not available in the seventies, 

however, to minimise the amount of variables this cement was chosen for 

both concrete qualities as a compromise.    

 

The aggregate was of similar origin for both concretes.  The main variables 

between the concretes were:  water – binder ratio, cement content, silica 

fume addition.  The low concrete quality was balanced for the low cement 

content by adding a finer sand fraction. 

 

Curing of the specimens were chosen to water curing (immersed in water) 

and sealed curing (self-desiccation).  It is common knowledge that bridge 

concretes due to often large dimensions of the structures will have curing 
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conditions somewhere between water-curing and self-desiccation.  The 

outer layer of concrete will have sufficient supply of water to almost be 

considered as water cured while the concrete within this scale will self-

desiccate.  

 

Handling of the specimens was chosen as a combination of reasons.   

 

• The sealing was applied to keep controlled moisture contents during 

testing and storage in both parts of the experimental programme. 

 

• The airtight sealing was applied to minimise oxygen supply from the 

atmosphere (inside the chamber) in the CRR – experiments. 

 

• Drying of the specimens at 40°C was chosen to have “extremely” 

dry specimens to widen the moisture range in the ER – experiments. 

 

• Re-immersion of the specimens in the ER – experiments was chosen 

to optimise conditions for ice formation (e.g. high pore filling.) 
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3.1.2 Choice of temperature range 
 

The aim was to simulate realistic temperatures for the artic climate in the 

range of -40°C and +40°C.  In the planning phase of the temperature 

chamber it was evaluated to go beyond -40°C, but this idea was rejected 

due to cost issues.  The temperature range was chosen to:  

-40°C ≤ T ≤ 40°C.  This temperature range was used for the CRR – 

experiments. 

 

In the ER – experiments the temperature range was determined by the 

capacity of the refrigerator and freezer available at IETcc in Madrid where 

large parts of the ER – experiments were performed.  The range was 

chosen to four specific temperatures: 20°C, 2°C, -14°C and -28°C.   

 

 

3.1.3 Choice of methodology in the CRR – experiments. 
 

 

A direct investigation of the corrosion rate at different temperatures is 

practically complicated, especially at lower temperatures.   

 

The introduction of a corrosive environment for the embedded steel by 

appointing chlorides to the mix and/or carbonate the samples introduces 

possible difficulties for interpretation, in addition to the practical 

difficulties and the time consumption.  Therefore it was chosen to 

investigate the temperature effect on the cathodic reaction rate by 

polarisation. 
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3.2 Materials 
 

Two concrete mixes have been tested in both parts of the experimental 

programme.  Both compositions are based on concrete mixes used in the 

Norwegian building industry today.  The mixes took into account the 

specimen dimensions; hence, the maximum aggregate size was set to 

11mm.  This small aggregate size resulted in a higher content of small 

particles needed.  The behaviour was something between concrete and 

mortar.    

 

The concrete compositions are based on the NPRA standard guidelines for 

concrete composition. 

 

3.2.1 High quality concrete mix – SV 30. 
 

The water-binder ratio for this concrete was 0.40.  A low alkali HSOPC 

(CEM I 52.5 LA) was used.  The cement content was 444.1 kgs/m3. 8 % 

silica fume (of cement weight) was added in the mix. 

 

The mix proportions are given in Table 3.1 
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Table 3. 1 Specification of the mix proportions of the w/b 0.4 concrete 

Materials [kg/m3] 

Cement: HSOPC, CEM I 52.5 LA (Norcem Anlegg) 444,1 

Micro silica (Elkem) 35,5 

Free water 182,3 

Adsorbed water 11,3 

Aggregate fraction 0-8 mm  (Årdal natural)  993,2 

Aggregate fraction 8-11mm (Årdal) 662,1 

Super plasticizer (Sikament 92)  4,44 

Air entrainment (Sika AER) 0,13 

Proportioned Concrete density (kgs/m3) 2328 

 

 

3.2.2 Low quality concrete mix – SV 50. 
  

The water-binder ratio for this concrete was 0.60.  The same cement type as 

for the high quality concrete mix was used.  The cement content was  

340.8 kg/m3. No silica fume was added in this mix.  

 

The mix proportions are given in Table 3.2 
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Table 3. 2 Specification of the mix proportions of the w/b 0.6 mixes 

Materials [kg/m3] 

Cement: HSOPC, CEM I 52.5 LA (Norcem Anlegg) 340,8 

Free water 190,9 

Adsorbed water 12,0 

Aggregate fraction 0-8 mm  (Årdal natural)  704,8 

Aggregate fraction 0-2 mm (Årdal natural washed) 352,4 

Aggregate fraction 8-11mm (Årdal) 704,8 

Super plasticizer (Sikament 92)  0,68 

Air entrainment (Sika AER) 0,02 

Proportioned Concrete density (kgs/m3) 2306 

 

 

 

3.2.3 Electrodes 
 

The steel electrodes used in the “CRR” research are normal quality ribbed 

carbon steel reinforcement (Tempcore, B500C by Fundia).  The diameter 

of the reinforcing steel was 8 mm.  The area of the exposed part of the 

electrodes was calculated without including the area of the ribs. 

 

The electrodes used in the “ER” research were stainless steel and acid 

resistant woven mesh electrodes.  The steel quality was AISI 316 (Stainless 

steel fabric No. 8 by Burmeister).  The diameter of the tread was 0.89 mm 

and with symmetrical mask width at 2.29 mm.  The surface area of the 

electrode was considered to be equal to the area covered by the mesh. A 

principal drawing of the mat geometry is given in Figure 3.1. 
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Figure 3. 1 Drawing of the mesh electrode used in the Electrical 

resistivity - Temperature experiments. (Illustration from the 

Burmeister catalogue) 

 

 

As reference electrode an Activated Titanium Mesh (ATM) electrode was 

used.  The reference electrodes were manufactured at NTNU.   

 

The activated titanium mesh (LIDA®, 20mm wide and 0.6mm thick) was 

supplied in desired lengths.  

 

The titanium mesh was cut in lengths of 40 mm and clamped around a 

copper wire.  The cable used was a double isolated Ø2.5 mm copper wire 

with XLPE insulation. The copper part was stripped in lengths of 5 mm and 

the inner insulation for additional 5 mm.  The titanium copper connection 

was subsequently sealed with glued heat-shrinkable tubing.  The exposed 

area of the reference electrodes was approximately 2 cm2.   
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A schematic picture showing the steps in production of the electrode is 

given in Figure 3.2. 

 

Figure 3. 2 A schematic picture showing the processes in making the    

Activated Titanium Mesh – reference electrode 
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3.3 Specimens 
 

3.3.1 CRR specimens  
 

The CRR – specimen with dimensions: 60x60x150 mm is shown in     

Figure 3.3. The electrodes were arranged in a 3-electrode system.  The 

working electrode (WE) and counter electrode (CE) were black steel rebar 

electrodes, sealed with glued heat-shrinkable tubing in both ends.  The 

average exposed steel area for both rebar electrodes was 17.6 cm2.  To be 

able to use banana plugs on the wires a 4 mm hole was drilled in both black 

steel electrodes.  The third electrode (RE) is the ATM reference electrode 

described in section 3.2.3. 

T-couple

12
12

64

150

WE

CE

Ø8

Ø8

RE

 

Figure 3. 3  Drawing of the CRR – specimen (dimensions in mm) 
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Figure 3.4 shows the electrode set – up.  The reinforcement electrodes and 

the reference electrode are shown before they were cast.  The reference 

electrode is placed close to the right of the working electrode (WE), and the 

counter electrode (CE) diagonally to the right on the picture.  The reference 

electrode (RE) was placed as close to the working electrode as practically 

possible and still minimise the risk of failure due to short cutting of the 

circuit. 

 

Figure 3. 4 Picture of the electrode set-up in the mould before casting.  

The WE is the closest to the reference electrode, CE at the 

right. 
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3.3.2 ER specimens 
 

The ER – specimens were of dimensions: 100x100x28 mm.  A principal 

drawing of the specimen is given in Figure 3.5.  The samples held 2 

parallel stainless steel mesh electrodes.  To ensure a homogeneous 

aggregate content in the specimens, 100x100x1500 mm long concrete 

beams were cast, and then the specimens were sawed to the defined 

thickness of 28 mm from these.  The electrodes have a concrete cover of  

10 mm.   

 

To ensure external electrical contact one stainless steel pin was soldered to 

each electrode for each specimen.  The connection pins were subsequently 

sealed with heat-shrinkable tubing only stripped 2 – 4 mm in one end for 

connection by alligator clips. 

 

10 10
28100

10
0

stainless steel mesh

 

Figure 3. 5 Drawing of the ER – specimen (dimensions in mm) 
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3.4 Layout of the experimental programme 
 

 

The test programme was performed in two parts.  Each part includes two 

concrete mixes and a number of variants of curing regimes and moisture 

conditioning.  The layout of the experiments and a detailed description of 

the different tests performed are described in this section. 

 

 

3.4.1 Identification of the specimens 
 

A descriptive identification system for all the specimens in both parts of the 

experimental programme was developed.  Each specimen was given an 

identification which reflected the test part, run number, concrete quality 

(represented by w/b – ratio), curing condition and further handling along 

with a number describing its number in the series.  

 

CRR specimens 

 

In Table 3.3 an overview of the specimens tested in the CRR – experiments 

is given followed by one example of the identification for one of the  

specimens. 
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Table 3. 3 Table showing the identification system for the CRR – 

experiments. 

Experiment
Run
Concrete
Curing
Sealing U S U S U S U S U S U S
Specimen no 1-3 1-3 1-3 1-3 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5

W S W SW S W S

C
1 2

0.4 0.6 0.4 0.6

Specimen id:
C1-0.4-S-S-1

 
The curing conditions are termed W and S; W is water cured and S is self – 

desiccated.  The sealing is termed U and S and reflects to whether the 

sample was sealed during testing or not; U is unsealed and S is sealed.  

 

In order to illustrate the identification system an example is given: 

 

The identification: C1-0.4-S-S-1 denotes that this specimen is tested in the 

CRR section, Run 1.  The specimen was cast from the high quality concrete 

with water binder ratio 0.4 and cured in sealed conditions (self – 

desiccated) and sealed during testing.  The number in the end reflects that it 

was number 1 of (in this case) 3 specimens.  
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ER specimens 

 

The ER – experiments involved many runs and a quite extensive number of 

specimens.  For each of these runs t multiple specimens were tested, and 

for practical reasons it is not possible to show all tested specimens in the 

same table. 

 

As an example, Table 3.4 gives an overview of the specimens tested in    

Run 1 of the ER – experiments. 

 

Table 3. 4 Table showing the identification system for the                        

ER – experiments, Run 1. 

Experiment
Run
Concrete
Curing
Test condition S D S D S D S D
Specimen no 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3

0.4 0.6
1

W S W S

R

Specimen id:
R1-0.4-W-S-1

 
 

In order to illustrate the identification system an example is given: 

 

The identification: R1-0.4-W-S-1 gives that this specimen was tested in   

Run 1 of the ER – experiments.  As for the CRR – experiments the number 

0.4 is given in respect to w/b – ratio, hence the concrete quality.  The 
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sample was water cured (W) and sealed without further conditioning (S). 

And that it was number 1 in a series of 3 parallel samples.  

 

The ER – experiments involves several conditionings; S is sealed without 

further conditioning, D is dried for 1 week at 40 °C, Sr and Dr are the S and 

D specimens after being resaturated by water suction (immersed in water).  

All specimens were sealed during testing. A further description of each run 

will be given in a later paragraph in this chapter. 

 

In order to summarise a principal schematic of the structure of the 

denomination of the specimens is presented in Figure 3.6. 
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Figure 3. 6 Schematic summary of the identification for the specimens 
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3.4.2 Flowchart for the CRR – experiments 
 

The CRR – experiments can be summarised in a flowchart. This is 

presented in Table 3.5. 

 

Table 3. 5 Flowchart table for the CRR – experiments 

Experiment
Run
Concrete
Curing
Sealing U S U S U S U S U S U S
Number of speciemens 3 3 3 3 5 5 5 5 5 5 5 5
Freezing [oC]
Thawing [oC]
Heating [oC]
Cooling [oC]
Polarisation test
Polarisation test
Moisture control

W S

0oC - +40oC
40oC - 0oC

W S

0oC - (-40oC)
-40oC - 0oC

W S

not tested
not tested

-40oC - 0oC
0oC - (-40oC)

W S

C
1 2

0.4 0.6 0.4 0.6

not tested Total water content

Scanning intervals 15min and 24h not tested
20oC, 0oC, -20oC not tested
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3.4.3 Flowchart for the ER – experiments 
 

The ER – experiments were performed in 4 runs.  The experimental part is 

summarised in Table 3.6. 

 

Table 3. 6 Flowchart table for the ER – experiments 

Experiment
Run
Concrete
Curing
Test condition S D S D S D S D S D S D S D S D
No of specimens 3 3 3 3 3 3 3 3 2 1 1 1 2 1 1 1
Freezing [oC]
Thawing [oC]
Weight control
Moisture control

Experiment
Run
Concrete
Curing
Test condition S D S D S D S D Sr Dr Sr Dr Sr Dr Sr Dr
No of specimens 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Freezing [oC]
Thawing [oC]
Weight control
Moisture control

20oC, 2oC, -14oC,  -28oC 20oC, 2oC, -14oC,  -28oC

0.4 0.6 0.4
1 2

0.6
W S W SW S W S

3 4
R

-28oC, -14oC, 2oC, 20oC -28oC, -14oC, 2oC, 20oC

Total water content not tested
Before and after Before and after

0.4 0.6 0.4 0.6
S W SW S W S

R

Total water content Total water content
At all temperatures At all temperatures

-28oC, -14oC, 2oC, 20oC -28oC, -14oC, 2oC, 20oC
20oC, 2oC, -14oC,  -28oC 20oC, 2oC, -14oC,  -28oC

W
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3.5 Curing and preparation of specimens 
 

 

Well cured samples (more than 80 days of curing) were used for all 

investigations.   

 

The sealing used for some of the samples was an airtight plastic coated 

aluminium foil.  The supplier of this type of foil was the food manufacturer 

IDUN.  

 

 

3.5.1 Preparation and curing of CRR – specimens  
 

The samples for the CRR – investigations were cast in tailored moulds. The 

specimens for Run 1 and Run 2 were cast from individual batches at 

different times.  The samples were cured over night in the moulds covered 

with plastic after casting at a temperature of 20°C ± 1°C.  After 

demoulding each specimen was either sealed to self-desiccate or put in a 

water container for water curing.  

 

In the following it is given a description of the curing and conditioning 

which were performed for the concrete samples in this experimental 

section. 
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Water cured – Unsealed specimens (W-U specimens) 

The specimens were water cured (at 20°C ± 1°C) after demoulding until the 

tests were initiated.  The specimens were only surface dried with a cloth 

prior to the experiment. This curing and preparation was performed for 

both concrete compositions and used in both Run 1 and Run 2. 

 

 

Water cured – Sealed specimens (W-S specimens) 

The specimens were water cured as the W-U specimens. Then the 

specimens were sealed before they were placed in the temperature 

chamber.  This conditioning was performed for both concrete compositions 

but was only tested in Run 2. 

 

Self-desiccated – Unsealed specimens (S-U specimens) 

The specimens were cured in isolated conditions after demoulding (self 

desiccated) in a temperate room (at 20°C ± 0.5°C, 80% RH) until start up 

of the experiments.  The sealing was removed before they were placed in 

the temperature chamber.  This conditioning was performed for both 

concrete compositions but was only tested in Run 2. 

 

Self-desiccated – Sealed specimens (S-S specimens) 

The specimens were cured as the S-U specimens. The specimens were kept 

sealed during the experiments also. This curing and preparation was 

performed for both concrete compositions and used in both Run 1 and     

Run 2.

 

 



94 DR.ING THESIS BY JAN-MAGNUS ØSTVIK  
  

3.5.2 Preparation and curing of ER – specimens  
 

 

The specimens were cast as 1500 mm long beams. Two beams were cast 

for each concrete at the same point in time.    

 

The beams were cured for 2 days in the moulds, covered with plastic to 

minimise the moist loss at a temperature of 20°C ± 1°C. Then the sawing of 

the specimens to the specified thickness of 28mm took place.  After sawing 

each specimen was either sealed to self-desiccate or put in a water 

container for water curing after demoulding.  The curing conditions were 

equal to that of the specimens for the CRR – specimens. 

 

All specimens were after about 50 days of curing sealed with the same type 

of plastic coated aluminium foil used in the CRR – experiments and sent to 

Madrid for further conditioning and testing.    

 

It is important to note that the samples tested in Run 4 were a resaturated 

version of the samples tested in Run 3. These specimens were saturated for 

8 weeks to obtain as stable conditions as possible within the frame of this 

work.  The samples tested in Run 4 were given a unique identification.  

 

In the following a description of the curing and conditioning for the 

concrete samples in this experimental section is given.   
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Water cured – Sealed specimens (W-S specimens) 

The specimens were cured in water (at 20°C ± 1°C) for 50 days after 

sawing, sealed and sent to Madrid.    In Madrid the sealing was removed 

and the samples were stored in water for 1 week in water (at 20°C ± 2°C). 

Then the samples were taped along the electrodes and sealed using a fragile 

thin plastic foil in 5 layers.  Some specimens were sent back to Norway for 

further testing in Run 3 and Run 4. 

 

Water cured – Dried specimens (W-D specimens) 

The specimens were initially handled as the W-S specimens. In Madrid the 

sealing was removed and the samples were oven dried at 40 °C for 1 week.  

The samples were then taped along the electrodes and sealed using a fragile 

thin plastic foil in 5 layers.  Some specimens were sent back to Norway for 

further testing in Run 3 and Run 4. 

 

Self-desiccated – Sealed specimens (S-S specimens) 

The specimens were self-desiccated after sawing for 50 days  

(at 20°C ± 0.5°C, 80% RH), sealed and sent to Madrid.  In Madrid the 

sealing was removed and replaced with tape along the electrodes and 

sealing by 5 layers of thin plastic foil. Some specimens were sent back to 

Norway for further testing in Run 3 and Run 4. 

 

Self-desiccated – Dried specimens (S-D specimens) 

The specimens were initially handled as the S-S specimens.  In Madrid the 

sealing was removed and the samples were oven dried at 40 °C for 1 week.  

The samples were then taped along the electrodes and sealed using a fragile 
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thin plastic foil in 5 layers.  Some specimens were sent back to Norway for 

further testing in Run 3 and Run 4. 

 

Water cured – Sealed – Resaturated specimens (W-Sr specimens) 

These specimens are based on the water cured – sealed specimens tested in  

Run 3.  After finishing Run 3 the sealing and tape were removed and the 

specimens were resaturated in water (at 20°C ± 1°C).  In this period the 

stability of the pore water chemistry was controlled by measuring the 

electrical resistivity.  The specimens were considered as stable when the 

variation in electrical resistivity was less than ± 5%.  This took 

approximately 8 weeks.  The samples were then sealed by the plastic 

coated aluminium foil used on CRR – specimens and taped in all crossings 

and electrode holes. 

 

Water cured – Dried – Resaturated specimens (W-Dr specimens) 

These specimens are based on the water cured – dried specimens tested in  

Run 3.  Further handling was equal to that of the W-Sr specimens. 

 

Self-desiccated – Sealed – Resaturated specimens (S-Sr specimens) 

These specimens are based on the self desiccated – sealed specimens tested 

in Run 3.  Further handling was equal to that of the W-Sr specimens. 

 

Self-desiccated – Dried – Resaturated specimens (S-Dr specimens) 

These specimens are based on the self desiccated – dried specimens tested 

in Run 3.  Further handling was equal to that of the W-Sr specimens. 
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3.6 Test programme CRR – experiments 
 

 

3.6.1 Temperature effect on cathodic polarisation curves 
 

A series of polarisation experiments were conducted, primarily to verify 

that the chosen potential level of -0.6 V/MMO was within the level where 

oxygen reduction is assumed to take place, secondly to observe any thermal 

effects on the appearance of the polarisation curves.   

 

The potential range was from -0.1V/MMO down to -1.2V/MMO regardless 

of the systems equilibrium potential. The polarisation experiments were 

performed in steps.  Two step-durations were initially tested.  The short 

deviation was 0.1V every 15 minutes and the long was 0.1V every 24hours.  

These are termed fast scanning and slow scanning, respectively, in the 

following.  

 

Polarisation experiments for all C1 specimens were done for both fast and 

slow scanning.  The fast scanning was performed at three different 

temperatures of 20°C, 0°C and -20°C.   All these polarisation experiments 

were done without IR – compensation. 
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3.6.2 Verification of the ATM reference electrode 
 

In order to investigate the integrity, reproducibility and stability of the 

MMO reference electrode special reference cell specimens were 

manufactured.  These specimens were made of w/b = 0.5 mortar.  The 

specimens contain one embedded ATM electrode and one embedded 

Manganese (MnO2) electrode.  As an absolute reference an external 

standard calomel electrode (SCEsat) was used.  These measurements were 

compared with an external silver/silver chloride (0.1 M Ag/AgCl) reference 

electrode.  Measurements at lower temperatures were also made, but 

without the third reference electrode.  These samples were cured for less 

than 30 days when the experiments started. 

 

 

3.6.3 Moisture content 
 

Moisture control of the specimens in Run 2 was conducted by weighing 

before and after the experiments.  In the end a full drying at 105 °C was 

done after resaturation and pressurisation (50 bar for 2 days) of the 

specimens.  

 

In addition the ignition loss at 1000 °C of small samples of the concretes 

was measured to get an indication of the amount of chemically bound 

water. 
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3.6.4 Run 1 
 

Run 1 contained less variants and parallel samples than Run 2.  Run 1 

started at 0 °C through -40 °C and back to 0 °C.  The temperature changes 

were programmed to 5 °C steps every 24 hours.  At the end of the 

temperature cycle the specimens were kept at 0 °C for more than 200 hours 

to control stability of the systems.  After the period at 0 °C a heating cycle 

was performed.  The temperature was changed from 0 °C up to +40 °C and 

then down to 0 °C again.  The temperature was changed in 5 °C steps every 

24 hours. An ideal temperature history for Run 1 is given in Figure 3.7. 
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Figure 3. 7 Ideal temperature history for Run 1 
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In Table 3.7 the temperature intervals are shown corresponding to the 

arrow marked time intervals in Figure 3.7.  

 

Table 3. 7 Temperature intervals, range and duration 

Name of interval Temperature range Duration
[h]

Freezing 0oC - (-40oC) 200
Thawing (-40oC) - 0oC 200
Stable 0oC 250
Heating 0oC - 40oC 200
Cooling 40oC - 0oC 200  
 

For Run 1 no moisture control of the specimens was performed.  Based on 

Run 2 some estimations of the moisture content in the samples were 

performed. The tested specimens for Run 1 and estimated moisture content 

are shown in Table 3.8. A discussion of the moisture content will be given 

in Chapter 4. 
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Table 3. 8 Tested specimens in Run 1 

Specimen Id Age DS*

Fr
ee

zi
ng

Th
aw

in
g

St
ab

le

H
ea

tin
g

C
oo

lin
g

St
ab

ili
ty

R
es

ist
an

ce

η 
= 

- 0
.6

-0
.1

< 
η 

< 
-1

.2
 

St
ar

t t
es

t

St
ar

t t
es

t

[days] [%]

C1-0.4-W-U-1 X X X X X X X 84
C1-0.4-W-U-2 X X X X X X X 84
C1-0.4-W-U-3 X X 84
C1-0.4-S-S-1 X X X X X X X 84
C1-0.4-S-S-2 X X X X X X X 84
C1-0.4-S-S-3 X X 84
C1-0.6-W-U-1 X X X X X X X 91
C1-0.6-W-U-2 X X X X X X X 91
C1-0.6-W-U-3 X X 91
C1-0.6-S-S-1 X X X X X X X 91
C1-0.6-S-S-2 X X X X X X X 91
C1-0.6-S-S-3 X X 91
*) estimated from Run 2 moisture data

97.5   

98.0   

97.0   

99.0   

Temperature interval Tests

[V/MMO]

 
 

3.6.5 Run 2 
 

This run was an extended version of Run 1. An extended number of series 

and a higher number of parallel samples for each type were investigated. 

The temperature intervals freezing and thawing were executed in the same 

way as for Run 1.  The stable temperature, heating and cooling intervals 

were not investigated. 

 

In addition, measurements of the electrical resistance between the working 

electrode and the counter electrode were carried out.  These measurements 

were performed by chronoamperometry at 1 kHz.  The device (ResMES, 

by Protector) is automated and measurements were performed every 15 

minutes.    
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Moisture control was performed on small pieces of the samples after 

finishing the temperature intervals according to paragraph 3.6.3.  The tested 

specimens for Run 2 and calculated moisture content are shown in Table 

3.9. 

 

The temperature measurements were calibrated against melting ice during 

the experiments. 

 

The temperature test cycle is shown in Figure 3.8. 
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Figure 3. 8 Ideal temperature history for Run 2 
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Table 3. 9 Tested specimens in Run 2 

Specimen Id* Age DS
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C2-0.4-W-U-1-3 X X X 82
C2-0.4-W-U-4 X X 82
C2-0.4-W-U-5 X X X 82
C2-0.4-W-S-1-3 X X X 82
C2-0.4-W-S-4 X X 82
C2-0.4-W-S-5 X X X 82
C2-0.4-S-U-1-3 X X X 82
C2-0.4-S-U-4 X X 82
C2-0.4-S-U-5 X X X 82
C2-0.4-S-S-1-3 X X X 82
C2-0.4-S-S-4 X X 82
C2-0.4-S-S-5 X X X 82
C2-0.6-W-U-1-3 X X X 90
C2-0.6-W-U-4 X X 90
C2-0.6-W-U-5 X X X 90
C2-0.6-W-S-1-3 X X X 90
C2-0.6-W-S-4 X X 90
C2-0.6-W-S-5 X X X 90
C2-0.6-S-U-1-3 X X X 90
C2-0.6-S-U-4 X X 90
C2-0.6-S-U-5 X X X 90
C2-0.6-S-S-1-3 X X X 90
C2-0.6-S-S-4 X X 90
C2-0.6-S-S-5 X X X 90
*) Specimens 1-3 for each type has been placed in one row
    since the handling of these are equal.

99.8   

97.4   

97.6   

98.6   

99.6   

96.9   

97.8   

99.2   

Temperature interval Tests

[V/MMO]
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3.7 Test programme ER – experiments 
 

 
3.7.1 Measurement techniques 
 

These measurements were performed based upon three different principles. 

The methods are briefly described below, and a description of the 

equipment used for measurements is given in section 3.8.2. 

 

 

Electrochemical Impedance Spectroscopy (EIS) 

The basis of EIS is to impose an external sinusoidal voltage signal with low 

amplitude and varying frequency to the electrode/electrolyte system (i.e. 

the concrete). The current response of the system is measured. The relation 

between the imposed AC voltage signal and the current response describes 

the impedance for the system in the form of a real and imaginary 

component. For more information on Electrochemical Impedance 

Spectroscopy see Feliu and Feliu [70] and Macdonald [71].   

 

 

Positive feedback  

In order to perform this type of measurements the potentiostat needs to 

have an extra circuit (positive feedback loop).  This circuit is normally used 

to compensate for the ohmic drop between RE and WE in polarisation 

experiments.  The positive feedback loop allows control of the resistance of 

the concrete by changing the circuit potential feeding a constant alternating 

current (AC) force (the magnitude of the current and the frequency is 

dependent upon the range of electrical resistance).  For the concretes used 
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in these experiments the current was in the range of 1 µA – 100µA.  When 

the resistivity of the medium exceeds that of the positive feedback loop the 

AC current feed is picked up by an oscilloscope, and the resistance of the 

circuit can be calculated by Ohms law.  

 

Square pulse measurements 

The basis of potential square pulse measurements (or chronoamperometry) 

is to impose a controlled potential difference in steps (at a given frequency) 

to the working electrode.  The potential difference may be in either positive 

or negative direction or both.  The current response will then be minimally 

affected by capacitive effects in the medium, and the electrical resistance 

may easily be measured.  

 

 

3.7.2 Description of the different runs in the ER experiments 
 

In the ER – experimental part a total of four different runs have been 

carried out, each one trying to improve from the previous run. In the 

following a description of the different runs and their objectives is given. 

 

It is important to note that during storage and sending the samples lost a 

significant amount of moisture, and most of the samples tested in Runs 1, 2 

and 3 had a very low degree of capillary saturation (DCS < 50%). 
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Run 1  

Run 1 was performed on three parallel samples for each of the four 

different conditionings and for both concrete mixes. A total of 24 

specimens were tested.  A list of the tested specimens is given in Table 

3.10.   

 

The temperatures investigated were 20 °C (room temperature), 2°C, -14 °C 

and -28 °C. The samples were stored for minimum 36 hours at each 

temperature before the measurements took place.   

 

The EIS measurements were performed at frequencies in the range from   

100 Hz up to 40 MHz. The amplitude was selected to 10 mV for the 

sinusoidal voltage signal after some initial testing. The resolution was 

selected to 401 different frequencies, which was the maximum resolution 

of the equipment.   

 

In the thawing part, from -28 °C and back to 20 °C, the measurements of 

electrical resistance were performed using the positive feedback loop on a 

potentiostat as described in paragraph 3.7.1.  No parallel measurements of 

EIS and Positive feedback were performed in this run. 
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Table 3. 10 List of the tested specimens in Run 1 

Specimen Id. Age DS
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R1-0.4-W-S-1 X X X X X X 90 93.8
R1-0.4-W-S-2 X X X X X X 90 95.6
R1-0.4-W-S-3 X X X X X X 90 95.1
R1-0.4-W-D-1 X X X X X X 90 63.7
R1-0.4-W-D-2 X X X X X X 90 67.6
R1-0.4-W-D-3 X X X X X X 90 66.2
R1-0.4-S-S-1 X X X X X X 90 73.3
R1-0.4-S-S-2 X X X X X X 90 73.4
R1-0.4-S-S-3 X X X X X X 90 74.0
R1-0.4-S-D-1 X X X X X X 90 55.5
R1-0.4-S-D-2 X X X X X X 90 57.2
R1-0.4-S-D-3 X X X X X X 90 53.6
R1-0.6-W-S-1 X X X X X X 90 96.0
R1-0.6-W-S-2 X X X X X X 90 98.0
R1-0.6-W-S-3 X X X X X X 90 98.2
R1-0.6-W-D-1 X X X X X X 90 48.9
R1-0.6-W-D-2 X X X X X X 90 44.1
R1-0.6-W-D-3 X X X X X X 90 45.3
R1-0.6-S-S-1 X X X X X X 90 61.2
R1-0.6-S-S-2 X X X X X X 90 68.8
R1-0.6-S-S-3 X X X X X X 90 71.7
R1-0.6-S-D-1 X X X X X X 90 31.0
R1-0.6-S-D-2 X X X X X X 90 32.1
R1-0.6-S-D-3 X X X X X X 90 31.9
*) EIS: Electrochemical Impedance Spectroscopy, P.Feed: Positive Feedback
    P.Sq.P: Potential Square Pulse (Chronoamperometry)

Moisture control
Weighing

Measurement techniques*
EIS P.Feed P.Sq.P
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Run 2  

In order to investigate the reliability of the measurement techniques a small 

series of samples was run through the temperature cycle. Eight specimens 

in total representing all conditionings for both concretes were tested.  

Parallel measurements with both EIS and Positive feedback measurements 

were carried out on both freezing and thawing.  Additionally, two samples      

(R2-0.4-W-S-2 and R2-0.6-W-S-2) were resaturated using vacuum from 

their initial “dry state” and tested through the temperature cycle. These 

samples were added in order to observe prospective ice-nucleation.   

 

The measurements were performed in the same way as Run 1.  The only 

difference from Run 1 was that a lower resolution, 99 different frequencies, 

was chosen for the EIS measurements.  Run 1 showed that disturbance 

from external sources was not an excessive problem. A list of the 10 tested 

specimens is given in Table 3.11. 
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Table 3. 11 List of the tested specimens in Run 2 

Specimen Id. Age DS**
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R2-0.4-W-S-1 X X X X X X 120 76.0
R2-0.4-W-S-2 X X X X X X 110 99.0
R2-0.4-W-D-1 X X X X X X 120 72.0
R2-0.4-S-S-1 X X X X X X 120 76.0
R2-0.4-S-D-1 X X X X X X 120 71.0
R2-0.6-W-S-1 X X X X X X 120 58.0
R2-0.6-W-S-2 X X X X X X 110 99.0
R2-0.6-W-D-1 X X X X X X 120 54.0
R2-0.6-S-S-1 X X X X X X 120 63.0
R2-0.6-S-D-1 X X X X X X 120 60.0
*) EIS: Electrochemical Impedance Spectroscopy, P.Feed: Positive Feedback
    P.Sq.P: Potential Square Pulse (Chronoamperometry)
**) Estimated moisture content based on data from Run 1

Measurement techniques* Moisture control
EIS P.Feed P.Sq.P Weighing

 
 

 

Run 3 

 

After finishing Run 2 in Madrid, the samples were sent back to Norway for 

further investigations.  During the sending and storage after arrival most of 

the samples have had significant moist losses.  It was then decided to 

perform a run with samples having the lower moisture contents.  From a 

scientific point of view these low moisture states are of special interest.   

 

The chamber used in the CRR experiments was programmed to the same 

temperature cycle as the previously performed ER – runs.  A series of three 

parallel samples of each type, a total of 24 samples, were run through the 
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temperature cycle.  In this run the measurement technique was potential 

square pulse measurements using handheld equipment.    A list of the 24 

tested specimens is given in Table 3.12. 

 

Table 3. 12 List of the specimens tested in Run 3 

Specimen Id. Age DS
Further
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R3-0.4-W-S-1 X X X X X X X 350 70.9
R3-0.4-W-S-2 X X X X X X X 350 73.4
R3-0.4-W-S-3 X X X X X X X 350 76.2
R3-0.4-W-D-1 X X X X X X X 350 64.8
R3-0.4-W-D-2 X X X X X X X 350 66.1
R3-0.4-W-D-3 X X X X X X X 350 66.1
R3-0.4-S-S-1 X X X X X X X 350 62.1
R3-0.4-S-S-2 X X X X X X X 350 65.2
R3-0.4-S-S-3 X X X X X X X 350 66.1
R3-0.4-S-D-1 X X X X X X X 350 56.6
R3-0.4-S-D-2 X X X X X X X 350 55.3
R3-0.4-S-D-3 X X X X X X X 350 57.6
R3-0.6-W-S-1 X X X X X X X 350 47.6
R3-0.6-W-S-2 X X X X X X X 350 50.9
R3-0.6-W-S-3 X X X X X X X 350 51.9
R3-0.6-W-D-1 X X X X X X X 350 42.0
R3-0.6-W-D-2 X X X X X X X 350 41.8
R3-0.6-W-D-3 X X X X X X X 350 41.9
R3-0.6-S-S-1 X X X X X X X 350 45.6
R3-0.6-S-S-2 X X X X X X X 350 46.2
R3-0.6-S-S-3 X X X X X X X 350 46.6
R3-0.6-S-D-1 X X X X X X X 350 37.4
R3-0.6-S-D-2 X X X X X X X 350 37.4
R3-0.6-S-D-3 X X X X X X X 350 37.8
*) EIS: Electrochemical Impedance Spectroscopy, P.Feed: Positive Feedback
    P.Sq.P: Potential Square Pulse (Chronoamperometry)

Measurement techniques* Moisture control
EIS P.Feed P.Sq.P Weighing
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Run 4 

 

The same samples tested in Run 3 were resaturated by water suction for 

more than 50 days. The motivation of running the same samples as in Run 

3 at much higher moisture contents was to observe directly the effect of 

moisture content in combinations with thermal effects. The specimens were 

given unique identification still being physically the same samples as tested 

in Run 3. 

 

The specimens immersed in water for 8 weeks to ensure more or less stable 

conditions in the pore solution chemistry.  The control was performed by 

measurements of the electrical resistivity.  A variation less than ± 5% was 

set as the limit for acceptable stability.  This took 8 weeks to achieve.  

 

After achieving an acceptable level of stability the samples were sealed and 

run through the same temperatures as the previous runs. The measurements 

were performed by potential square pulse measurements. 

 

A list of the tested specimens for Run 4 is given in Table 3.13. 
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Table 3. 13 List of the tested specimens in Run 4 

Specimen Id. Age DS
Further
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R4-0.4-W-Sr-1 X X X X X X X 350 99.6
R4-0.4-W-Sr-2 X X X X X X X 350 99.6
R4-0.4-W-Sr-3 X X X X X X X 350 99.7
R4-0.4-W-Dr-1 X X X X X X X 350 99.7
R4-0.4-W-Dr-2 X X X X X X X 350 100.0
R4-0.4-W-Dr-3 X X X X X X X 350 99.8
R4-0.4-S-Sr-1 X X X X X X X 350 99.4
R4-0.4-S-Sr-2 X X X X X X X 350 99.6
R4-0.4-S-Sr-3 X X X X X X X 350 99.7
R4-0.4-S-Dr-1 X X X X X X X 350 99.9
R4-0.4-S-Dr-2 X X X X X X X 350 99.7
R4-0.4-S-Dr-3 X X X X X X X 350 99.7
R4-0.6-W-Sr-1 X X X X X X X 350 99.0
R4-0.6-W-Sr-2 X X X X X X X 350 98.7
R4-0.6-W-Sr-3 X X X X X X X 350 98.9
R4-0.6-W-Dr-1 X X X X X X X 350 98.7
R4-0.6-W-Dr-2 X X X X X X X 350 99.3
R4-0.6-W-Dr-3 X X X X X X X 350 98.6
R4-0.6-S-Sr-1 X X X X X X X 350 99.0
R4-0.6-S-Sr-2 X X X X X X X 350 99.0
R4-0.6-S-Sr-3 X X X X X X X 350 98.6
R4-0.6-S-Dr-1 X X X X X X X 350 98.8
R4-0.6-S-Dr-2 X X X X X X X 350 99.0
R4-0.6-S-Dr-3 X X X X X X X 350 98.8
*) EIS: Electrochemical Impedance Spectroscopy, P.Feed: Positive Feedback
    P.Sq.P: Potential Square Pulse (Chronoamperometry)

Measurement techniques* Moisture control
EIS P.Feed P.Sq.P Weighing
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Run 5 

 

Run 5 was performed on two parallel samples for each of the four different 

conditionings and for both concrete mixes. A total of 16 specimens were 

tested. The specimens had not been put through any temperature cycle.  

The change of the electric resistance during resaturation and stabilisation 

were followed using potential square pulse measurements.  All 

measurements have been performed at room temperature (at 20°C ± 1°C). 

 

 

3.7.3 Moisture content 
 

In Tables 3.10 – 3.13 the moisture control steps are shown for each run.  

The moisture control of the specimens was conducted by weighing before 

and after the experiments in all the runs.  In runs 3 and 4 the samples were 

additionally weighed during testing to control whether or not the samples 

had larger moist loss at certain temperatures.   

 

Resaturation of the specimens by immersion in tap water was performed in 

runs 1, 3 and 4.  In addition to the supplementary Run 5 where moisture 

control was the main objective.  In runs 3 and 4 the specimens were 

pressurised (at 50bar for approximately 3 days).  After pressurisation the 

specimens in runs 3 and 4 were weighed in water in order to obtain the 

volume and, hence, enable porosity calculations. It is important to note that 

an absolute concrete volume, however, can not be found since the volumes 

of the electrodes are unknown.   It is assumed that that this introduces an 

error less than 1%. 



114 DR.ING THESIS BY JAN-MAGNUS ØSTVIK  
  

 

For runs 1, 3 and 4 the specimens were dried at 105°C for at least 96 hours 

to ensure that the dry weights of the specimens were as correct as possible.  

 

 

3.8 Experimental setup 
 

3.8.1 Experimental setup for CRR – experiments 
 

The experimental system involves a chamber that generates temperatures in 

the range -40°C <T<+40°C, potentiostats that polarise cathodically in the 

range 0<E<-1.2V and equipment recording the current generated in the 

cell.  Each parts of this will be separately described in the following. A 

picture of the experimental setup is shown in Figure 3.9. 

 

Temperature chamber 

The chamber with external dimensions 1250x2500x500 mm (width by 

length by height) is made of coated steel elements with polyurethane 

insulation.  The chamber was manufactured especially for this project by 

PREPAN.  The chamber can be opened from the top in all its length and 

width to ensure easy placing and handling of the specimens.   

 

To provide cooling and heating an external compressor in combination 

with an internal heat exchanger was used.  The heat exchanger was 

equipped with two powerful fans which ensured a good airflow inside the 

chamber.  A heating element was also used to be able to provide higher 

temperatures than of the external surroundings.  The system was designed 

to freeze down 200kgs of concrete to -40°C within 24 hours.  The capacity 
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of thawing was ensured by a heating element of 1.5 kW mounted in the 

heat exchanger.  

 

The system was controlled by a control system (DX9000 by Johnson 

Controls).  This unit gives the opportunity to programme any temperature 

cycle within the cooling systems capacity.  

 

The generator and heat-exchanger was supplied by TEAS.  The planning 

was performed in cooperation with NTNU.   

 

 

Figure 3. 9 Picture of the Temperature chamber with cabling system 
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Potentiostats 

The potentiostats were especially made for this project (Protector POT50).  

A set of 50 equal potentiostats was manufactured with a common power 

supply.  The potentiostats could be adjusted individually to a desired 

potential in the range 1.2 < Eapp < -1.2 V.  All adjustments of the potential 

were performed manually.  To control the adjustments the potentials were 

measured with a handheld Digital multi meter (Fluke 87 II) on the signal 

out contacts for each potentiostat.  

 

 

Logging units 

The logging equipment consisted of a SOLARTRON 3530 ORION data 

logger and a personal computer.  The logging intervals were set to 30 

minutes.  A low scan rate was chosen (1/40 second per channel) in order to 

get optimal resolution based on interpolation of 5 individual measurements 

per channel. 

 

 

3.8.2 Experimental setup for the ER – experiments 
 

The experimental setup for this section contains several different 

measurement techniques.  Descriptions of the techniques were given in 

section 3.7.1.   
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Temperature chamber 

An ordinary refrigerator was used. (Miele KD 6452 S) The freezer part had 

the capacity to freeze down all the samples to -38°C within 24 hours.  Due 

to the load on the compressor a minimum temperature of -28°C was 

chosen.  The highest temperature available for the freezer part was -14°C.  

On maximum the refrigerator had capacity to keep a temperature of 2°C.  

Based on these facts four temperatures were chosen:  20°C, 2°C, -14°C and 

-28°C.  

 

 

Electrochemical Impedance Spectroscopy equipment. 

The experimental setup for this type of measurements consists of a 

measurement unit (HP 4194A Measurement unit), a impedance/gain-phase 

analyzer (HP 4194A Impedance/Gain-Phase Analyser) and a personal 

computer.  This equipment has a frequency range from 100 Hz – 40 MHz.  

The measurements were performed in the whole range.  In the initial run 

the highest possible resolution was chosen, 401 different frequencies, 

which gave an overall picture of the impedance of the concrete samples.  

Due to technical problems with handling such amounts of data, a lower 

resolution of 99 different frequencies were chosen for the later 

measurements. 

 

A picture of the setup is given in Figure 3.10. 
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Figure 3. 10  Picture of the equipment for the EIS measurements 

 

 

Positive feedback/Ohmic drop equipment 

The measuring equipment for these types of measurements consisted of a 

potentiostat (AMEL – 551 – POTENTIOSTAT) and an oscilloscope 

(Kenwood CO-1303-D).   All data recording was performed manually. 

 

A picture of the setup is given in Figure 3.11. 
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Figure 3. 11 Picture of the setup used for ohmic drop measurements 

 

 

Potential square pulse equipment 

For these measurements a handheld LCR-meter (ESCORT ELC – 131D) 

was used.  The measurements were all performed on a constant frequency 

at 1 kHz. All data recording was performed manually. 
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3.9 Determination of freezeable water, wf, in concrete 
 

 

To quantify the amount of water able to freeze in the pores of the 

respective concretes, testing with low temperature calorimetry was 

performed at Aalborg Portland in Denmark. 

 

Small concrete specimens were sawn from well cured concrete cubes of 

both the w/b 0.4 and the w/b 0.6 concrete.  The concretes were of 

approximately 600 days of age when the preparation of the specimens took 

place and had been water cured since casting. 

 

After sawing the specimens were ground to dimensions:  

d ≈15mm, l ≈ 70mm to fit in an air-tight cylindrical formed stainless steel 

test cell slightly larger than the specimens.  The specimens were immersed 

in water for a few hours then sealed in airtight plastic bags, packed and sent 

to Denmark for testing. 

 

The heat flow was measured using a low temperature CALVET Micro-

calorimeter. The measurements were carried out in a scanning mode in the 

temperature range down to about -55°C where no further freezing is 

expected below this temperature.  The cooling rate was approximately 

3.3°C/h and the heating rate approximately 4.1°C/h. 
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4 
 

TEMPERATURE EFFECTS ON CATHODIC 
REACTION RATE 

 

 

This chapter gives a detailed description of the experimental results 

obtained in the investigation of the influence of temperature on the 

Cathodic Reaction Rate (CRR – experiments).   

 

 

 

4.1 Introduction  
 

The CRR – experiments were carried out to investigate the effect of 

temperature and moisture on corrosion of steel in concrete. The 

experiments were performed on concrete specimens with a three electrode 

system (WE, CE and RE) in the temperature range -40°C ≤ T ≤ 40°C.  The 

WE was continuously polarised at -0.6 V/MMO.   

 

Information about the cathodic behaviour of steel in concrete gives basic 

knowledge in order to give a better forecast of the corrosion behaviour of 

steel in concrete.   
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4.2 Low temperature calorimetry – determination of frozen 
capillary water 

 

When concrete is exposed to temperatures as low as -40°C some of the 

capillary water will freeze.  Therefore it was performed low temperature 

calorimetry to determine the amount of water able to freeze in the tested 

concretes. 

 

The recorded heat flow in concrete specimens that was measured during 

cooling and heating for the w/b 0.4 and the w/b 0.6 concretes are shown in 

Figure 4. 1 and Figure 4. 2. 
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Figure 4. 1 Heat flow during cooling for mature water cured concrete 

specimens of the w/b 0.4 and w/b 0.6 concrete. Cool 3.3°C/h. 



 TEMPERATURE EFFECTS ON CATHODIC REACTION RATE 123 

 

 

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0
-60 -50 -40 -30 -20 -10 0 10

Temperature [oC]

C
p 

  [
J/g

ss
d 

/ o C
] 

H w/b 0.4 
H w/b 0.6 

 

Figure 4. 2 Heat flow during heating for mature water cured concrete 

specimens of the w/b 0.4 and w/b 0.6 concrete. Heat 4.1°C/h. 

 

Table 4. 1 Relevant concrete properties for calculations of the amount of 

ice in the capillary pores 

w/b 0.4 w/b 0.6
Densityssd 2.394 2.313 [gssd/cm3]
Evaporable water, wes 0.056 0.080 [g/gdry]
Porosity, ε 12.7 17.2 [(vol) %]
Densitydry 2.267 2.141 [gdry/cm3]
Densitysolid 2.401 2.328 [gsolid/cm3]
ssd = saturated surface dry  
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The calculated amounts of ice based on the heat flow data and the concrete 

properties, shown in Table 4. 1, are given in Table 4. 2 and Table 4. 3 for 

the w/b 0.4 and w/b 0.6 concrete, respectively. 

 

Table 4. 2 Amount of ice at specific temperatures during Cool and Heat 

for the w/b 0.4 concrete 

Temperature wnf wnf/wes
[oC] [mg/gssd] [mg/gdry] [g/gdry]

-2 0.000 0.000 0.056 1.000
-10 2.574 2.718 0.053 0.951
-20 3.704 3.911 0.052 0.930
-35 6.571 6.938 0.049 0.876
-55 17.061 18.013 0.038 0.677

Temperature wnf wnf/wes
[oC] [mg/gssd] [mg/gdry] [g/gdry]

-55 17.071 18.025 0.038 0.677
-35 15.911 16.800 0.039 0.699
-20 12.538 13.238 0.043 0.763
-10 8.099 8.551 0.047 0.847

4 0.000 0.000 0.056 1.000

COOL Increment

HEAT Increment

Amount of ice

Amount of ice

 
wnf = non frozen water 
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Table 4. 3 Amount of ice at specific temperatures during Cool and Heat 

for the w/b 0.6 concrete 

Temperature wnf wnf/wes
[oC] [mg/gssd] [mg/gdry] [g/gdry]

-3 0.000 0.000 0.080 1.000
-10 7.634 8.246 0.072 0.897
-20 14.127 15.259 0.065 0.810
-35 21.521 23.245 0.057 0.710
-55 30.277 32.703 0.047 0.592

Temperature wnf wnf/wes
[oC] [mg/gssd] [mg/gdry] [g/gdry]

-55 35.080 37.891 0.042 0.527
-35 34.156 36.893 0.043 0.540
-20 29.287 31.634 0.048 0.605
-10 22.492 24.295 0.056 0.697

4 0.000 0.000 0.080 1.000

Amount of ice

Amount of ice

COOL Increment

HEAT Increment

 
 

The results given in Table 4. 2 and Table 4. 3 are shown graphically in 

Figure 4. 3. 
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Figure 4. 3 Accumulative ice formation (wf) curves for the w/b 0.4 and w/b 

0.6 concretes for cooling and heating increments. The 

horizontal long dashed lines indicate total evaporable water 

content (wes) for the concretes. 

 

 

The results are discussed in the following sections. 
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4.3 Stability of measurements and choice of steady state 
 

An effort was made in the planning of the CRR – experiments to ensure 

stability of the measurements.  The stability of measurements was 

controlled by the time for stabilisation of the cell current (transient period) 

generated by temperature changes within an acceptable range.  

 

 

4.3.1 Transients of the cathodic reaction rate due to temperature 
changes. 

 

During Run 1 the transients for each temperature change was followed 

closely in order to define a level of satisfactory stability of measurements.  

It was expected a certain amount of drift in the measurements and 

particularly the first temperature changes was interesting with respect to 

time for stable conditions.  The response of the cathodic reaction rate on 

the first temperature change is given in Figure 4. 4.  All the temperatures 

are referred to operating temperatures in the chamber in the descriptions of 

the Figures. 
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Figure 4. 4 Response of the cathodic reaction rate on the first temperature 

change during the start-up of Run 1 at 0°C 

 

Figure 4. 4 shows the response of the cathodic reaction current on the 

temperature change for the tested specimens at constant polarisation            

(-0.6 V/MMO) for the first 24 hours of the experiments.  The chamber had 

an initial temperature of 10°C (at start-up), and the programmed 

temperature was 0°C.  The temperature in the chamber was decreased 

rapidly and generated a large temperature induced transient on the cell 

current.  The temperature shift for this step was larger (10°C) compared to 

the later ones (5°C change). The corresponding temperature – time curve 

for the first temperature change is given in Figure 4. 5.  The samples were 

polarised for about 5 – 10 minutes before the first measurements were 

taken. Some of the alteration in the thermal response on the cathodic 
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reaction rate may be connected to the lag between concrete temperature and 

the operating temperature in the chamber.  
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Figure 4. 5 The temperature – time curve corresponding to the thermal 

response of the cathodic reaction rate (Figure 4. 4) 

 

The relative large thermal transients in the first temperature shifts were 

considerably reduced at decreasing temperatures.  In the following Figures 

(Figure 4. 6 – Figure 4. 14) the transient for lower temperatures are shown, 

both for the freezing interval and for the thawing interval. 
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Figure 4. 6 The thermal response on the cathodic reaction rate during 

Freezing at -20°C 
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Figure 4. 7 The temperature – time curve corresponding to Figure 4. 6 
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Figure 4. 8 The thermal response on the cathodic reaction rate during 

Freezing at -40°C 
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Figure 4. 9 The temperature – time curve corresponding to Figure 4. 8 
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Figure 4. 10 The thermal response on the cathodic reaction rate during 

Thawing at -20°C 
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Figure 4. 11 The temperature – time curve corresponding to Figure 4. 10 
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Figure 4. 12 The thermal response on the cathodic reaction rate during 

Thawing at 0°C 
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Figure 4. 13 Temperature – time curve corresponding to Figure 4. 12 
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After the completion of the temperature intervals:  Freezing and Thawing, 

the samples were kept at 0°C for a period of more than 200 hours in order 

to observe long term changes in the system.  The results are shown in 

Figure 4. 14. 
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Figure 4. 14 The long term effects of polarisation of -0.6 V/MMO during 

the Stable temperature interval (0°C) of Run 1 
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4.3.2 Choice of steady state for the CRR – experiments 
 

Based on the results given in section 4.3.1 it could be defined a range in 

which a “quasi steady state” could be defined after a temperature step.  The 

“quasi steady state” was chosen to the average of the last 4 hours of 

measurements before the next temperature step and ignoring the first 20 

hours of measurements. The logging interval was every 30 minutes. Hence, 

the averaged cell current of the last 8 measurements at each temperature 

step was defined as one “steady state” measurement.    

 

The thorough control of the thermal response on the cathodic reaction rate 

were primarily performed during Freezing and Thawing of Run 1, and 

monitored in the later intervals of Run 1 and also in Run 2.  The results 

show the same trend for both runs.   

 

It was found that it was significantly harder to change the temperature in 

the samples at lower temperature.  The effect can be found in Figure 4. 9 

and Figure 4. 15.  
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Figure 4. 15 Comparison of the concrete temperature and the chamber 

temperature during freezing, thawing and stable temperature 

intervals of Run 1 

 

The minimum concrete temperature was measured to -34.9 °C, despite the 

minimum temperature in the chamber was measured to below -42 °C.  

This lack of temperature equilibrium (i.e. slow specimen cooling) may 

partly be due to ice formation in the capillaries.  Ice nucleation generates 

heat.  

 

From section 4.2 it can be found that a temperature of -35°C corresponds to 

amounts of frozen water, wf/wes = 12.4% for the w/b 0.4 concrete and                

wf/wes = 29.0% for the w/b 0.6 concrete.  Both concretes (when saturated) 
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show a heat flow peak in the range from -35°C and lower during cooling 

(Figure 4. 1), which indicates that a considerable fraction of pores nucleate 

around this temperature.   

 

The effect of water freezing in the pores may have induced the larger lag 

between concrete temperature and chamber temperature at the lowest 

temperatures. 

 

During Run 1 an active temperature sensor was used to control the 

temperature inside the chamber.  This high precision temperature sensor 

reacted too slowly, hence, the temperature fluctuations were unnecessary 

large.  This was upgraded to a much faster reacting passive temperature 

sensor in Run 2.  This run showed that the faster sensor reduced this 

problem.  

 

The stability of the reference electrode was tested against a MnO2 reference 

electrode at various temperatures in order to have an impression of the 

stability.  These experiments were performed on mortar specimens that 

were well cured at 100% RH for 3 months before the test was initiated. 
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Figure 4. 16 Stability of the potential difference between an ATM (MMO) 

reference electrode and a MnO2 reference electrode at various 

temperatures.  The data represents a single specimen. 

 

The results from the comparison of the reference electrodes indicate that 

either one or both electrodes show a thermal change.  Since no parallel 

measurements were performed it is not possible to extract which electrode 

that is most temperature sensitive.  The change of the potential difference 

between the reference electrodes was approximately 0.03 V in the 

temperature interval between 20°C and -20°C.   

 

 

 



 TEMPERATURE EFFECTS ON CATHODIC REACTION RATE 139 

Based on the fact that the CRR – experiments showed relatively stable 

values and that a limited number of alternative reference electrode types 

will operate in actual temperature range, this type of reference electrode 

was found acceptable, having in mind that it potentially could introduce a 

small error. 

 

 

 

4.4 Influence of temperature on cathodic polarisation curves 
 

The potential level was chosen to -0.6 V against the ATM reference 

electrode.  In order to verify that the selected potential level is within the 

range where oxygen reduction is the dominant cathodic reaction a series of 

polarisation experiments were performed.   

 

These polarisation experiments were performed incrementally at different 

durations of the steps and at three different temperatures (20°C, 0°C and  

-20°C).  It must be emphasised that all the polarisation experiments were 

performed without IR– compensation.  
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4.4.1 Cathodic polarisation curves at different incremental intervals 
 

As stated in Chapter 3 one series was tested at different time intervals 

(duration of the steps) where the slow scanning (long interval) was 0.1V 

every 24 hours, and the fast scanning (short interval) was 0.1V every 15 

minutes.  The results from these tests are given in the Figure 4. 17 and 

Figure 4. 18.  These test series were performed at a constant temperature of 

20°C. 
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Figure 4. 17 Evans-diagrams for the w/b ratio 0.4 specimens tested in Run 

1 at slow and fast scanning at a constant temperature of 20°C. 

The ideal oxygen reduction slope indicates the theoretical 

curve for oxygen reduction without diffusion. 
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Figure 4. 18 Evans-diagrams for the w/b ratio 0.6 specimens tested in Run 

1 at slow and fast scanning at a constant temperature of 20°C. 

 

 

4.4.2 Influence of incremental intervals on cathodic polarisation 
curves 

 

As can be seen from the polarisation curves given in Figure 4. 17 and  

Figure 4. 18 the effect of the intervals is notable.  It is clear that the effect is 

largest on the samples with lowest moisture content and of poorest concrete 

quality.  The C1-0.4-W-U samples show little change at different intervals 

between the incremental.  The effect is largest on the C1-0.6-S-S samples.  

0.1 V every 15 minutes corresponds to a scan rate of 6.7 mV/minute, which 
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is quite slow in comparison to normal practice (10 mV/minute).  It was 

therefore decided to use the more practical fast scanning for later tests.  

 

 

4.4.3 Cathodic polarisation curves for different temperatures 
 

To obtain information on how the chosen potential level (-0.6V/MMO) 

agreed with the theoretical considerations, further cathodic polarisation 

experiments were carried out for specimens tested in Run 1.  The 

polarisation experiments were made in the range from 0V to -1.2V.   

 

The initial equilibrium potential of the electrodes was not taken into 

account.  This can be seen as anodic currents (or current shifts) at given 

potentials for some of the samples.  The experiments were performed at 

three different temperatures, 20°C, 0°C and -20°C.   

 

In the following section the Evans diagrams for all specimens tested in    

Run 1 are shown for all three temperatures in one diagram.  The diagrams 

are sorted by concrete composition, curing and sealing. 
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Figure 4. 19 Comparison of the Evans diagram for the C1-0.4-W-U variant 

at three temperatures; 20°C, 0°C and -20°C 
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Figure 4. 20 Comparison of the Evans diagram for the C1-0.4-S-S variant 

at three temperatures; 20°C, 0°C and -20°C 



144 DR.ING THESIS BY JAN-MAGNUS ØSTVIK  
  

-1.40
-1.30
-1.20
-1.10
-1.00
-0.90
-0.80
-0.70
-0.60
-0.50
-0.40
-0.30
-0.20
-0.10
0.00

0.0010 0.0100 0.1000 1.0000 10.0000

Cathodic reaction rate  |ic| [µA/cm2]

A
pp

lie
d 

po
te

nt
ia

l [
V

/M
M

O

C1-0.6-W-U 20oC
C1-0.6-W-U 0oC
C1-0.6-W-U -20oC
Ideal Oxygen reduction

 

Figure 4. 21 Comparison of the Evans diagram for the C1-0.6-W-U variant 

at three temperatures; 20°C, 0°C and -20°C 
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Figure 4. 22 Comparison of the Evans diagram for the C1-0.6-S-S variant 

at three temperatures; 20°C, 0°C and -20°C 
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4.4.4 Influence of temperature on cathodic polarisation curves 
 

In the range between 0V and -0.3V the polarisation curves appears to be 

quite linear with calculated Tafel slopes (gradients) in the range from -0.1 

to -0.2V/decade. These values of the Tafel slopes are quite comparable to 

the Tafel constant of oxygen reduction on pure platinum.  However, 

deviations from linearity found in Figure 4. 19 – Figure 4. 22 indicate that 

the polarisation curves in some cases are influenced by other parameters.   

As emphasised initially the potential values are not IR – compensated.  In 

the paragraph below a discussion is given on how the different parameters 

may affect the system. 

 

The IR – loss was initially supposed to be a minimal problem due to the 

placing of the reference electrode.  It is placed very close to the 

reinforcement steel electrode, still presumably shielded from the current 

field.  By applying this design it was assumed that the IR – correction 

would be a moderate problem.   

 

After some initial resistance measurements it was shown that the electrical 

resistance between the reference electrode and the working electrode was 

very much larger than expected.   

 

It must also be taken into account that this electrical resistance between the 

reference electrode and the working electrode also increases with 

decreasing temperatures. 
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The resistance between the reference electrode (RE) and the working 

electrode (WE) was measured to 1.5 kΩ at 20°C for the concrete with w/b 

– ratio of 0.6 and 3.0 kΩ for the concrete with w/b – ratio of 0.4.   It was 

estimated that the electrical resistance was doubled at 0°C and magnified 

ten times at -20°C. Thereby, the resistances were assumed to be:  

 

 w/b 0.4 w/b 0.6 

• 20°C 3.0 kΩ 1.5 kΩ 

• 0°C 6.0 kΩ 3.0 kΩ 

• -20°C 30 kΩ 15 kΩ 

 

Based on the above resistance values a manual IR – correction of the 

potentials for most of the variants were performed.  To illustrate the effect 

of the IR – correction, the corrected values are compared to the original 

data for the C1-0.6-S-S variant at all three temperatures as an example.  

The comparison is given in Figure 4. 23. 
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Figure 4. 23 Illustration of the effect of IR – compensation for the cathodic 

polarisation curves.  The values for the electrical resistance 

(between RE and WE) are estimated for 0°C and -20°C. The 

corrected curves are shown with continuous lines, while 

original data as dotted lines. 

  

 

As Figure 4. 23 indicates, the IR – drop correction would not affect the 

curve shape considerably.  Even for very high resistance values 

(approximately 15kΩ at -20°C, estimated for the w/b 0.6 concrete) the 

correction would not be proportionally larger due to a very low current 

density.  
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The obtained values of the Tafel slopes compared to the Tafel slope of e.g. 

oxygen reduction (-0.12V/decade) may indicate that there are other charge-

transfer reactions taking place on the electrodes that also influence the total 

gradient.   

 

Most likely these reactions are reduction of oxides, mainly Ferrous oxides 

and Ferric oxides, on the electrode surface.  As stated in Chapter 2 the 

oxidation of Fe3O4 to γ-Fe2O3 has been reported to be a reversible process 

by Stratmann et al. [15] and reduction of γ-Fe2O3 to Fe3O4 may interfere in 

the total reaction.  

 

These aspects could be clarified by performing an investigation of the 

oxide layers on the electrode surfaces using Raman spectroscopy.  Such an 

investigation was considered but was found to be outside the scope for this 

project.  However, it would be very interesting from a scientific point of 

view.  This may have provided important information about the changes in 

the oxide layers that may explain or partly explain the effect on the Tafel 

slopes. 

 

According to Yeager [11] oxygen reduction may go directly (direct 4 – 

electron pathway) or by a secondary state producing an instable super oxide 

(peroxide pathway).  Bocris et al. [3] supported this and stated that when 

dealing with passive steel the reduction of oxygen stops at peroxide (H2O2) 

formation, not going the step further to hydroxide (OH-) formation.  The 

peroxide formation reaction has a lower Tafel-gradient (~-0.04V/decade) 

than oxygen reduction; hence, this reaction should result in an overall 
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lower Tafel gradient. This reaction, however, is very unstable at lower 

temperatures and it is assumed that the overall effect is small. 

 

When dealing with steel embedded in concrete one should be aware of the 

complexity of the electrolytic system.  When an electrode-system (such as 

in the CRR – specimens) is polarised the whole electrode surfaces of the 

electrodes are not active.  Only on the parts of the surface in contact with 

pore solution charge transfer reaction occurs.  This leads to an uneven 

distribution of current, where some enclosed parts of the electrode surface 

remains inactive.   

 

Furthermore, when a large potential is applied one may assume that a larger 

part of the pore system will be influenced by the current field.  In smaller 

pores where the mobility of the molecules is limited due to physical 

barriers this may have an effect.  These small pores will contribute only if 

the applied field exceeds a limit.  

 

The most important aspect that affects the overall gradient of the Tafel 

constants are transport related phenomena like migration and especially 

diffusion.   

The cell current may have diffusion control (concentration polarisation) in 

some potential ranges.  This would yield a very much higher Tafel 

gradient.  Limited transport would limit the amount of charge transfer 

reactions and ultimately result in a limiting reduction current density.  

Research by Raupach [24, 25] indicates that normally in atmospheric 

conditions diffusion limiting processes are doubtful under normally 

polarised conditions.  Still the results from the polarisation experiments 
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substantiates that some degree of concentration polarisation occurs, 

especially at lower temperatures. 

 

Based on the given results in Figure 4. 17 – Figure 4. 22 it appears as if 

diffusion starts to act as a barrier on the current already at -0.3V in most of 

the cases.  The curves have departure points from linearity around this 

potential value.  The alteration which presumably is related to diffusion 

increases at a lower potential.  There is no decisive point where reduction 

of water takes over in the interval around -1.1V/MMO as expected.  

However, this will probably occur at even lower potentials. 

 

From the results it can be deduced that in the interval from 0 V to -0.3 V an 

“impure” oxygen reduction, i.e. other charge transfer reactions influencing 

the dominant oxygen reduction,  takes place and that in this potential region 

the dominant processes are related to charge-transfer.  This interval is 

influenced less by the lack of IR-drop correction due to small current 

densities.  The “impurities” may be other charge-transfer reactions, such as 

reduction of oxides, and/or effects induced by the initial equilibrium 

potential of the electrodes. Another uncertainty is the specific surface in 

contact with the electrolyte and inhomogeneities in the active surface. 

 

The interval from -0.3V to -1.2V seem to be dominated by transport 

limiting processes.  Presumably this is due to limited diffusion of dissolved 

oxygen from the bulk solution to the interface of the electrode, however, 

the current still increases by increasing overpotential and it is not observed 

a situation comparable to concentration polarisation.  IR-drop correction 

may also influence here due to larger current densities.   
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The main deductions are illustrated in Figure 4. 24. 

 

Figure 4. 24 Typical Evans Diagram from the polarisation experiments 

 

From Figure 4. 19 – Figure 4. 24 it can be seen that temperature has a 

considerable influence on the cathodic polarisation response.  The diffusion 

limiting processes occurs at lower overpotential and slow increase in 

current generates steeper gradients by decreasing temperatures, i.e. the 

current density increases less at given overpotentials.   

 

In the interval from 0V to -0.15V it seems to be relatively unaffected by 

temperature, but at such low current densities the accuracy of the 
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measurements may interfere and conceal the real behaviour. As a general 

observation the current shifts to lower intensity at lower temperatures.  

 

 

 

4.5 Influence of temperature on cathodic reaction rate 
 

 

The experiments to detect the influence of temperature on the cathodic 

reaction rate were performed on concrete specimens containing a 3-

electrode system as described in Chapter 3.  The programme was divided in 

two runs where the second included more specimen variation and more 

thorough control. 

 

 

4.5.1 Test programme and results 
 

Run 1 was executed with temperatures ranging from +40°C to -40°C.  The 

low temperature range was of most interest; however, the higher 

temperatures were interesting by means of being able to compare the 

results with other similar projects. In Run 1 this full temperature range 

were investigated.  However, in Run 2 only temperatures from 0°C to         

-40°C were tested.   

 

Run 1 included both concrete compositions and 2 curing regimes. This 

gives a total of four variants where two specimens for each variant were 

tested.  
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In the following the results from the various temperature intervals of Run 1 

are given. The results from:  

 

• Freezing (0°C to -40°C) presented in Figure 4. 25  

• Thawing (-40°C to 0°C) presented in Figure 4. 26  

• Heating (0°C to +40°C) presented in Figure 4. 27  

• Cooling (+40°C to 0°C) presented in Figure 4. 28   

 

The cell current development during the Stable temperature interval was 

displayed earlier (Figure 4. 14).  
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Figure 4. 25 Temperature response on the cell current of the polarised 

specimens during the Freezing interval of Run 1 
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In Figure 4. 13 it can be observed that the results at a temperature of -10°C 

are missing.  Due to loss of logging data resulting from a power failure 

these results were regrettably not recovered.   
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Figure 4. 26 Temperature response on the cell current of the polarised 

specimens during the Thawing interval of Run 1. 
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Figure 4. 27 Temperature response on the cell current of the polarised 

specimens during the Heating interval of Run 1 
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Figure 4. 28 Temperature response on the cell current of the polarised 

specimens during the Cooling interval of Run 1 

 

 

Run 2 included a larger number of curing regimes.  Here a total of eight 

variants were tested, four for each concrete composition.  Three parallel 

samples for each variant were run through the temperature cycle.  Due to 

extensive and repeated problems with the logging equipment it has only 

been possible to reconstruct the Freezing interval of Run 2 of the 

experiments in the temperature range from -5°C to -40°C.   

 

The results from the Freezing interval of Run 2 are displayed in          

Figure 4. 29. 
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Figure 4. 29 Temperature response on the cell current of the polarised 

specimens during the Freezing interval of Run 2 
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4.5.2 Discussion of the influence of temperature on the cathodic 
 reaction rate 
 

Temperature influences nearly all chemical processes.  From the results 

given in section 4.5.1 it can be clearly seen that temperature influence the 

system.  The activation energy constant, a, according to Equation 2.16 

characterises the temperature sensitivity of a particular chemical reaction. 

 

Temperature sensitivity of the cathodic reaction rate 

 

To obtain the activation energy constants for the variants, the results were 

plotted as reciprocal of temperature given in Kelvin vs. logarithm of the 

current intensities. The activation energy constant is then proportional to 

the absolute slope value.  This presentation is abbreviated “Arrhenius 

plots” in the following.  The Arrhenius plots corresponding to Figure 4. 25 

to  Figure 4. 29 are given in Figure 4. 30 to Figure 4. 34. 
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Figure 4. 30 Arrhenius plots for Freezing of Run 1 
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Figure 4. 31 Arrhenius plot for Thawing of Run 1 
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Figure 4. 32 Arrhenius plot for Heating of Run 1 
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Figure 4. 33 Arrhenius plot for Cooling of Run 1 
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Figure 4. 34 Arrhenius plots for Freezing of Run 2  
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A summary of the activation energy constants for both runs in the CRR – 
experiments is given in Table 4.4. 
 
Table 4. 4 Activation energy constants for the CRR experiments.  

Calculated based on regression analysis of Figure 4. 30 – 

Figure 4. 34 

Run 2
0.4 0.6 W S S U Freezing Thawing Heating Cooling Freezing

[K] [K] [K] [K] [K]

X X X 4660 4000 630 820 5410
X X X 5400
X X X 5150
X X X 4340 4305 4600 4860 4730

X X X 5130 4230 2850 3150 4220
X X X 4740
X X X 5200
X X X 4960 4700 4060 3270

Erroneous data (logging failure)
Not tested in Run 1

Run 1
Activation energy constantsw/b -ratio SealingCuring

 
Higher activation energy constants indicate higher temperature sensitivities 

for the reactions.  

 

The fact that the curves presented in Figure 4. 30 – Figure 4. 34 are quite 

linear in most cases demonstrates that the activation energy constant is a 

function of temperature within the investigated intervals. However, 

deviations from linearity indicate that the systems are also influenced by 

other parameters.  When comparing the results between intervals there are 

differences which indicate quite considerable hysteresis.  In the following 

each of the variants are discussed briefly. 

 

 



 TEMPERATURE EFFECTS ON CATHODIC REACTION RATE 163 

C-0.4-W-U (Figure 4. 30 – Figure 4. 34) 

This variant was tested in all temperature intervals of Run 1 and Run 2.   
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Figure 4. 35 Development of the activation energy constant for the         

C-0.4-W-U variant between the temperature intervals in the 

CRR – experiments 

 

Between Freezing and Thawing of Run 1 the activation energy constant 

decreases by more than 10%, indicating less temperature sensitivity during 

thawing compared to freezing.  This difference in temperature sensitivity is 

probably related to frozen capillary water.  During freezing about 12% of 

the evaporable water is frozen.   

 

The Arrhenius curves on Freezing and Thawing are fundamentally different 

for this variant.  During Freezing the curve appears to decline towards the 

lowest temperatures, while on Thawing the reversed behaviour is found. 
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This observation is in accordance with accumulated ice amounts given in 

Figure 4.3 and the different amounts of ice on freezing and thawing. 

 

When the pore water freezes it is assumed that the ice-front moves from the 

surface and inwards inhibited in its progress by “ink-bottles” in the pore 

system.  These obstacles correspond to the amount of super-cooling needed 

for the ice front to progress beyond this obstacle.   Thawing of water in 

small pores will occur at a specific temperature for a specific pore size 

unaffected by these “ink-bottles”.  The systems on freezing and on thawing 

are therefore fundamentally different. When comparing the two cases, one 

would expect to observe a clear hysteresis, which in this case was found to 

be about 10% change in activation energy constant.    

 

The activation energy constant is in the range of 4000K which is 

comparable to similar research found in the literature.  However, during the 

Heating and Cooling intervals of Run 1 this variant stands out.  The 

activation energy constants are very much lower compared to the other 

variants.   

 

The curve shape for these two temperature intervals is very different 

compared to the other temperature intervals and far from linear.  The lack 

of linearity indicates that this variant is affected by other processes to a 

large degree.   

 

Since its behaviour stands clearly out compared to the other variants no 

conclusion can be made on which processes that are affecting it most 
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during heating and cooling.  It is supposed that a large part of the effect is 

connected to moisture exchange with the surrounding environment.  

 

In the Freezing interval of Run 2 the activation energy constant is higher 

compared to the corresponding interval of Run 1.  The increase was about   

20 %.  The change in temperature sensitivity can be due to differences 

between the specimens since these were cast at different points in time.   

 

 

C-0.4-W-S (Figure 4. 34) 

This variant was only tested in Run 2.  The activation energy constant and 

the curve are close to identical to that of the C-0.4.W-U variant in the same 

run.   

 

This variant has no comparable values from previous testing and the 

discussion of its temperature sensitivity is only based on comparison to the 

other variants tested in Run 2.  The similar behaviour of the water cured 

variants suggests that the sealing would not change the transport conditions 

of oxygen to the cathodic electrode; neither induces changes in the 

moisture condition to a notable degree.   

 

 

C-0.4-S-U (Figure 4. 34) 

Similarly to the C-0.4-W-S this type has only been tested in Run 2 and no 

comparable results from previous testing exist.   The activation energy 

constant of this type is slightly (5%) lower than the water-cured variants of 

the 0.4 concrete.  This variant behaves similarly as the C-0.4-S-S variant.  
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However, the variation between the sealed cured variants of the w/b 0.4 

concrete is notably larger than that of the water-cured variants of the same 

concrete.   

 

The difference in the calculated activation energy constants between the 

sealed variants is approximately 400K.  The curves are more or less 

overlapping for temperatures higher than -20°C where the curve for the 

sealed variant deviates to lower values than the unsealed variant.  The 

observation may indicate that either there is a change in the moisture 

conditions in the unsealed variant by water uptake from the surrounding 

air, or that the transport of oxygen to the cathodic electrode is slightly 

inhibited in the sealed variant.  
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C-0.4-S-S (Figure 4. 30 – Figure 4. 34) 

This variant was tested in both runs.   
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Figure 4. 36 Development of the activation energy constant for the         

C-0.4-S-S variant between the temperature intervals in the    

CRR – experiments 

 

In contrast to the water-cured and unsealed variant the variation of the 

activation energy constants within the different temperature intervals was 

not too large.  There is a slight decrease in temperature sensitivity from 

Freezing to Thawing in Run 1.   The decrease was less than 1% and was 

therefore within the error range of the experiments.  Between Heating and 

Cooling intervals the increase was about 5%.  The activation energy 

constant for Run 2 Freezing interval are higher compared to the 

corresponding temperature interval in Run 1.  The difference is 

approximately 10%.  Generally, it appears as if the variation is smaller on 

the sealed-cured and sealed variant compared to the water-cured variant.  



168 DR.ING THESIS BY JAN-MAGNUS ØSTVIK  
  

The sealed cured variant had lower moisture content (due to self-

desiccation) and was therefore probably less affected by ice formation in 

the capillaries.   

 

 

C-0.6-W-U (Figure 4. 30 – Figure 4. 34) 

This variant was one of four variants tested both in Run 1 and Run 2.   

 

0

1000

2000

3000

4000

5000

6000

Freezing Thawing Heating Cooling Freezing

Run 1 Run 2

A
ct

iv
at

io
n 

en
er

gy
 c

on
sta

nt
 [K

]

C-0.6-W-U

 

Figure 4. 37 Development of the activation energy constant for the         

C-0.6-W-U variant between the temperature intervals in the    

CRR – experiments 

 

The activation energy constant is relatively high (5130K) during the 

Freezing interval of Run 1 and has a significant drop during the Thawing 

interval (4230K).  This considerable drop is close to 20%.  Variations in 

activation energy constants of such magnitude suggest big differences, i.e. 

ice formation,  in the system on freezing and on thawing.   
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The large hysteresis between freezing and thawing is in all likelihood 

connected to freezing of capillary water.  Similarly as the C-0.4-W-U 

variant the C-0.6-W-U variant has quite high moisture content and 

therefore has a quite high probability for ice formation in the largest 

capillary voids.  From section 4.2 it can be found that approximately 29% 

of the evaporable water is frozen at -35°C given that the specimens are 

water saturated. 

 

Due to the large fraction of frozen capillaries and the differences in how 

water freezes and ice melts in a porous system, one should expect a 

relatively large hysteresis.  In this case the hysteresis can be expressed as 

20% reduction in activation energy constant on thawing compared to 

freezing.   

 

The difference in activation energy constant between C1-0.6-W-U and   

C1-0.4-W-U is 530K during the Freezing interval, but during the Thawing 

interval this difference is reduced to 230K.   

 

This observation shows the difference between the concrete qualities.  The 

concrete with w/b ratio of 0.6 has a larger fraction of capillary pores; in 

addition to a larger fraction, the capillaries in the w/b 0.6 concrete will 

presumably be larger and better connected.  The amount of frozen 

capillaries illustrates these differences. The w/b 0.4 concrete has a fraction 

of 12% of the evaporable water frozen while the w/b 0.6 concrete has about 

29% of the evaporable water frozen in the capillaries.  The variation 

between the concretes on thawing is not so different, and this may be 

explained in that the amount of capillaries blocked due to ice in the w/b 0.6 



170 DR.ING THESIS BY JAN-MAGNUS ØSTVIK  
  

concrete makes the transport behaviour similar to that of the w/b 0.4 

concrete, which initially has a finer pore structure and fewer capillaries 

blocked of ice.  Since a large fraction of ice melts around 0°C the systems 

will be comparable during better parts of this temperature interval. 

 

On the higher temperatures, the Heating and Cooling intervals, there is a 

large change in the activation energy constant.  This drop, however, is not 

as large as that of the concrete with w/b ratio of 0.4.   

 

During Freezing of Run 2 the activation energy constant is lower compared 

to the corresponding temperature interval of Run 1, but similarly as for the 

C1-0.4-W-U this may be due to differences between the mixes. 

 

 

C-0.6-W-S (Figure 4. 34) 

This variant was only tested in Run 2.  It has an activation energy constant 

of 4740K in the Freezing interval, which is right in between the W-U 

variant and the S-U variant.    

 

This variant has no comparable values from previous testing and the 

discussion of its temperature sensitivity is only based on comparison to the 

other variants tested in Run 2.  The notable difference to the water cured 

and unsealed suggests that the sealing has kept the moisture condition so 

high that diffusion of oxygen is inhibited, i.e. the conditions for transport of 

oxygen to the cathodic electrode are dominated by diffusion in water.  

Diffusion in water is very much slower than diffusion in air that might 

result in lower current densities and explain the results for this variant.   
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C-0.6-S-U (Figure 4. 34) 

Similarly to the C-0.6-W-S this type has only been tested in Run 2.  This 

variant has the highest activation energy constant of the variants of the 

concrete with w/b ratio of 0.6.   

 

This variant has no comparable values from previous testing and the 

discussion of its temperature sensitivity is only based in comparison to the 

other variants tested in Run 2.  Initially (at 0°C) this variant has the lowest 

current density of the w/b 0.6 concrete variants.  At decreasing 

temperatures this variant catches up with the other w/b 0.6 concrete 

variants.  This is observed by its large activation energy constant that is 

1000K and 500K larger than the W-U and the W-S variants, respectively. 

 

 



172 DR.ING THESIS BY JAN-MAGNUS ØSTVIK  
  

C-0.6-S-S (Figure 4. 30 – Figure 4. 33) 

This type was initially planned to be tested in both Run 1 and Run 2.  Due 

to malfunction of the logger during Run 2 the results for this variant was 

not recoverable.  
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Figure 4. 38 Development of the activation energy constant for the         

C-0.6-S-S variant between the temperature intervals in the    

CRR – experiments 

 

In Run 1 this variant shows the same trend as the other variants.  It has a 

decrease in activation energy constant between Freezing and Thawing.  The 

decrease is approximately 5%.  The small hysteresis may be explained by 

that the S-S variants have less water content than the W-U variants due to 

self-desiccation.   
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It is highly probable that the C-0.6-S-S variant has less non-frozen water 

than the similarly cured and handled variant of the w/b 0.4 concrete and 

therefore has a larger hysteresis than the similar variant of the 0.4 variant. 

 

On the high temperature intervals this variant stands out.  On the contrary 

of the other variants this variant has a decreased activation energy constant 

between the Heating and Cooling intervals.  The decrease is almost 20% 

compared to the other variants which have an increase in the range of        

5-10% between the same intervals.  The reason to this irregular behaviour 

has not been recognised.   

 

 

 

4.5.3 Discussion of the influence of moisture condition on the cathodic 
reaction rate 

 

 

The moisture condition of the concrete clearly influences the cathodic 

reaction rate. This can be seen by the different behaviour between the 

various curing regimes and sealing levels.  Though, it seems as the 

temperature sensitivity of the reaction is not affected in the investigated 

range of moisture conditions as discussed in section 4.5.2.  In the low 

temperature ranges there is a notable change in the progress of the cathodic 

reaction intensities (hysteresis) on Freezing and on Thawing for some of 

the variants.  A discussion of these observations is given below. 
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By combining the results from Freezing and Thawing of Run 1, given in 

Figure 4. 39, a substantial hysteresis for some of the variants can be 

observed.  
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Figure 4. 39 Combination of Freezing and Thawing of Run 1 

 

 

While the hysteresis is not so obvious for the same combination of Heating 

and Cooling, given in Figure 4. 40. 
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Figure 4. 40 Combination of Heating and Cooling of Run 1 

 

 

The water-cured and unsealed variants of both concrete compositions show 

a clear change between Freezing and Thawing.   

 

It is expected that some of these changes were generated by moist 

exchange with the surroundings in the chamber during testing. The sealed 

variants seem to be unaffected between the intervals and have a more or 

less identical curve both on Freezing and on Thawing.  The sealed variants 

contained less moisture initially (DS = 75%), and presumably they were 

prevented from evaporation by the sealing, e.g. securing a stable moisture 

content.   
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It is assumed that the unsealed variants had a significant moist loss during 

the testing period.  The drying effect is presumably generated by the 

continuously running fans on the heat exchanger inside the chamber.  The 

fans that secured an even temperature distribution in the chamber, but did 

presumably dry out the unsealed specimens during the testing period.   

 

A quantification of the drying effect requires reliable data on the moisture 

condition of the variants before, during and after testing, which were not 

performed in Run 1.  The moisture data from Run 2 is shown in  Table 4. 5, 

and based on these values an estimate of the consequence of the drying 

effect by means of change in degree of saturation is given. 

 

Table 4. 5 Data on moisture state of the CRR – variants tested in Run 2 

Variant DCS ∆ DCS Porosity
End tes t During tes t Total

[%] [%] [g] [%]

C-0.4-W-U 89 13.8 28.1 5.7
C-0.4-W-S 97 13.1 27.3 5.3
C-0.4-S-U 58 15.7 35.0 6.4
C-0.4-S-S 75 15.0 35.6 6.2
C-0.6-W-U 80 18.5 30.9 7.8
C-0.6-W-S 99 19.0 35.8 8.0
C-0.6-S-U 62 18.3 42.4 7.7
C-0.6-S-S 77 18.4 44.7 7.8

Evaporable water

8

17

19

14
 

 

In the ∆ DCS column in Table 4. 5 it is assumed that the variants sealed 

during testing represent the initial state of moisture condition. The drying is 

calculated as the difference in moisture condition between the unsealed and 

sealed variants of the same concretes with the same curing.  This way of 
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calculating the drying is not accurate, however, it gives an estimate of how 

much water that is lost during the test cycle.   

 

From the values in Table 4. 5 it can be found that a significant moist loss 

took place during testing.  Close to 20% change in moisture condition in 

the worst case (C-0.6-W-U).  The hysteresis may therefore partly represent 

a change in moisture condition. 

 

Between Heating and Cooling (Figure 4. 40) (where one should expect a 

considerable drying) the effect of drying is not clear.  This may indicate 

that although it is found a change in moisture condition during the whole 

run, it is plausible that the wettest variants were more affected by the ice 

formation in the capillaries during Freezing and Thawing than the effect 

drying introduces on the high temperature intervals.   

 

The Kelvin Equation expresses a relation between pore size and the 

freezing point depression. In short: water in small capillaries will remain 

liquid, while water in larger capillaries will nucleate ice.  

 

By low temperature calorimetry it has been found that approximately 12% 

and 29% of the evaporable water will freeze within the temperature interval 

during freezing for fully saturated specimens of the concrete with w/b ratio 

of 0.4 and w/b ratio of 0.6, respectively.  Ice formation was anticipated to 

result in a significant and sudden drop in current density.  However, no 

such observations were made, and the conclusion is that any possible ice 

formation is not significant for the current response and that transport of 

reactants finds alternate pathways.   
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4.5.4 Discussion of the combined influence of temperature and 
moisture condition on the cathodic reaction rate 

 

 

The forgoing discussions lead to an assumption that there is a connection 

between temperature and the moisture content of the concrete and that the 

total effect is superimposed by both parameters. 

 

The calculated activation energy constants found from on the Arrhenius 

plots in the CRR – experiments alone give little basis to conclude which 

parameters are controlling the temperature sensitivity of the reaction rate.  

 

In Figure 4. 41 the activation energy constants are plotted vs. the concretes 

moisture condition, represented by their degrees of capillary saturation.  It 

can be observed from Figure 4. 41 that an overweight of the activation 

energies are in the range 4000 – 5000K, and that the dispersion do not seem 

to have a direct correlation to moisture state. 

 

The observation may indicate that the temperature sensitivity is not 

moisture dependent in the investigated range of moisture conditions.  

Furthermore, the activation energy constants seem to be independent on the 

w/b ratio.  More research is clearly needed on this subject for verification.  
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Figure 4. 41 Activation energy constant as a function of degree of capillary 

saturation 

 

 

The reduction reaction itself is assumed not to be very dependent on the 

moisture content as long as it is sufficiently supported.  However, this 

supply, i.e. diffusion of oxygen is dependent on the bulk phase concrete 

properties and its moisture condition.  The transport of hydroxyl from the 

cathodic electrode has the same dependency on the concrete moisture 

condition and physical properties. 

 

Figure 4. 39 shows considerable hysteresis for the water-cured and 

unsealed specimens of both concrete compositions between Freezing and 

Thawing of Run 1.  Some of this effect is supposed to be related to moist 
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exchange with the surrounding atmosphere in the chamber.  The hysteresis 

may also partly be generated by ice formation.  

 

There is no obvious connection between temperature and moisture 

condition of the concrete for the cathodic reaction rate neither from the 

results or theoretical, as long as the reaction is not undergoing 

concentration polarisation.   

 

 

 



 TEMPERATURE EFFECTS ON CATHODIC REACTION RATE 181 

4.6 Concluding discussion 
 

Reduction of oxygen, which assumingly is the dominant reaction occurring 

in the CRR experiments, is a temperature dependent electrochemical 

reaction.  This reaction is dependent on sufficient supply of water and 

oxygen at the electrode surface and the ability for hydroxyl ions to diffuse 

from the electrode surface.   

 

It is known from the literature [5] that diffusion of oxygen is very fast in air 

compared to water.  Saturated concrete will have slow diffusion of oxygen, 

but plenty supply of water.  Clearly, there is a balance where there is plenty 

supply of oxygen and still plenty supply of water on the electrode.  The 

solubility of oxygen in water is temperature dependent and increases by 

decreasing temperature.  

 

As shown in section 4.3 the temperature responses are giving transient 

periods of approximately 4 hours in average when the temperature is 

changed 5°C.   A “quasi steady-state” was found as the average of the last 4 

hours of the 24 hours steps disregarding the first 20 hours of measurements.    

Some of the transient period is due to a lag between concrete temperature 

and the chamber temperature.  The slow temperature change in the concrete 

is related to its large mass.  The concrete temperature had a lag of 

approximately 2 hours compared to the chamber temperature.  The 

difference between concrete temperature and chamber temperature is 

summarised in Figure 4. 15.   
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At the lowest temperature the specimen cooling was slow; hence, the lag 

was very much longer at this temperature step in comparison to all others.   

 

The concrete seemed to be very energy consuming to freeze further from 

around -35°C.  This may be due to a fraction of the capillaries having their 

ice nucleation point around this temperature. -35°C represents a Kelvin 

radius of about 2 nm presumed a solid liquid governing interfacial energy 

in the pore according to Sellevold and Bager [72].  

 

This is a strong indicative that ice was present in the pores, at least for the 

wettest specimens of the w/b 0.6 concrete.  The presence of ice did not 

result in any notable and sudden changes in the reaction rate as first 

suspected. 

 

By investigating the systems at a fixed temperature of 0°C for more than 

200 hours it was found a slight decrease in current intensity over this 

period.  The decrease was less than 5% over this period for the most 

affected variant (C-0.6-S-S).   This small reduction in reaction rate may be 

induced by a local change in pH in the environment adjacent to the 

cathodic electrode.  A pH increase due to formation of hydroxyl would 

decrease the equilibrium potential of the electrode, and therefore decrease 

the cathodic overpotential needed to obtain the certain potential.  The 

decrease in driving force would, evidently, result in a decreased reaction 

rate.  

 

Still, the profound stability over a period of more than 200 hours is an 

indicative that the reaction is well supported by oxygen and that  
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concentration polarisation is not likely at least at this temperature. It is 

therefore assumed that the reaction is not impaired by diffusion of neither 

oxygen nor hydroxyl ions.  

 

The cathodic polarisation experiments (reported in section 4.4) indicate in 

contrast to the steady polarisation that the reaction is impaired by diffusion 

phenomena at -0.6 V/MMO.  These experiments are performed without IR-

drop corrections, but it is indicated that the IR-drop corrections are 

negligible for the curve shape. 

   

The Evans Diagrams plotted from the results show that the systems appear 

to have diffusion barriers on surprisingly low (cathodic) overpotentials.   

 

Already at -0.3 V/MMO diffusion appeared to have dominant effect on the 

progress of reaction intensity by increased cathodic overpotentials.  In the 

potential interval from 0 to -0.3 V/MMO the systems show a linear 

behaviour (Tafel region) in a linear logarithmic diagram.  It is assumed that 

the results are representative for the polarisation behaviour of steel in 

concrete at various temperatures.    

 

Compared to an idealised oxygen reduction curve (Tafel gradient of 

0.12V/decade) the systems show quite good correlation to this in this 

potential interval.  

 

In the actual potential range -0.6V/MMO the systems were affected by 

transport phenomena.  Presumably the systems were limited by diffusion of 

oxygen from the bulk solution to the interface of the steel electrode.  
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The diffusion seemed to occur on decreased overpotentials when the 

temperature was decreased.  This is coherent to limited mobility of species 

by decreasing temperature.  On the other hand the solubility of dissolved 

oxygen in water is increasing with decreasing temperature.  However, the 

solubility plays a secondary role as diffusion is clearly more dominant in 

the accessibility at the electrode surface than the reactants solubility.    
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5 
 

TEMPERATURE EFFECTS ON ELECTRICAL 
RESISTIVITY OF CONCRETE 

 

 

This chapter gives a detailed description of the experimental results.  In the 

latter part a thorough discussion of the interpretation and conclusions are 

given. 

 

 

 

5.1 Introduction  
 

It has been shown by others [32, 34] that temperature is a vital parameter 

for the electrical resistivity of concrete, and accordingly also important for 

the overall corrosion rate of embedded steels.  

  

To identify the temperature effects on the concrete system, hence, how the 

electrolyte reacts on temperature, the ER – research was initiated.  Other 

electrical properties than the electrical resistivity of the electrolytic system 

were evaluated since Electrochemical Impedance Spectroscopy was chosen 

as one of the measuring techniques.  

 

The ER – experiments includes additional parameters in combination with 

temperature such as moisture state and concrete quality. 
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The investigations were made using three different measurement 

techniques:  

 

• Electrochemical Impedance Spectroscopy (EIS) 

• Positive feedback (PF) 

• Potential square pulse (PSP)   

 

Positive feedback were compared and validated against EIS.   

 

 

 

5.2 Temperature influence on electrical resistivity of 
concrete 

 

The electrical resistivity of concrete was measured at four specific 

temperatures (20°C, 2°C, -14°C and -28°C).   

 

The experiments were executed in different Runs: 

   

• Run 1 was primarily to test the validity of the measurement 

techniques and to record temperature changes in the concrete 

specimens.  

 

• The aim of Run 2 was to identify moisture effects using parallel 

measurements with both EIS and the positive feedback circuit. Both 

Run 1 and Run 2 were performed at Instituto Eduardo Torroja 

(IETcc), Madrid.  
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• Run 3 was executed at NTNU with a different measurement 

technique, chronoamperometry, or as more commonly abbreviated, 

potential square pulse measurements.  Run 3 was carried out in order 

to add more moisture states to extend the range of moisture 

conditionings.   

 

• Run 4 was made with the same samples as in Run 3. The specimens 

were saturated for 8 weeks immersed in water before initiation of 

Run 4,  through before they were Run through a temperature cycle.   

 

• Run 5 was only a moisture state control test where the electrical 

resistivities of the samples were followed during changing moisture 

states (resaturation by immersion in water). These samples were not 

run through a temperature cycle.  
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5.2.1 Influence of temperature on electrical resistivity of concrete – 
 results 
 

 

The results for each temperature interval of each Run are presented in the 

following.   

 

Run 1 

 

The results for Freezing in Run 1 are shown in Figure 5. 1 and Figure 5. 2 

for the concrete with w/b of 0.4 and with w/b 0.6, respectively.  The 

measurements were performed by EIS. 
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Figure 5. 1 Effect of temperature on the electrical resistivity of the w/b 0.4 

concrete during Freezing in Run 1. Measured by EIS. 
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The results are the calculated average of the measurements for three 

parallel samples. 
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Figure 5. 2 Effect of temperature on the electrical resistivity of the w/b 0.6 

concrete during Freezing in Run 1. Measured by EIS. 

 

 

In Figure 5.3 the statistical variation between the parallel samples is 

illustrated.  The results for variant R1-0.4-W-S are shown with the standard 

deviation added and withdrawn. 
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Figure 5. 3 Statistical variation for variant R1-0.4-W-S during Freezing in 

Run 1. The standard deviation is marked by the error bars. 

Measured by EIS. 

 

 

During Thawing in Run 1 the measurements were performed with positive 

feedback.   The results are shown in Figure 5. 4 and Figure 5. 5 for the 

concrete with w/b of 0.4 and w/b of 0.6, respectively. 
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Figure 5. 4 Effect of temperature on the electrical resistivity of the w/b 0.4 

concrete during Thawing in Run 1. Measured by Positive 

Feedback. 

 

It was not possible to obtain any values for the R1-0.4-S-D variant at -

28°C.  The interpretation of the results is therefore based on the points 

obtained at the other temperatures. 
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Figure 5. 5 Effect of temperature on the electrical resistivity of the w/b 0.6 

concrete during Thawing in Run . Measured by Positive 

Feedback. 

 

 

Run 2 

 

This Run was performed using parallel measurements by electrochemical 

impedance spectroscopy and by the positive feedback circuit on a 

potentiostat.  Each variant were represented by a single specimen only.  

 

It is important to notice that in Run 2 only one specimen of each variant 

were tested  An exception is that for the water-cured sealed variants of both 

concrete compositions an additional specimen were included.  These 
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specimens were saturated by vacuum for 36 hours, and then tested 

(specimen R2-0.4-W-S-2 and R2-0.6-W-S-2).   This treatment was 

performed in order to have higher moisture content and observe moisture 

related phenomena. 

 

In Figure 5. 6 the EIS results from the Freezing are shown for all variants.  

The parallel results from positive feedback are displayed in Figure 5. 7. 
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Figure 5. 6 Effect of temperature on the electrical resistivity for all 

variants during Freezing in Run 2.  Measured by EIS. 
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Figure 5. 7 Effect of temperature on the electrical resistivity for all 

variants during Freezing in Run 2.  Measured by positive 

feedback. 
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The results for the R2-0.4-S-S, R2-0.4-S-D and R2-0.6-S-D at -28°C were 

not within the limits of the positive feedback circuit of the potentiostat.  

The interpretation of the results for these variants is based on the other 

temperatures.  

 

The results from Thawing are shown in the same way in Figure 5. 8 and 

Figure 5. 9 for EIS and positive feedback, respectively. 
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Figure 5. 8 Effect of temperature on the electrical resistivity for all 

variants during Thawing in Run 2.  Measured by EIS. 
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Figure 5. 9 Effect of temperature on the electrical resistivity for all 

variants during Thawing in Run 2.  Measured by positive 

feedback 
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Run 3 

 

In Run 3 the measurements were performed by a different method than in 

Run 1 and Run 2.  These measurements were performed by a handheld 

potential square pulse meter (Escort LCR meter) at a fixed frequency of       

1 kHz.  The results from Run 3 are shown in Figure 5. 10 and Figure 5. 11 

for Freezing and Thawing, respectively.   
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Figure 5. 10 Effect of temperature on the electrical resistivity for all 

variants during Freezing in Run 3.  Each point is the average 

of three parallel specimens.  Measurements performed by 

Potential Square Pulse (PSP). 
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The resistivities of the sealed-cured and dried (40°C for 1 week) samples 

for both concrete compositions were out of range for the equipment at -

28°C.   
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Figure 5. 11 Effect of temperature on the electrical resistivity for all 

variants during Thawing in Run 3.  Each point is the average 

of three parallel specimens. Measurements performed by PSP. 

 

 

Run 4 

 

Run 4 was executed on the same samples as tested in Run 3.  Before start 

of Run 4 the specimens were immersed in water for 8 weeks in order to 

saturate as much as possible.  During the immersion period the specimens 

were controlled for changes in the electrical resistivity.  When the decrease 
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between the weekly measurements was less than 5 %, the electrical 

resistivity was considered to have sufficient stability for initiation of Run 4.  

 

The results are shown in Figure 5. 12 and Figure 5. 13 for Freezing and 

Thawing, respectively. 

 

0

200

400

600

800

1000

1200

1400

1600

1800

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25

Temperature  [oC]

El
ec

tri
ca

l r
es

ist
iv

ity
 [ ⎯

m
]

R4-0.4-W-Sr
R4-0.4-W-Dr
R4-0.4-S-Sr
R4-0.4-S-Dr
R4-0.6-W-Sr
R4-0.6-W-Dr
R4-0.6-S-Sr
R4-0.6-S-Dr

El
ec

tri
ca

l r
es

ist
iv

ity
 [Ω

m
]

Average of 3 
specimens

FREEZING

 

Figure 5. 12 Effect of temperature on the electrical resistivity for all 

variants during Freezing in Run 4.  Each point is the average 

of three parallel specimens. Measurements performed by PSP. 
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Figure 5. 13 Effect of temperature on the electrical resistivity for all 

variants during Thawing in Run 4.  Each point is the average 

of three parallel specimens. Measurements performed by PSP. 
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5.2.2 Hysteresis between Freezing and Thawing 
 

The results given in section 5.2.1 show a nearly consequent hysteresis 

between Freezing and Thawing.     
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Figure 5. 14 An example for the w/b 0.4 concrete of the hysteresis found 

between the temperature intervals; Freezing and Thawing.  

The Figure corresponds to a combination of Figures 5.10 and 

5.11 (Run 3).  The measurements were performed by PSP. 

Freezing is marked by arrows on the curves. 
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Figure 5. 15 An example for the w/b 0.6 concrete of the hysteresis found 

between the temperature intervals; Freezing and Thawing.  

The Figure corresponds to a combination of Figures 5.10 and 

5.11 (Run 3).  The measurements were performed by PSP. 

Freezing is marked by arrows on the curves 

 

Figure 5. 14 and Figure 5. 15 show that the resistivity values on Thawing 

were generally higher or equal on 20°C and on -14°C than those of 

Freezing while they seem generally lower or equal for 2°C.  The hysteresis 

is presumably generated by moisture phenomena and may also be 

connected to irreversible changes in the pore system due to ice formation in 

the pores.  This will be discussed further in a later section. 
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5.2.3 Comparison of measurement techniques 
 

Run 2 was partly performed to validate positive feedback as method for 

resistance measurements in concrete, therefore parallel measurements by 

electrochemical impedance spectroscopy and positive feedback were 

performed.  This enabled comparison of the methods.  EIS was regarded as 

the “true” method since the internal resistor is 10 MΩ while the capacity of 

the positive feedback equipment is 1MΩ.   

 

Figure 5. 16 Comparison of EIS and positive feedback measuring 

techniques.  The deviation of positive feedback started at        

17 kΩm. 
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Figure 5. 16 show electrical resistivity values recorded with EIS compared 

to corresponding simultaneously recorded values with positive feedback.   

 

Apparently, positive feedback deviates at higher values of electrical 

resistivity than 17 kΩm, which correspond to an electric resistance of       

485 kΩ.   

The positive feedback circuit of the potentiostat sends out an AC current 

signal of variable frequency dependent upon the magnitude (amplitude) of 

the current signal.   

 

At high resistances the current needs to be very small and thus the 

frequency is increased (above 100 kHz at 500 kΩ).  Since the measurement 

at such high frequencies represents an impedance with a substantial 

capacitive contribution an error is introduced.  The measurement will 

therefore not represent the circuit real impedance (resistance).    

 

From Figure 5. 6 and Figure 5. 7 the big difference between the 

measurement techniques can be found during Freezing, and from       

Figure 5. 8 and Figure 5. 9 during Thawing.  Generally, by comparing the 

results from Freezing and Thawing the results from the positive feedback 

(Thawing) generally give less steep slopes.  Additionally the maximum 

values for some variants are more than a factor of two higher for the EIS 

results (Freezing).  

 

The results from the positive feedback measurements show a critical point 

around 17 kΩm where the values deviate to lower values compared to the 

corresponding results from the EIS measurements.   
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The data during Freezing of Run 2 is given in Table 5. 1 and Table 5. 2 for 

the w/b 0.4 concrete and the w/b 0.6 concrete, respectively. 

 

Table 5. 1 Comparison of measured values of resistivity for the w/b 0.4 

concrete with positive feedback and EIS.  The ratios between 

the measured values are given in respect to EIS 

measurements.   

Temp.
[oC] [Ωm] [Ωm] [Ωm] [Ωm] [Ωm]

20 1579 625 2926 4568 5320
20 1598 595 3108 4808 5525

2 4095 1173 8278 14245 16503
2 4474 1132 8490 14700 17450

-14 13160 4550 22470 29505 31115
-14 13913 5280 28613 50100 64050
-28 25410 16765 33600 N/A N/A
-28 36883 19638 80613 153750 225500

Positive feedback EIS EIS/Positve feedback ratio

1.01

1.09

1.06

1.45

0.95

0.97

1.16

1.17

1.06

1.03

1.27

2.40

1.05

1.03

1.70

1.04

1.06

2.06

R2-0.4-S-D-1R2-0.4-W-S-1 R2-0.4-W-S-2 R2-0.4-W-D-1 R2-0.4-S-S-1

 

Table 5. 2 Comparison of measured values of resistivity for the w/b 0.6 

concrete with positive feedback and EIS.  The ratios between 

the measured values are given in respect to EIS measurements 

Temp.
[oC] [Ωm] [Ωm] [Ωm] [Ωm] [Ωm]

20 192 68 1575 434 4953
20 186 65 1548 459 5178

2 396 104 3703 1134 16303
2 392 98 4053 1121 16075

-14 896 417 11533 2860 31745
-14 917 494 11981 2918 53688
-28 2282 1575 25725 7123 N/A
-28 2296 1664 33800 7544 162625

Positive feedback EIS EIS/Positve feedback ratio

0.97

0.99

1.02

1.01

0.96

0.94

1.19

1.06

0.98

1.09

1.04

1.31

1.06

0.99

1.02

1.06

1.05

0.99

1.69

R2-0.6-W-S-1 R2-0.6-W-S-2 R2-0.6-W-D-1 R2-0.6-S-S-1 R2-0.6-S-D-1
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The data given in Table 5. 1 and Table 5. 2 illustrates the difference 

between the measurement techniques.  On lower resistivity values both 

techniques show similar results and the ratio between EIS and Positive 

feedback (in respect to EIS values) are close to 1, while on resistivities 

values larger than 17kΩm the values are very different.  The difference was 

up to 2.4 times larger value obtained with EIS compared to corresponding 

measurement with positive feedback.  This measurement of 33.8 kΩm 

corresponds to an electrical resistance of 966 kΩ which is very close to the 

limitations of the equipment (1MΩ).   

 

Generally, it can be concluded that the positive feedback measurements 

contains an error on resistivity values larger than 17 kΩm which apparently 

increases on increasing resistivities.   Caution has therefore been made 

when interpreting the positive feedback results higher than this critical 

value. 

 

The potential square pulse equipment was not available for comparison, 

and therefore no verification against EIS was performed for this device. 
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5.2.4 Activation energy constants for the electrical resistivity 
 

The results given in section 5.2.1 demonstrate a clear relation between 

temperature and the electrical resistivity of concrete.  In general, the 

electrical resistivity increases exponentially with decreasing temperature, 

but the moisture content has a strong influence on the magnitude of the 

temperature effect.   

 

This observation agrees with results found in the literature [32, 40].  In 

order to control if the results agree with the Hinrichson-Rasch Law [59] 

(Equation 2.34) the results are plotted as Arrhenius plots, i.e. log 

(resistivity) vs. reciprocal of temperature (1/T). 

 

In the following section the Arrhenius plots for the various Runs and 

temperature intervals are given.  Succeeding activation energy constants 

according to Hinrichson-Rasch Law are calculated and listed in Tables for 

all variants. In the end a general discussion is given. 

 

If the results show a linear behaviour in the Arrhenius presentations then 

the temperature dependency of the progress of the electrical resistivity can 

be described by a single constant according to Hinrichson-Rasch law.  

However, if a deviation from linearity is observed this indicates that other 

processes influence the temperature sensitivity, and that the activation 

energy constant is a function of temperature, rather than a constant.   
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A nonlinear behaviour may indicate occurrence of irreversible changes in 

water distribution, irreversible changes in the pore system, and changes in 

the chemical composition of the pore water.  Further it may also indicate 

freezing of pore water or a change in the conduction phase. 

 

This will be discussed further after the presentation of Arrhenius plots. 

 

Run 1 
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Figure 5. 17 Arrhenius plot for all variants during the Freezing of Run 1.  

The results are averaged from 3 specimens of each variant. 

Corresponds to results presented in Figure 5.1 and Figure 5.2 
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From Figure 5. 17 it may seem as if all the variants could be expressed by 

individual activation energy constants.  Due to the linearity in the 

Arrhenius-plot it may be deduced that during Freezing all variants follow 

the Hinrichson-Rasch law.  The calculated activation energy constants are 

given in Table 5. 3. 
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Figure 5. 18 Arrhenius plot for all variants during Thawing in Run 1.  The 

results are averaged from 3 specimens of each variant. 

Corresponds to results presented in Figure 5.4 and Figure 5.5 

with values larger than 17 kΩm removed. 

 

On Thawing, given in Figure 5. 18, more deviation from linearity can be 

observed compared to that found for Freezing.  The deviation from 
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linearity indicates that other processes influence the temperature sensitivity. 

The measurements were performed by positive feedback and some of the 

deviations from linearity on resistivity values greater than 17 kΩm are 

probably influenced by uncertainties in the measurements. 

 

The calculated activation energy constants (according to Hinrichson-Rasch 

law) are presented in Table 5. 3.  The correlation coefficients (R2) are 

shown in a separate column to illustrate the deviation from linearity of each 

variant. 

Table 5. 3 Calculated activation energy constants with corresponding 

correlation coefficients for all variants tested in Run 1 

Activation 
energy 

constant

R2 Activation 
energy 

constant

R2

[K] [K]

R1-0.4-W-S (DS 95%) 4925 0.998 4441 0.995
R1-0.4-W-D (DS 65%) 4652 0.998 4015 0.995
R1-0.4-S-S (DS 74%) 4820 0.999 4002 0.993
R1-0.4-S-D (DS 55%) 5063 0.994 3976 0.997
R1-0.6-W-S (DS 98%) 5047 0.973 4512 0.965
R1-0.6-W-D (DS 46%) 4068 0.994 4050 0.987
R1-0.6-S-S (DS 68%) 4160 0.988 3778 0.959
R1-0.6-S-D (DS 32%) 4713 0.995 4047 0.990

Variant Freezing Thawing  
EIS Positive Feedback

 
 

 

The hysteresis between Freezing and Thawing observed in Figure 5. 17 – 

Figure 5. 18 and in the values of the activation energy constants are 
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probably related to water transport mechanisms and or phase 

transformations.  This will be further discussed in the general discussion. 

 

Run 2 

 

It must be emphasised that in Run 2 there were no parallel specimens and 

false measurements on one specimen will play a large role.  
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Figure 5. 19 Arrhenius plot for all variants during the Freezing of Run 2.  

Each variant is represented by a single specimen. The 

measurements are performed by EIS.  The Figure corresponds 

to results presented in Figure 5.6 

The deviation from linearity in the Arrhenius-plots, given in Figure 5. 19, 

are very small, except for the specimens that were saturated by vacuum 
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suction (R2-0.4-W-S-2 and R2-0.6-W-S-2).  These specimens have higher 

moisture content than the other tested specimens in Run 2.  Therefore, it is 

reasonable to anticipate that the moisture condition generates the deviation 

from linearity. It may seem as the activation energy constants for the 

anomalies have a departure value somewhere between 2°C and -14°C.  No 

data is obtained in the range between these temperatures.  Ice may have 

formed during Freezing in the largest pores between 2°C and -14°C and 

therefore a change in the conduction phases due to ice formation may 

explain the behaviour of the anomalies. 

   



 TEMPERATURE EFFECTS ON ELECTRICAL RESISTIVITY OF CONCRETE 213 

 

1

10

100

1000

10000

100000

0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 0.0039 0.004 0.0041 0.0042

Temperature  [K-1]

El
ec

tri
ca

l r
es

ist
iv

ity
 [ 

m
]

R2-0.4-W-S-1 (DS 76%) R2-0.4-W-S-2 (DS 99%)
R2-0.4-W-D-1 (DS 72%) R2-0.4-S-S-1 (DS 76%)
R2-0.4-S-D-1 (DS 71%) R2-0.6-W-S-1 (DS 58%)
R2-0.6-W-S-2 (DS 99%) R2-0.6-W-D-1 (DS 54%)
R2-0.6-S-S-1 (DS 63%) R2-0.6-S-D-1 (DS 60%)

El
ec

tri
ca

l r
es

ist
iv

ity
 [Ω

m
]

Positive feedback - Single specimens

FREEZING
Values larger than 17 kΩm removed

 

Figure 5. 20 Arrhenius plot for all variants during Freezing in Run 2.  Each 

variant is represented by a single specimen. The 

measurements are performed by positive feedback.  The 

Figure corresponds to results presented in Figure 5.7 

 

 

The parallel measurements by positive feedback compared to those 

performed by EIS show more deviation from linearity in the Arrhenius 

presentation.  Also in these results the R2-0.4-W-S-2 and R2-0.6-W-S-2 

specimens stands out with large deviation from linearity compared to the 

other variants.  As for Run 1 the measurements performed with positive 

feedback were influenced by errors in the measurements introduced by the 

equipment.   
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Figure 5. 21 Arrhenius plot for all variants during Thawing in Run 2.  Each 

variant is represented by a single specimen. The 

measurements are performed by EIS.  The Figure corresponds 

to results presented in Figure 5.8 

 

The specimens that behaved differently on Freezing continue their 

anomalous behaviour also on Thawing.  Furthermore, some of the 

specimens of the concrete with w/b ratio of 0.6 seem to have similar 

deviation from linearity as the two specimens treated by vacuum.  This is a 

further statement that moisture is affecting the temperature sensitivity of 

the concrete, but it also introduces the possibility that the layout of the 

concrete physical interior is an influencing parameter. Since the w/b 0.6 

concrete have a coarser pore structure than the w/b 0.4 concrete it is 
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expected that more ice formation should have take place on the higher w/b 

– ratio.  The observation of anomalous behaviour on several of the w/b 0.6 

variants sustains the possibility of ice formation influencing the progress of 

the electrical resistivity.  
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Figure 5. 22 Arrhenius plot for all variants during Thawing in Run 2.  Each 

variant is represented by a single specimen. The 

measurements are performed by positive feedback.  The 

Figure corresponds to results presented in Figure 5.9 

 

Similarly as for Freezing the measurements performed by positive feedback 

show a larger anomaly than those performed by EIS.   
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In Figure 5. 22 it can be observed the same tendencies indicated in        

Figure 5. 21 with more specimens deviating from linearity in the Arrhenius 

presentation.   

 

The calculated activation energy constants for all results in Run 2 are 

presented in Table 5. 4 in the same manner as it was presented for Run 1.   
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Table 5. 4 Calculated activation energy constants with corresponding 

correlation coefficients for all variants tested in Run 2 

Activation 
energy 

constant

R2 Activation 
energy 

constant

R2

[K] [K]

R2-0.4-W-S-1 (DS 76%) 4378 0.996 4102 0.988
R2-0.4-W-S-2 (DS 99%) 4943 0.956 5160 0.972
R2-0.4-W-D-1 (DS 72%) 4547 0.993 4354 0.993
R2-0.4-S-S-1 (DS 76%) 4823 0.995 4583 0.989
R2-0.4-S-D-1 (DS 71%) 5148 0.993 4980 0.988
R2-0.6-W-S-1 (DS 58%) 3464 0.989 2995 0.955
R2-0.6-W-S-2 (DS 99%) 4643 0.931 4871 0.950
R2-0.6-W-D-1 (DS 54%) 4282 0.993 3993 0.979
R2-0.6-S-S-1 (DS 63%) 3873 0.994 3368 0.948
R2-0.6-S-D-1 (DS 60%) 4787 0.996 4619 0.981

R2-0.4-W-S-1 (DS 76%) 3945 0.990 3644 0.991
R2-0.4-W-S-2 (DS 99%) 4619 0.957 5040 0.981
R2-0.4-W-D-1 (DS 72%) 3476 0.980 3308 0.984
R2-0.4-S-S-1 (DS 76%) 3705 0.996 3416 0.999
R2-0.4-S-D-1 (DS 71%) 3512 0.991 3284 0.996
R2-0.6-W-S-1 (DS 58%) 3404 0.987 2995 0.939
R2-0.6-W-S-2 (DS 99%) 4426 0.931 5437 0.942
R2-0.6-W-D-1 (DS 54%) 3945 0.991 3681 0.976
R2-0.6-S-S-1 (DS 63%) 3873 0.998 3368 0.962
R2-0.6-S-D-1 (DS 60%) 3705 0.991 3356 0.998

Electrochemical Impedance Spectroscopy

Positive feedback

Variant Freezing Thawing  

 
 

Table 5. 4 indicate the same trends as found in Figure 5. 19 – Figure 5. 22.  

There is a general hysteresis between freezing and thawing.  However, 
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there are exceptions. For the wettest specimens and specimens of the 

concrete with w/b of 0.6 the hysteresis is less clear.  For the vacuum treated 

variants an increase in the calculated activation energy constants appears.  

Table 5.4 sustains the theory of water transport mechanisms influencing the 

temperature sensitivity of the wettest specimens.  This is indicated by lower 

R2 values.  However, the observation undermines the theory of ice 

formation in the pores.  Ice formation is expected to result in irreversible 

changes in the pores.  This should have resulted in a larger hysteresis. 
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Run 3 
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Figure 5. 23 Arrhenius plot for all variants during Freezing in Run 3.  The 

results are averaged from 3 specimens of each variant. 

Measurements are performed by PSP. The Figure corresponds 

to results presented in Figure 5.10 

 

The Arrhenius plot presented in Figure 5. 23 show similar tendencies to 

deviation from linearity as the presentations for Run 1 and Run 2.  

However, for the temperature interval in Run 3 the deviations from 

linearity seem more general.  In Run 3 the measurements were performed 

by a different method that may behave differently than the previously 

described methods.   
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Figure 5. 24 Arrhenius plot for all variants during Thawing in Run 3. The 

results are averaged from 3 specimens of each variant. 

Measurements are performed by PSP. The Figure corresponds 

to results presented in Figure 5.11 

 

 

The general deviation from linearity found on Freezing is less evident 

during Thawing shown in Figure 5. 24.  However, there are changes for 

several of the variants in Run 3.  The calculated activation energy constants 

for the variants tested in Run 3 are listed in Table 5.5.  
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Table 5. 5 Calculated activation energy constants with corresponding 

correlation coefficients for all variants tested in Run 3 

Activation 
energy 

constant

R2 Activation 
energy 

constant

R2

[K] [K]

R3-0.4-W-S (DS 73%) 4354 0.996 4150 0.998
R3-0.4-W-D (DS 65%) 4510 0.996 4318 0.999
R3-0.4-S-S (DS 64%) 4559 0.996 4318 1.000
R3-0.4-S-D (DS 56%) 4198 0.983 4450 0.998
R3-0.6-W-S (DS 51%) 4246 0.995 4077 0.994
R3-0.6-W-D (DS 42%) 4210 0.997 4138 0.992
R3-0.6-S-S (DS 46%) 4438 0.996 4138 0.991
R3-0.6-S-D (DS 37%) 4077 0.994 4438 0.977

Variant Freezing Thawing  

 
 

In Table 5.5 a hysteresis can be observed as a decrease in activation energy 

constants between Freezing and Thawing.  The sealed-cured and dried (S-

D) variant for both concrete compositions, however, stands out.  This is 

observed as an increase in activation energy constant for both variants.  

These variants had a lower moisture condition than the other variants 

resulting in larger electrical resistivities.  Apparently from Figure 5.23 and 

Figure 5.24 these dry variants had more profound hysteresis effects, which 

are also indicated by the correlation coefficients.  
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Run 4 
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Figure 5. 25 Arrhenius plot for all variants during the Freezing  of Run 4. 

The results are averaged from 3 specimens of each variant. 

Measurements are performed by PSP. The Figure corresponds 

to results presented in Figure 5.12. All specimens had            

DS = 1.0. 

 

 

The specimens tested in Run 4 were saturated by immersion in water for 8 

weeks before the run was initiated.  The various specimens, therefore, had 

quite high moisture content.  The deviations from linearity for the variants 

appears larger for all variants in comparison to the results from Run 1, Run 
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2 and Run 3.  Similarly as observed by the results from the vacuum treated 

specimens in Run 2 the curves have a break point between 2°C and -14°C.   

 

In Figure 5. 25 the concrete compositions are clearly separated at higher 

temperatures.  For the concrete with w/b of 0.4 it is further possible to 

separate the various curing conditions.  However, the variants which were 

oven dried at 40°C for one week do not stand out in comparison to the 

variants which were sealed directly after curing.   

 

The divergence between the variants of the concrete with w/b 0.6 seems 

less dependent on curing and handling, i.e. the scatter between the w/b of 

0.6 variants is significantly smaller compared to the w/b of 0.4 variants. 
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Figure 5. 26 Arrhenius plot for all variants during the Thawing of Run 4. 

The results are averaged from 3 specimens of each variant. 

Measurements are performed by PSP. The Figure corresponds 

to results presented in Figure 5.13. All specimens had DS = 

1.0. 

 

Figure 5. 26 illustrated the same effects as Figure 5. 25.  However, the 

scatter for the w/b 0.4 variants appears smaller.  There is hardly any change 

in the behaviour of the w/b 0.6 variants.   

 

The activation energy constants are given in Table 5. 6 with corresponding 

correlation coefficients. 
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Table 5. 6 Calculated activation energy constants with corresponding 

correlation coefficients for all variants tested in Run 4 

Activation 
energy 

constant

R2 Activation 
energy 

constant

R2

[K] [K]

R4-0.4-W-Sr 3849 0.985 2718 0.938
R4-0.4-W-Dr 3416 0.986 2815 0.940
R4-0.4-S-Sr 2502 0.989 2478 0.994
R4-0.4-S-Dr 2237 0.959 2418 0.937
R4-0.6-W-Sr 4414 0.977 4450 0.970
R4-0.6-W-Dr 3825 0.963 3897 0.928
R4-0.6-S-Sr 4089 0.972 4234 0.944
R4-0.6-S-Dr 3765 0.950 3825 0.933

Variant Freezing Thawing  

 
 

The calculated activation energy constants, given in Table 5. 6, support the 

statement that the w/b 0.6 variants differ only marginally between Freezing 

and Thawing.   However, between Freezing and Thawing there is a 

hysteresis for the water cured w/b 0.4 variants. 

 

Since the specimens tested in Run 4 have high moisture contents it is 

probable that some of the water is able to freeze in the pores.  This will be 

further elaborated in the following general discussion.  
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5.2.5 General discussion of the temperature effect on the electrical 
 resistivity of concrete 
 

 

The results given in section 5.2.1 show that the relationship between 

temperature and the electrical resistivity of concrete can be described by an 

activation energy constant following the Hinrichson-Rasch law.   

 

Table 5. 7 Summary of the apparent activation energy constants 

calculated from the results found in the ER – experiments. 

EIS* P.F.** PSP*** PSP*** PSP*** PSP***

0.4 0.6 W S S D V Sr Dr Freeze Thaw Freeze Thaw Freeze Thaw Freeze Thaw Freeze Thaw
[K] [K] [K] [K] [K] [K] [K] [K] [K] [K]

X X X 4925 4441 4378 4102 3945 3644 4354 4150
X X X 4652 4015 4547 4354 3476 3308 4510 4318
X X X X 4943 5160 4619 5040
X X X 3849 2718
X X X 3416 2815
X X X 4820 4002 4823 4583 3705 3416 4559 4318
X X X 5063 3976 5148 4980 3512 3284 4198 4450
X X X 2502 2478
X X X 2237 2418

X X X 5047 4512 3464 2995 3404 2995 4246 4077
X X X 4068 4050 4282 3993 3945 3681 4210 4138
X X X X 4643 4871 4426 5437
X X X 4414 4450
X X X 3825 3897
X X X 4160 3778 3873 3368 3873 3368 4438 4138
X X X 4713 4047 4787 4619 3705 3356 4077 4438
X X X 4089 4234
X X X 3765 3825

*) EIS = Electrochemical Impedance Spectroscopy  **) P.F. = Positive Feedback   ***) PSP = Potential Square Pulse
Not tested V in handling refers to specimens treated by vacuum

EIS* P.F.**

w/b-ratio Curing Handling Apparent activation energy constants
Run 4Run 3Run 1 Run 2

 
 

In Table 5. 7 it can be observed that the activation energy constants are in 

the range 2000 K – 5000 K.  These activation energy constants give the 
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temperature sensitivity of the electrical resistivity of the variants tested in 

the ER – experiments.  In general the correlation coefficients suggest that 

the temperature sensitivity can be described by a constant.  However, there 

are exceptions.  

 

In several cases deviation from linearity in the Arrhenius presentation were 

found.  In these cases the temperature sensitivity of the electrical resistivity 

varies with temperature.  The calculated activation energy constants are 

therefore termed “Apparent activation energy constants”. 

 

Deviation from linearity in the Arrhenius presentations occurred in nearly 

all four Runs.  This deviation is presumably generated by several 

interacting mechanisms, but the dominant appears to be related to moisture.  

Higher moisture contents results in larger deviations, but lower activation 

energies.  This substantiates a clear connection between temperature, 

moisture content and the electrical resistivity.   

 

Concrete is a complex electrolytic system.  Conduction in concrete will 

occur in different parallel pathways.  The main contributor to conduction in 

concrete is pore water solution which is highly conductive due to the 

presence of ions, mostly K+, Na+ and OH-, with small amounts of Ca2+, 

SO4
2-.  Additional ions (such as chlorides) can also be present due to 

infiltration from other sources (such as seawater and de-icing salt 

solutions), increasing the concentration of ions in the pore water and, 

presumably, reducing the electrolytic resistance.  The electrical resistivity 

of pore water is in the range of 0.1 – 0.3 Ωm dependent on the ionic 

strength; thereby, primarily controlled by the pH.    It is also supposed that 
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much of the conduction is done along the adsorbed layers of the pore walls 

(adsorbate phase). This ionised layer contains high concentrations of 

conductive ions in a very porous structure that may lead to locally very low 

electrical resistivity.   

 

The cement paste is in itself conductive. Even in oven dried state it acts as 

a semiconductor according to Whiting and Nagi [27].  This is assumed to 

be due to the presence of non-evaporable water.  

 

“Any temperature change imposed on wet concrete leads to different 

chemical potential changes in the various water phases (adsorbed, vapour, 

capillary, gel and interlayer), and therefore to internal redistribution which 

is time dependent” according to Radjy, Sellevold and Hansen [73].   

 

To repeat; temperature has an effect on the moisture distribution between 

the different water states in concrete.  Time is a parameter for the 

redistribution of water.   

 

Such large temperature changes on the exposed concrete as in the ER – 

experiments, lead to a redistribution of the water phases which presumably 

are not stabilised between the measurements.  This time-dependency 

generates a possible drift in the measurements.   However, total 

redistribution before measurement takes impractically long time until stable 

values are obtained; if at all a total stabilisation is feasible.    

To perform measurements of effects of temperature on either property of 

concrete will suffer by such redistribution effects. 
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At higher moisture contents more of the capillaries are water-filled.  With 

more water present in larger pores more water is able to freeze.  Ice 

formation in the largest capillaries is likely.   As stated in the start of this 

section a hysteresis was found nearly always between Freezing and 

Thawing (Figure 5. 14).  The values of the resistivity at 20°C was generally 

lower or equal on Freezing compared to Thawing, and more or less equal at 

the other temperatures. 

 

The observation of hysteresis indicates either that some of the moisture 

evaporates and is exchanged with the atmosphere in the fridge between 2°C 

and 20°C during Thawing or that during Freezing ice formation has caused 

irreversible changes in the pore system that shows when all the ice is 

melted.   These observations substantiates that any temperature change 

generates redistribution effect in the various water phases, and may also be 

an indication on that ice formation have occurred in the pores.  The 

hysteresis was largest for the variants of the concrete with w/b – ratio of 

0.6.   

 

Obviously, the moisture condition of the concrete and the concrete 

temperature are very closely connected.  Before a further discussion is 

performed it is necessary to process the effect of moisture condition on the 

electrical resistivity of the specimens tested in the various Runs. 
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5.3 Influence of moisture state on electrical resistivity in 
concrete 

 

 

After some initial test of the electrical resistivity of concrete below 0°C 

temperatures it was deemed necessary to simultaneously keep control of 

the moisture condition of the specimens.  Moisture control was performed 

by weighing the samples before and after the run for Run 1 and Run 2, 

while for Run 3 and Run 4 the weighing was performed also during the 

runs. 

 

The moisture content in concrete is here related to degree of saturation, 

calculated by: 

 

(  )     105
      105

Weight in situ Weight after drying at CDS
Weight after pressuration Weight after drying at C

− °
=

− °
(Equation 5.1) 

 

 

The dry weights were not measured in Run 2, therefore the data from this 

run has not been taken into consideration in the present section. 

 

No measurements of the relative humidity inside the pores were performed.  

A decrease in temperature results in immediate change in the relative 

humidity inside the pores.  This parameter was therefore not considered as 

reliable to measure.    
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5.3.1 Influence of moisture state on the electrical resistivity 
 

By combining all the results from Run 1, Run 3 and Run 4 sorted by 

moisture state and temperature a correlation between moisture state and the 

electrical resistivity was found.  A presentation of the results for both 

concrete qualities is given in Figure 5. 27 for a temperature of 20°C.   
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Figure 5. 27 Comparison of the effect of moisture state (displayed as 

degree of saturation, DS) on the electrical resistivity for w/b 

0.4 and w/b 0.6 concrete mixes at 20°C.  The dotted lines 

indicate the breaking point in electrical resistivity at the 

respective degrees of saturations for the w/b 0.4 concrete and 

the w/b 0.6 concrete, respectively. 
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By Figure 5. 27 an effect of water – binder ratio can be observed.  All four 

variants for the respective w/b – ratios are included in the plot. 

 

In Figure 5. 28 the differences introduced by the curing and handling are 

illustrated. 

 

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

0 % 20 % 40 % 60 % 80 % 100 %

Degree of Saturation, DS

El
ec

tri
ca

l r
es

ist
iv

ity
 [ 

m
 ] 

R3-0.4-W-S
R3-0.4-W-D
R3-0.4-S-S
R3-0.4-S-D

El
ec

tri
ca

l r
es

ist
iv

ity
 [Ω

m
]

 

Figure 5. 28 Comparison of the variants for the w/b 0.4 concrete.  The 

Figure illustrates the effect of curing and handling on the 

relationship between electrical resistivity at 20°C and 

moisture condition (displayed as degree of saturation, DS).   

 

 From Figure 5. 28 it can clearly be seen that curing and handling affects 

the results.  Generally the water cured and sealed variant appear to be most 

moisture sensitive of the variants.  The sealed cured and dried variant 



 TEMPERATURE EFFECTS ON ELECTRICAL RESISTIVITY OF CONCRETE 233 

seems less moisture sensitive of the variants.  The sealed cured variants 

seem less moisture sensitive than the water cured which is in agreement 

with observations of a coarser structure caused by internal forces from 

drying effects during early curing on self-desiccated concrete compared 

with water-cured concrete.  By drying the concrete pores are inflicted by 

large forces which may have lead to profound and irreversible changes in 

the layout of the pores even at such gentle drying as 40°C for 1 week. 

 

However, the effect of curing and handling appears to be quite marginal 

and acceptably small in order to illustrate the overall effect of moisture 

state on the electrical resistivity between the different w/b – ratios.  A 

similar effect was found for the w/b 0.6 concrete. 

 

 

5.3.2 Discussion of the influence of moisture state on the electrical 
resistivity of concrete 

 

 

Figure 5. 27 clearly confirm previous observations [32-35, 41-49] that the 

moisture state is the main contributor to the electrical resistivity.  The 

moisture state decides the degree of pore filling; hence, it decides the 

amount of available current-pathways.   

 

Conduction in concrete has to go in the water phases.  All theories found in 

the literature states that the capillary conduction is the dominant.  However, 

the results are discussed based on two main assumptions. 
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1. Conduction in concrete takes place in the continuous capillary water 

phase where ever these are available and  

2. when and where continuous capillary water is not present the 

conduction in concrete goes in the adsorbed water phase on the pore 

walls and through the gel/interlayer spaces which are water filled at 

quite low degrees of saturation. 

 

The above implies:  At higher moisture contents the capillary water 

dominates the total conduction and is nearly only a function of the ionic 

strength of the pore water and the porosity of the concrete.  At lower 

moisture contents the adsorbed layer play a larger role, and when the 

moisture content reach the critical value the conduction is dominated by 

conduction in the adsorbed water phase.  When the adsorbed layer is 

dominant the thickness of the adsorbed layer is the critical parameter. It is 

assumed that the tortuous path the current has to pass reach a limiting value 

at this critical value of moisture content. 

 

The resistivity for both concrete qualities increases very strongly below a 

critical value of the moisture content.  These critical values are, 

presumably, related to loss of continuity and that the current paths change 

from capillary water to the other water phases.  The critical points occur at 

degrees of saturations of 60% and 40% for the concretes with w/b ratios 0.4 

and 0.6, respectively.   

 

This different moisture sensitivity may be explained by the differences in 

porosity.  The w/b 0.6 concrete has a higher measured total porosity, 18% 

compared to 15% for the w/b 0.4 concrete (averaged values).  The w/b 0.6 
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concrete has a relative larger fraction of capillary pores. This concrete will 

have more available pathways for the current to flow than the w/b 0.4 

concrete and therefore be less moisture sensitive at higher moisture 

contents. Additionally the w/b 0.6 concrete will allow the current to flow 

more or less linear in the high moisture range, while the w/b 0.4 concrete 

will form more tortuous current paths. An illustration of this effect is 

displayed in Figure 5. 29. 

w/b 0.6 concrete
dominated by capillary 
pores
Near linear current 
pathway

w/b 0.4 concrete
inhibited by narrow 
pathways.
Tortuous current pathway

 

Figure 5. 29 Illustration of the differences in conduction between the 

concretes.  The capillaries are displayed as tubes. In the 

magnified section the adsorbed water is displayed as circles in 

and the interlayer water as crosses. The silicate model (in the 

magnified section) is based on the Feldman and Sereda model 

according to Soroka [74]. 
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Figure 5.29 illustrates the differences on how the conduction occurs in the 

two concrete qualities.  For the w/b 0.6 concrete the current pathways are 

continuously following the capillary (water filled) spaces, with little 

constriction.  The w/b 0.4 concrete, however, narrow sections where the 

current follows the adsorbed water phase dominates, and thereby increases 

the effective length of the pathway. 

 

The w/b 0.6 concrete tend to be very moisture sensitive at lower moisture 

contents, with very rapid increase in electrical resistivity when the moisture 

content drops below this point.  The w/b 0.4 concrete appears to be quite 

moisture sensitive already from about 70% saturation degree.  

 

Powers [75] developed a model for volumetric determinations in cement 

paste and concrete based on the BET – theory by Brunauer, Emmett and 

Teller [76] The BET - theory is based on 6 main assumptions which can be 

found elsewhere [77]. 

 

 

Powers model states that the total porosity is given by: 

 

 
0.17

0.32
T

w
c

w
c

α
ε

− ⋅
=

+
 (Equation 5.2) 

where: 

εT is the total porosity in % 

w/c is the water-cement ratio 

α is the degree of hydration 
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and that the gel porosity is given by: 

 

 0.185

0.32
GEL w

c

αε ⋅
=

+
 (Equation 5.3) 

where: 

εGEL is the gel porosity in %. 

 

The capillary porosity is then given by the difference between the total 

porosity and the gel porosity: 
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 (Equation 5.4) 

 

 

 

By using Equations 5.2 – 5.4 it is possible to estimate the respective 

porosities of concretes.  By assuming that the w/b 0.6 concrete had a degree 

of hydration, α=0.8 and that the w/b 0.4 concrete had a degree of 

hydration, αc=0.6 for the cement and that the 8% silica fume is fully 

reacted, αs=1.0, and generates 3 times the amount of gel generated by an 

equivalent amount of cement  the porosities of the binder phases in the 

respective concretes were calculated. 

 

The results from these calculations are given in Table 5. 8. 
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Table 5. 8  Calculated porosity distribution by the BET – theory. 

w/b ratio w/c Silica fume α Total Gel Capillary
s/c porosity porosity porosity
[%] [%] [%] [%]

0.4 0.44 0.08 0.6 43 % 20 % 23 %

0.6 0.6 0 0.8 50 % 16 % 34 %
 

 

The Powers model illustrates the differences between the concretes quite 

well.  The w/b 0.4 concrete has lower total porosity, higher gel porosity and 

very much lower capillary porosity compared to the w/b 0.6 concrete.  

 

The Powers model estimations above illustrate the differences between the 

concretes and allow visualisation of the physical distinctions in the 

respective pore systems.   

 

Intuitively, the highly porous (w/b 0.6) concrete should be less moisture 

sensitive with respect to electrical resistivity than the concrete dominated 

by interlayer spaces (w/b 0.4 concrete).  The estimations substantiate the 

illustration given in Figure 5.29. 

 

By using the values in Table 5.8 it is possible to express the relation 

between moisture content and the electrical resistivity based on a simple 

assumption: 
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• At higher degrees of saturation the water loss comes only from the 

capillaries, and that the gel/interlayer pores are remained water filled 

until practically all capillary water is lost.  

 

At the degrees of saturations where the resistivity increases more strongly 

the volume of the evaporated water corresponds to the volume of the 

capillary porosity for both concretes. 

 

This may be illustrated by examples: 

 

The w/b 0.4 concrete has a total porosity of 43%, and at 60% 

saturation the remaining water corresponds to 26% of the total 

volume.  If it is assumed that no gel/interlayer is evaporated the 

remaining capillary water is only 6%. 

 

The w/b 0.6 concrete has a total porosity of 50%, and at 40% 

saturation the remaining water corresponds to 20% of the total 

volume.  Making the same assumption that the gel-water is remained, 

the remaining capillary water is 4%. 
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Another approach to illustrate differences between the concretes and to 

illustrate the effect of moisture on the electrical resistivity is by analysing 

sorption isotherms. 
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Figure 5. 30 Desorption isotherms for concrete discs by degree of capillary 

saturation, DCS as a function of the relative humidity, RH for 

laboratory concrete with w/b=0.42 (5% silica fume) and 

w/b=0.55. Based on Relling [78]. 

 

Figure 5. 30 shows desorption isotherms for w/b 0.55 and w/b 0.42 (5% 

silica fume) concretes performed by Relling [78].  By analysing Figure 

5.27 and assuming that the w/b 0.4 concrete resembles the w/b 0.42 

concrete and the 0.6 resembles the 0.55 concrete it can be deduced that the 

concretes tested in the ER - experiments have approximately the same RH 

at their respective departure points.  
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The departure points are at DCS of 60% and 40% for the w/b 0.4 and the 

w/b 0.6 concretes, respectively.  This corresponds to an RH of 

approximately 55% taken from Figure 5.30.  If it is assumed that the 

conduction in concrete is concentrated on the adsorbed solution layer on 

the pore wall below a certain moisture content, i.e. that the adsorbed water 

layers on the pore wall surface is the main contributor to conduction, then a 

RH of 55% should represent a critical thickness of this adsorbed layer.  A 

RH of 55% means about 2 monolayers of water adsorbed on a free surface.   

Surely, it is not appropriate to assume what amounts of monolayers of 

water which are available in the pores at the corresponding RH during 

adsorption while the real process is desorption.  Still, while some of the 

pores will be more or less water filled during the desorption stage the 

general adsorbed amount of water represents 2 monolayers.  

 

In order to estimate the amount of water present during both adsorption and 

desorption an example based on sorption isotherms for thin discs of bridge 

concrete performed by Sellevold [79] is given: 

 

For the found RH of 55% the available water in percent of dry mass is 

3.5% and 2% for desorption and adsorption, respectively.  Assuming there 

is 400 kg/m3 of hydrated cement and a dry mass of 2200 kg/m3, then the 

available water percentage in cement paste would be approximately: 

(400/2200)•3.5 = 19% and (400/2200)•2 = 11%.  Both values are 

representing about 2 monolayers of water. 
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Evidently, the estimations above are based on very rough assumptions and 

represent only a slight indication of the effect of adsorbed water in the 

pores.  However, this may give a hint that a thickness of the adsorbed layer 

of approximately 6 Å (equivalent to 2 monolayers of water) is a critical 

value for conduction in water.   Since no experiments are performed on 

this, a further discussion of the implications of this theory would not be 

appropriate. 

 

The two approaches are conflictive in that the represent different critical 

thicknesses.  The volumetric considerations based on the Powers model 

gives that the breaking points represent the moisture condition when the 

gel-water is starting to loose water.  Gel/interlayer spaces are defined by 

Powers as spaces smaller than 3 monolayers of water. 

 

The approach through sorption isotherms gave a thickness of the adsorbed 

layers of 2 monolayers, and therefore conflicts with the assumptions behind 

Powers model. 

 

Since both attempts are based on underlying assumptions and limited data 

neither of the methods can be conclusive in their current presentation, 

however, they may give a foundation for further elaborations based on 

specific research. 
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5.4 Combined effect of temperature and moisture condition 
 on the electrical resistivity of concrete 
 

Stated in the previous sections the effects of temperature and moisture are 

closely connected, and simultaneously affecting the electrical resistivity.   

 

5.4.1 Combined effects of temperature and moisture condition on the 
electrical resistivity of concrete – results 
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Figure 5. 31 Combined effect of temperature and moisture condition 

displayed as Degree of Saturation, DS on the electrical 

resistivity of concrete for the concrete with w/b of 0.4.  The 

ordinate is in log scale.  The curves represent all results from 

Run 1, Run 3 and Run 4. Regression performed by exponential 

functions. 
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Figure 5. 32 Combined effect of temperature and moisture condition 

displayed as Degree of Saturation, DS on the electrical 

resistivity of concrete for the concrete with w/b of 0.6.  The 

ordinate is in log scale.  The curves represent all results from 

Run 1, Run 3 and Run 4.  Regression performed by 

geometrical functions. 

 

 

Figure 5. 31 and Figure 5. 32 show the combined effect of temperature and 

moisture condition for the w/b 0.4 and w/b 0.6 concretes, respectively.  The 

results are based on Run 1, Run 3 and Run 4.  Of practical reasons the 

ordinate was shown in logarithmic scale in order for the lower values at the 

higher temperatures to be separable.   
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5.4.2 Discussion of the combined effects of temperature and moisture 
condition on the electrical resistivity of concrete  

 

 

Figure 5. 31 and Figure 5. 32 indicate that the temperature introduces a 

shift in level on the electrical resistivity of concrete.  By decreasing 

temperatures the electrical resistivity increases quite remarkably as 

previously discussed.  However, the different moisture conditions of the 

concretes appear to have similar effect at all temperatures. 

 

The relationship between the activation energy constants and the moisture 

contents give a large scatter as shown in Figure 5.33, but there seem to be 

no systematic trend.  
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Figure 5. 33 Relationship between the activation energy constants and the 
moisture contents of the specimens tested in the ER – 
experiments. 
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This temperature induced shift in level is most profound on the concrete 

with w/b ratio of 0.4.  It is indicated that the effect of temperature is 

relatively unaffected by moisture for the w/b 0.4 concrete by the 

conformity of the curves in Figure 5. 31.  As discussed in section 5.3.2 the 

w/b 0.4 concrete have a finer pore size distribution and it is assumed that 

ice formation will not obstruct the current pathways in a large scale.  

However, for the w/b 0.6 concrete the shift in level is not as clear as for the 

w/b 0.4 concrete.  The curves appear to be more similar to the 0.4 concrete 

on the low moisture contents (lower than 50%).  This may be an indication 

that there are interfering processes occurring in the pore system which 

assumingly could be related to ice in the capillaries blocking the current 

pathways.   

 

From the low temperature calorimetry results given in section 4.2 it can be 

deduced that approximately 10% of the evaporable water content will be 

frozen at a temperature of -28°C for the w/b 0.4 concrete, while for the w/b 

0.6 concrete this amount is about 22%. 

 

The corresponding amount of the porosity that contains frozen water at         

-28°C can be calculated from porosity data given in Table 4.1: 

For the w/b 0.4 concrete the porosity is found to be 12.7% and if it is 

assumed that the sample is water saturated then the ice volume in the pores 

for this concrete at -28°C would be 1.3% of the total concrete volume.   

 

Correspondingly, for the w/b 0.6 concrete the porosity is 17.2 % that results 

in an ice volume of 3.8% with respect to the total concrete volume.  
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Clearly, the w/b 0.6 concrete will have more ice present in the pores in the 

low temperatures, especially on thawing.  The ice will presumably block 

the largest capillaries which result in more tortuous current pathways.  This 

may explain the fundamentally different behaviour of the electrical 

resistivity between the w/b 0.4 concrete and the w/b 0.6 concrete.  

 

At lower degrees of saturation the amount of frozen water will decrease.  

Below a certain degree of saturation no ice formation will occur due to no 

water present in the pores where the thermodynamic conditions for ice 

nucleation are present.  Therefore frozen capillary water will only affect the 

systems profoundly in the high range of moisture contents.   

 

Ice formation has a similar effect to the systems as drying.  The pores 

blocked by ice will redirect the current pathways to smaller pores where 

liquid water is present.  This increases the effective length of the current 

pathway resulting in an increased electrical resistivity.  However, ice 

nucleation results in considerable forces inside the pores which in turn 

results in a change in the appearance of the pores.  The volume increase 

due to the phase shift will result in damages on the pores resulting in a 

collapse of pores and thereby irreversible changes in the pore system. 
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5.5 Effect of temperature on other electrical properties in 
concrete 

 

 

In Run 1 and Run 2 measurements were performed using Electrochemical 

Impedance Spectroscopy, EIS.   EIS measurements on a concrete sample 

give information on several other interesting electrical properties besides 

the electrical resistivity, e.g. the impedance of the system (which is more 

descriptive than resistivity), the capacitance of the system (ability to hold a 

charge of electrons) and the depression angle (indicating whether or not 

there are parallel processes (phases) present in the system). 

 

 

5.5.1 Interpreting EIS data – Equivalent circuit 
 

EIS data can be visualised and interpreted by several equivalent circuits or 

Randles circuits, RC.  Often data from EIS measurements are hardly 

interpretable, and it is very challenging to identify a representative RC for 

the measured system.  Concrete introduces interpretation difficulties since 

it is a complex composite material and its various components have 

different electrical behaviour.   

 

Initial measurements on concrete specimens were attempted to be 

interpreted using several equivalent circuits.  Due to depression of the 

semicircles (flattening of the arc) it was supposed that the concrete was 

best represented by a combination of 2 RC in combination: 

 



 TEMPERATURE EFFECTS ON ELECTRICAL RESISTIVITY OF CONCRETE 249 

C

R1

1 C2
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interface Bulk concrete
Electrode - concrete

 

Figure 5. 34 Equivalent circuit with 2 serial RC 

 

 The equivalent circuit is presented in Figure 5.34, and the resulting 

semicircles generated by this equivalent circuit is illustrated along with 

results from Run 1 in Figure 5. 35. 
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Figure 5. 35 Nyquist diagram for the R1-0.4-W-S variant.  The scatter 

shows the internal variation between the parallel specimens. 

Semicircles generated by the 2 serial RC are shown by red 

arcs. The results relates to an electrode area of 28 cm2. 

 

By this interpretation the concrete resistivity could be calculated from the 

sum of the resistances of semicircle 1 and 2.  This would make 

disproportionately much work.   

 

It was chosen to use a single RC to describe the concrete.  Depression of 

the semicircle would still be detected by the depression angle, α. 

 

The chosen equivalent circuit is shown in Figure 5.36 and the 

corresponding interpretation in Figure 5.37. 
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concreteC

concreteR

 

Figure 5. 36 The chosen equivalent circuit.  A single RC. 
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Figure 5. 37 Nyquist diagram for the R1-0.4-W-S variant.  The scatter 

shows the internal variation between the parallel specimens. 

The semicircle generated single RC is shown by a red arc. The 

suppression angle, α, is marked below the abscissa. The 

results relates to an electrode area of 28 cm2. 

 

 

5.5.2 EIS results from Run 1 and Run 2 
 

 

Measurements with Electrochemical Impedance spectroscopy were 

performed during Freezing of Run 1 and during Freezing and Thawing of 

Run 2.  The results are given in Table 5. 9 – Table 5. 14. 



 TEMPERATURE EFFECTS ON ELECTRICAL RESISTIVITY OF CONCRETE 253 

Table 5. 9 Calculated values of the electrical properties for the w/b 0.4 

concrete during Freezing of Run 1. The EIS results were 

interpret using a single RC.  The results are averaged from 

three parallel samples. 

ρ α Fm C C ε
[oC] [oK]  [Ωm]  [Hz] [F/cm2] [pF/m2]

20 293 678 0.823 5.5E+05 5.44E-13 5440 18
2 275 1748 0.816 2.2E+05 5.18E-13 5179 17

-14 259 5464 0.814 8.0E+04 4.61E-13 4609 15
-28 245 17929 0.810 2.4E+04 4.73E-13 4727 15
20 293 2203 0.792 1.1E+05 5.31E-13 5308 17

2 275 5685 0.829 8.4E+04 2.84E-13 2838 9
-14 259 15571 0.811 2.0E+04 7.55E-13 7547 24
-28 245 49675 0.806 1.0E+04 4.06E-13 4058 13
20 293 2053 0.829 2.0E+05 4.96E-13 4956 16

2 275 5538 0.814 8.0E+04 3.49E-13 3489 11
-14 259 15971 0.791 2.7E+04 4.74E-13 4743 15
-28 245 51346 0.788 9.6E+03 4.06E-13 4065 13
20 293 4414 0.826 9.3E+04 5.02E-13 5021 16

2 275 13723 0.803 3.7E+04 3.08E-13 3080 10
-14 259 34238 0.786 1.2E+04 4.83E-13 4826 16
-28 245 141758 0.828 4.2E+03 3.36E-13 3361 11

Variant Temperature Electrical properties

R1-0.4-W-S

R1-0.4-W-D

R1-0.4-S-S

R1-0.4-S-D
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Table 5. 10 Calculated values of the electrical properties for the w/b 0.6 

concrete during Freezing of Run 1. The EIS results were 

interpret using a single RC. The results are averaged from 

three parallel samples. 

ρ α Fm C C ε
[oC] [oK]  [Ωm]  [Hz] [F/cm2] [pF/m2]

20 293 66.95 0.818 8.0E+06 3.73E-13 3728 12
2 275 131.43 0.836 4.8E+06 3.17E-13 3169 10

-14 259 441.05 0.843 1.7E+06 2.73E-13 2731 9
-28 245 1894.2 0.842 4.0E+05 2.63E-13 2628 8
20 293 534.68 0.847 1.1E+06 3.31E-13 3314 11

2 275 1232.9 0.841 5.9E+05 2.93E-13 2925 9
-14 259 2748.3 0.826 2.8E+05 2.74E-13 2736 9
-28 245 8248.8 0.832 8.3E+04 3.05E-13 3053 10
20 293 135.56 0.862 4.7E+06 3.34E-13 3335 11

2 275 286.21 0.847 2.6E+06 2.87E-13 2871 9
-14 259 690.75 0.841 1.2E+06 2.58E-13 2583 8
-28 245 2192.1 0.843 4.0E+05 2.59E-13 2591 8
20 293 1889.9 0.831 3.4E+05 3.17E-13 3165 10

2 275 4865.8 0.820 1.4E+05 3.02E-13 3023 10
-14 259 12900 0.805 4.3E+04 3.6E-13 3603 12
-28 245 43925 0.802 1.1E+04 4.03E-13 4033 13

R1-0.6-W-D

R1-0.6-S-S

R1-0.6-S-D

Variant

R1-0.6-W-S

Temperature Electrical properties

 
 

 

The variation between the three parallel specimens was generally 

satisfactory on all calculated values, with standard deviations within 10% 

of the values.   
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Table 5. 11 Calculated values of the electrical properties for the w/b 0.4 

concrete during Freezing of Run 2. The EIS results were 

interpret using a single RC. The measurements represent a 

single specimen of each variant. 

Variant No ρ α Fm C C ε
[oC] [oK]  [Ωm]  [Hz] [F/cm2] [pF/m2]

1 20 293 1598 0.815 3.60E+05 3.45E-13 3454 11
1 2 275 4474 0.799 1.20E+05 3.70E-13 3701 12
1 -14 259 13913 0.817 3.73E+04 3.83E-13 3834 12
1 -28 245 36883 0.813 1.19E+04 4.55E-13 4545 15
2 20 293 595 0.786 7.30E+05 4.58E-13 4581 15
2 2 275 1132 0.800 3.55E+05 4.95E-13 4954 16
2 -14 259 5280 0.819 8.84E+04 4.26E-13 4263 14
2 -28 245 19638 0.826 1.86E+04 5.44E-13 5443 18
1 20 293 3108 0.815 1.87E+05 3.52E-13 3520 11
1 2 275 8490 0.829 5.52E+04 4.24E-13 4242 14
1 -14 259 28613 0.812 1.69E+04 4.11E-13 4108 13
1 -28 245 80613 0.807 6.86E+03 3.60E-13 3596 12
1 20 293 4808 0.830 1.34E+05 3.09E-13 3089 10
1 2 275 14700 0.820 3.65E+04 3.70E-13 3703 12
1 -14 259 50100 0.799 1.25E+04 3.18E-13 3176 10
1 -28 245 153750 0.828 4.29E+03 3.02E-13 3021 10
1 20 293 5525 0.808 9.46E+04 3.81E-13 3805 12
1 2 275 17450 0.858 2.95E+04 3.86E-13 3858 12
1 -14 259 64050 0.817 8.21E+03 3.79E-13 3792 12
1 -28 245 225500 0.814 2.26E+03 3.91E-13 3909 13

Specimen Id Temperature Electrical properties

R2-0.4-W-S

R2-0.4-W-S

R2-0.4-W-D

R2-0.4-S-S

R2-0.4-S-D
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Table 5. 12 Calculated values of the electrical properties for the w/b 0.6 

concrete during Freezing of Run 2. The EIS results were 

interpret using a single RC.  The measurements represent a 

single specimen of each variant. 

Variant No ρ α Fm C C ε
[oC] [oK]  [Ωm]  [Hz] [F/cm2] [pF/m2]

1 20 293 186 0.847 4.22E+06 2.53E-13 2526 8
1 2 275 392 0.838 1.94E+06 2.62E-13 2622 8
1 -14 259 917 0.848 8.19E+05 2.65E-13 2648 9
1 -28 245 2296 0.856 3.11E+05 2.78E-13 2784 9
2 20 293 65 0.798 1.00E+07 3.05E-13 3051 10
2 2 275 98 0.818 6.45E+06 3.13E-13 3133 10
2 -14 259 494 0.853 1.47E+06 2.75E-13 2745 9
2 -28 245 1664 0.864 4.51E+05 2.65E-13 2651 9
1 20 293 1548 0.828 4.86E+05 2.65E-13 2645 9
1 2 275 4053 0.830 1.71E+05 2.87E-13 2869 9
1 -14 259 11981 0.815 5.40E+04 3.08E-13 3076 10
1 -28 245 33800 0.817 1.63E+04 3.61E-13 3608 12
1 20 293 459 0.854 1.80E+06 2.41E-13 2407 8
1 2 275 1121 0.859 7.23E+05 2.45E-13 2454 8
1 -14 259 2918 0.841 2.71E+05 2.52E-13 2520 8
1 -28 245 7544 0.850 1.06E+05 2.50E-13 2496 8
1 20 293 5178 0.827 1.48E+05 2.59E-13 2590 8
1 2 275 16075 0.853 5.00E+04 2.48E-13 2479 8
1 -14 259 53688 0.807 1.47E+04 2.52E-13 2522 8
1 -28 245 162625 0.841 5.09E+03 2.40E-13 2399 8

Temperature Electrical properties

R2-0.6-S-S

R2-0.6-S-D

R2-0.6-W-S

R2-0.6-W-S

R2-0.6-W-D

Specimen Id
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Table 5. 13 Calculated values of the electrical properties for the w/b 0.4 

concrete during Thawing of Run 2. The EIS results were 

interpret using a single RC.  The measurements represent a 

single specimen of each variant. 

Variant No ρ α Fm C C ε
[oC] [oK]  [Ωm]  [Hz] [F/cm2] [pF/m2]

1 20 293 1900 0.833 2.92E+05 3.58E-13 3584 12
1 2 275 4438 0.844 1.21E+05 3.72E-13 3723 12
1 -14 259 12700 0.844 4.00E+04 3.93E-13 3931 13
1 -28 245 36425 0.858 1.19E+04 4.59E-13 4592 15
2 20 293 521 0.807 8.66E+05 4.40E-13 4403 14
2 2 275 1198 0.786 3.40E+05 4.88E-13 4882 16
2 -14 259 6079 0.830 7.94E+04 4.12E-13 4120 13
2 -28 245 19638 0.851 1.86E+04 5.48E-13 5481 18
1 20 293 3431 0.831 1.43E+05 4.07E-13 4072 13
1 2 275 8986 0.859 5.75E+04 3.87E-13 3869 12
1 -14 259 27175 0.840 2.18E+04 3.36E-13 3363 11
1 -28 245 78762 0.824 7.22E+03 3.50E-13 3499 11
1 20 293 5680 0.860 9.16E+04 3.82E-13 3824 12
1 2 275 14750 0.830 3.52E+04 3.83E-13 3830 12
1 -14 259 48250 0.860 1.31E+04 3.14E-13 3140 10
1 -28 245 154375 0.825 4.27E+03 3.02E-13 3018 10
1 20 293 6168 0.853 8.04E+04 4.01E-13 4011 13
1 2 275 17600 0.832 2.75E+04 4.11E-13 4106 13
1 -14 259 60425 0.811 8.53E+03 3.89E-13 3891 13
1 -28 245 226250 0.804 2.24E+03 3.97E-13 3965 13

Specimen Id Temperature Electrical properties

R2-0.4-W-S

R2-0.4-W-S

R2-0.4-W-D

R2-0.4-S-S

R2-0.4-S-D
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Table 5. 14 Calculated values of the electrical properties for the w/b 0.6 

concrete during Thawing of Run 2. The EIS results were 

interpret using a single RC.  The measurements represent a 

single specimen of each variant. 

Variant No ρ α Fm C C ε
[oC] [oK]  [Ωm]  [Hz] [F/cm2] [pF/m2]

1 20 293 264 0.860 2.97E+06 2.54E-13 2535 8
1 2 275 399 0.860 1.89E+06 2.63E-13 2629 8
1 -14 259 936 0.865 7.92E+05 2.68E-13 2684 9
1 -28 245 2263 0.879 3.15E+05 2.79E-13 2791 9
2 20 293 57 0.817 9.28E+06 4.33E-13 4333 14
2 2 275 102 0.798 6.26E+06 3.11E-13 3113 10
2 -14 259 568 0.860 1.33E+06 2.64E-13 2642 9
2 -28 245 1671 0.869 4.48E+05 2.66E-13 2657 9
1 20 293 1900 0.847 3.90E+05 2.68E-13 2682 9
1 2 275 3920 0.814 1.78E+05 2.85E-13 2850 9
1 -14 259 11501 0.856 5.34E+04 3.25E-13 3246 10
1 -28 245 33350 0.823 1.65E+04 3.62E-13 3615 12
1 20 293 686 0.864 1.17E+06 2.49E-13 2487 8
1 2 275 1043 0.864 8.35E+05 2.28E-13 2284 7
1 -14 259 2818 0.854 2.68E+05 2.64E-13 2639 9
1 -28 245 7574 0.868 1.05E+05 2.50E-13 2498 8
1 20 293 5969 0.874 1.38E+05 2.41E-13 2411 8
1 2 275 13788 0.820 3.92E+04 3.69E-13 3685 12
1 -14 259 51913 0.866 1.10E+04 3.48E-13 3482 11
1 -28 245 159000 0.853 5.14E+03 2.44E-13 2444 8

Specimen Id Temperature Electrical properties

R2-0.6-S-D

R2-0.6-W-S

R2-0.6-W-S

R2-0.6-W-D

R2-0.6-S-S
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5.5.3 Effect of temperature on other electrical properties of concrete 
 

 

The values of the electrical resistivity are discussed in previous sections 

and will not be discussed further here.  These values represent the 

impedance of the system where the imaginary component is cero.  

 

The suppression angle, α, when lower than one, demonstrates that the 

relaxation time is not single valued but distributed. The values of α, is 

connected to the variation of the relaxation times in the system.  This 

variation indicates that the system has different phases with different 

electrical properties between the phases.  However, the differences in 

relaxation times were so small that the results described a single semicircle 

in the complex plane plot. 

 

In concrete these phases may represent a paste rich phase including the 

calcium hydroxide rich transition layer surrounding the electrodes as one 

phase and the bulk concrete as another phase.   

 

The values of the suppression angle appear very little temperature sensitive 

and no clear variations induced by temperature were observed from the 

results.   

 

It was expected that the suppression angle could change if ice nucleated 

and introduced another phase in the system. However, since no clear 

change was found in the values of α, it is supposed that ice, when present, 

will not change the ratio between the phases.  Stated in section 5.5.1 it was 
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chosen to regard the system as a single phase accepting the small 

misinterpretation this introduces by viewing the system as a combined 

phase of the two mentioned phases.  

 

The frequency of maximum capacitance, Fm, appears to decrease by 

decreasing temperature. This is observed for all of the variants in both Run 

1 and Run 2.   
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Figure 5. 38 Relationship between temperature and frequency of maximum 

capacitance for the w/b 0. 4 concrete at different moisture 

conditions.  The results are combined for Run 1 and Run 2. 

The R2-0.4-W-S-2 represents the wettest variant (single 

specimen) and is only tested in Run 2.  Regression performed 

by exponential functions. 
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Figure 5. 39 Relationship between temperature and frequency of maximum 

capacitance for the w/b 0. 6 concrete at different moisture 

conditions.  The results are combined for Run 1 and Run 2. 

The R2-0.6-W-S-2 represents the wettest variant (single 

specimen) and is only tested in Run 2.  Regression performed 

by linear functions. 
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The capacitance is a function of frequency and the total resistance 

described by the semicircular arc by the function [71]: 

 

 
1

m concrete

C
F R

=
⋅

 (Equation 5.5) 

Where:  

 

C Capacitance of the concrete system  [F/cm2] 

Rconcrete Electrical resistance of the concrete [Ωcm2] 

Fm Maximum frequency (top of arc) [Hz] 

 

For the w/b 0.4 concrete Fm decreased significantly with temperature.  Its 

relationship with temperature could be well described by an exponential 

function.  We found earlier in this chapter that the electrical resistivity (and 

therefore also the area related electrical resistance of the circuit) increases 

exponentially by decreasing temperature.  As a result the values for the 

capacitance for the w/b 0.4 concrete should vary only slightly with 

temperature which agrees well with the recorded values.  However, for the 

w/b 0.6 concrete the relationship between temperature and the Fm is more 

scattered and is only poorly described by a linear function.  This agrees 

well with the recorded values of the capacitance which show an unclear 

scatter.  

 

Overall, the recorded values for the capacitance are in the expected range 

for concrete.   
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The dielectric constant, ε, is the relative permittivity of a dielectric 

material. It is an important parameter in characterising capacitors. From the 

results the dielectric constants were found to be nearly constant and 

appeared relatively independent of the temperature.  The obtained values of 

the dielectric constant were in the range 8 – 15 in most cases.  This is in the 

expected range for concrete.   

 

However, the dielectric constant should be related to the moisture content. 

 

The calculated dielectric constants are plotted against the moisture contents 

of the concrete specimens during testing in Figure 5.40. 
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Figure 5. 40 The relationship between dielectric constant and the moisture 

content of both concrete qualities.  Regression performed by a 

linear function. 

 

The data indicates a weak relationship between the dielectric constant and 

the moisture content.  It appears that the dielectric constant increases by 

increasing moisture contents; however, since the results are showing a large 

scatter, it is not possible to quantify the relationship. 
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5.5.4 Effect of temperature on the frequency sensitivity 
 

 

The observation of the temperature dependency of the maximum frequency 

indicates that the appropriate measuring frequency may change with 

temperature.  By combining the Bode plots for the variants it is possible to 

illustrate these changes. 
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Figure 5. 41 Combined Bode plots illustrating the effect of temperature on 

the frequency dependency in the low frequency range for the 

R1-0.4-W-S-1 specimen (DS = 95%).   

 

From Figure 5.41 it can be found that the measurement frequency results in 

only slight changes in the measured impedance (modulus) within a 

frequency range from 100 Hz – 10 kHz for temperatures higher than 0°C.  
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On temperatures lower than 0°C; however, there is an increased change in 

the modulus by decreasing temperature.  This indicates that the 

measurement frequency (especially when dealing with stationary 

frequencies) is significant for the values of the electrical resistance of 

concrete even on wet concrete. 

 

The effect showed also moisture dependency and the effect is increased by 

decreasing moisture contents. 
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Figure 5. 42 Combined Bode plots illustrating the effect of temperature on 

the frequency dependency in the low frequency range for the 

R1-0.4-S-D-1 specimen (DS = 55%). 

Figure 5.42 illustrates the same effects as found in Figure 5. 41.  The effect 

appears more profound on the lowest temperature for this drier variant.    
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For both the water-cured – sealed variant and the sealed-cured – dried 

variant the effect seem largest at -28°C.  At a temperature of -14°C the 

modulus decreases by increasing frequencies, however very much less than 

at -28°C.  The departure point for the phase angle indicates that the 

frequency where the capacitive contribution to the impedance increases, i.e. 

where the imaginary component of the impedance vector start to influence.  

These departure points appear to trend to decreasing frequencies at 

decreasing temperatures.  An attempt to visualise this trend by an 

impedance plot (Nyquist Diagram) is given in Figure 5.43. 
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Figure 5. 43 Nyquist diagram for the R1-0.4-W-S-1 specimen at the four 

tested temperatures.  The large crosses show the impedance at 

1 kHz. 
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As Figure 5.43 shows a constant frequency of 1 kHz describes the 

impedance with an increasing imaginary component on decreasing 

temperature.  This observation indicates that a lower measurement 

frequency would be more appropriate at lower temperatures for this 

particular specimen than a stationary frequency of 1 kHz as commonly 

used.  Similar effects were found for the w/b 0.6 concrete, which 

substantiate the observations. 
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6 
 

THE EFFECT OF TEMPERATURE ON 
CORROSION OF STEEL IN CONCRETE 

 

 

This chapter is the overall concluding discussion of this thesis.  Here the 

two parameters investigated are connected to visualise the effect of 

temperature on corrosion of steels embedded in concrete.   

 

 

 

 

6.1 Introduction and connection between the experiments 
and corrosion of steel in concrete. 

 

It has in the forgoing discussions been established that corrosion of steel in 

concrete is dependent on four main elements as illustrated in Figure 6.1. 
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Figure 6. 1 Illustration of the corrosion cell and the interconnected 

elements  

 

These four elements, or processes, are complementary, i.e. they occur at the 

same rate; Anodic dissolution rate, Ia = cathodic reduction rate,  |Ic| = 

electrons transported by the electrical connection (metallic),  Imetal = ion 

charge transported through the electrolyte (concrete), Iconcrete.   

 

The current generated in the corrosion cell is mutually connected and equal 

to all these partial currents, i.e. all partial currents are equal to the corrosion 

rate, and all partial processes may be rate determining.  
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By the CRR and the ER experiments, it is (for these particular systems) 

given an effect on the current bearing capacity of the cathode and the 

electrolyte by changes in temperature and moisture contents. 

 

 

 

6.2 Main observations from the experiments 
 

 

6.2.1 Main observations from the CRR – experiments 
 

• The lag between concrete temperature and the temperature in the 

chamber was approximately two hours.  The total transient time was 

about four hours until a more or less “quasi steady state” was 

achieved. 

  

• By stationary polarisation (-0.6V/MMO) at a stable temperature 

(0°C) it was observed a small decrease in cathodic reaction rate.  The 

decrease was about 5%  over a period of 200 hours.  This may 

indicate increased pH in the adjacent areas of the electrode due to 

insufficient diffusion of hydroxide ions from the cathodic electrode 

surface.  Increased pH makes the electrode nobler and thereby less 

energy consuming to polarise.  The decrease may possibly also owe 

to changes in the reference electrode and eventual polarisation of 

these electrodes.  The MMO – reference electrodes has been reported 

by Castro, Sagüés, Maldonado and Genescá [80] to have slight 

polarisation over longer periods. 
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• Polarisation of the cathodic reaction resulted in steeper Tafel 

gradients in the low-overpotential range (less than -0.3V/MMO) than 

the reported for oxygen reduction on platinum, however, the results 

are quite in range of what is normally observed for cathodic 

polarisation curves in the literature [17 – 19].  The observation of 

higher slopes may indicate that other charge-transfer reactions are 

taking part in the overall reaction and that oxygen reduction occurs 

by first peroxide or superoxide formation before completing the 

reactions. Even though the experiments were performed without any 

compensation for the ohmic drop (IR corrections) they provide 

relevant information.  

 

• At higher cathodic overpotentials the reaction appears to be restricted 

by the availability of the cathodic reactant (oxygen).  Already at a 

potential of approximately -0.3V/MMO the reaction appears to be 

restricted by mass transport of reactants by diffusion to the electrode 

surface.  The reaction may additionally be restricted by 

diffusion/migration of resultants of the reaction from the electrode 

surface.  Funahishi and Young [17] indicates without being able to 

conclude that diffusion of hydroxide from the electrode may be rate 

determining if the water film surrounding the electrode is particularly 

thin (i.e. the moisture content is low). It is assumed due to relatively 

moderate moisture contents in the CRR – experiments that the 

availability of oxygen will dominate the rate of the reaction in this 

research. 
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• Cathodic polarisation of steel in concrete is clearly temperature 

dependent.  By decreasing the temperature the restriction of the 

reaction due to lack of reactants appears at lower overpotentials (as 

low as -0.15 V/MMO at -20°C) and the total current increases clearly 

slower by increased overpotentials at lower temperatures.  However, 

at low overpotentials (linear Tafel region) the reaction appears to 

have nearly the same development by overpotential as for higher 

temperatures.  

 

• It was not observed cases comparable to concentration polarisation in 

the cathodic polarisation curve experiments.  Even though the 

reaction was clearly restricted, no limited state could be found within 

the potential interval investigated (0 > η > -1.0 [V]).  It is therefore 

assumed that the reaction is decelerated by the supply of reactants 

without reaching a state of concentration polarisation. 

 

• The polarisation rate was tested by two rates at 15 minutes and 24 

hours at each potential step.  The polarisation curves were 

corresponding for both steps; however, there were a lag between the 

different stabilisation times which appeared to be more or less 

consistent through the testing interval.  Of practical reasons the 

shorter rate was chosen.  The difference between the polarisation 

rates are illustrated in Figure 6.2 by a potentiostatic transient. 
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Figure 6. 2 Potentiostatic transient for the CRR visualising the two 

polarisation rates.  Based on Bockris et al. [3]. 

 

• The variation of the polarisation curves by temperature indicates that 

the increased solubility of oxygen in the pore water by decreasing 

temperature play a secondary role for the overall reaction rate. 
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• It was observed that the cathodic reaction rate decreased by 

decreasing temperature, giving activation energy constants in the 

range of 3000 – 5000 K.  The calculated activation energies were 

within the expected range compared to information found in the 

literature. A list of activation energy constants found by several 

authors is given in Table 6.1: 

        

Table 6. 1 Comparison of activation energy constants found in the 

literature compared to obtained values 

Activation energy constant Project Polarisation 

type 

Temperature 

range SPS* Mortar Concrete

Jäggi, 

Böhni and 

Elsener 

[19] 

Macrocell of 

depassivated 

steel/ Constant  

0°C to 50°C 4310K 4250K  

Vennesland 

[20] 

Constant  

(-0.8V/SCE) 

1°C to 30°C   2500K 

Elsener, 

Flükiger, 

Woytas 

and Böhni 

[21] 

Macrocell 

measurements 

-10°C to 

18°C 

  3789K 

This 

project 

Constant  

(-0.6V/MMO) 

-40°C to 

40°C  

  3000K – 

5500K 

*) SPS = Simulated Pore Solution (KOH and Ca(OH)2) 
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The very extensive range of activation energy constants may owe to 

that the cathodic reaction rate is influenced by transport mechanisms 

simultaneously with the temperature effect.  The effect of 

temperature on the cathodic reaction rate is given in Figure 6.3 as a 

temperature scaling factor given an estimated upper and a lower 

range. 
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Figure 6. 3 Temperature reduction curve for the cathodic reaction rate in 

respect to a measured reaction rate at 0°C.  Low temperature 

range  (-40°C ≤ T ≤ 0°C). 
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• The cathodic reaction rate appears to be connected to the 

permeability of the concrete.  Generally, the concrete with w/b-ratio 

0.6 generated far higher currents than the concrete with w/b-ratio 0.4, 

which can be attributed to the permeability of the concretes.  

 

• Between freezing and thawing there were found considerable 

hysteresis effects for the water-cured variants.  These hysteresis 

effects were assumed to be induced by frozen capillary water.  From 

calorimetric testing it was found that approximately 29% (w/b 0.6) 

and 12% (w/b 0.4) of the evaporable water were able to freeze within 

the temperature range (down to -35°C concrete temperature) given a 

fully saturated concrete.   With such considerable amounts of frozen 

capillaries the hysteresis effects were well expected.  The theory of 

ice in the pores was substantiated in that no clear hysteresis effects 

were found between heating and cooling and that nearly no 

hysteresis effects were found for the variants with lower moisture 

contents.  

 

• The moisture content of concrete seems to play a secondary role for 

the cathodic reaction rate. At higher moisture contents however, the 

diffusion of oxygen mainly takes place in the aqueous phase, which 

is very much slower than in air.  Reduction of oxygen is on the other 

side dependent upon a water film present in the adjacent areas to the 

electrode, and also to be interconnected by an ionic conductive 

pathway to the anode for the reaction to occur. 
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6.2.2 Main observations from the ER – experiments 
 

• The experiments verify in general the numerous observations that the 

electrical resistivity increases by decreasing w/b-ratios. Monfore [32] 

reported observations of that the electrical resistivity of a cement 

paste with a w/b-ratio of 0.4 was about the double of that of a cement 

paste with w/b-ratio of 0.6.  Generally for the investigated concretes 

the electrical resistivity of the concretes with w/b-ratio of 0.4 were 

relatively larger than that of the concretes with w/b-ratio 0.6 at 

comparable curing regimes and moisture contents.  However, a clear 

ratio between the two w/b-ratios is not found.  The ratios between the 

concretes (ρ0.4/ρ0.6) were observed to be in the range 1.5 – 3.5 

dependent upon the curing and handling.  It is important to note that 

the concretes were fundamentally different with a view to cement 

content, silica fume additive and amounts and gradation of the 

aggregates.  Therefore a clear indication of the impact of the various 

parameters regarding the concrete mix on the electrical resistivity is 

not conclusive.  However, the observations show the same trend as 

indicated in the literature. 

 

• The electrical resistivity of concrete is clearly and decisively 

dependent upon the moisture condition of the concrete.  The 

observations in this project correspond to that found in the literature.  

Gjørv et al. [49] and Woelfl and Lauer [59] reported dramatic 

increasing electrical resistivity (Woelfl and Lauer investigated 

electrical resistance of concretes) at decreasing moisture contents.  

This has in general later been verified by several authors and is 
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verified by the present experimental results.  However, the results do 

not agree in detail. The electrical resistivity in the present results for 

both concretes increases more strongly at certain moisture contents.  

Based on quite rough assumptions it appears as these critical 

moisture contents coincide with the capillary cores being empty 

and/or a thickness of the adsorbed water layers of approximately 2 to 

3 monolayers.  The slope of the increase in the electrical resistivity 

by decreasing moisture contents may be a valuable tool to describe 

the pore structure, i.e. a division into gel and capillary pores, thereby 

describing the various concrete qualities by means of durability of 

concrete.  If properly investigated and verified this may give an 

important tool to characterise the concretes.  Supporting literature for 

these observations was not found.  
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Figure 6. 4 Moisture scaling factor for electrical resistivity. The reference 

(1.0) is the electrical resistivity of fully saturated concrete    

(DS =100%). 

 

• The electrical resistivity of concrete increases with decreasing 

temperatures yielding activation energy constants (according to 

Hinrichson – Rasch law) in the range 2200 K – 5500 K.  This range 

of temperature sensitivity is in agreement with the statement of 

Elkey and Sellevold [40] that the activation energy constants may 

vary between 2000 K and 5000 K in some cases.    
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Table 6. 2 Comparison of activation energy constants found in the 

literature compared to obtained values 

Activation energy constant Project Measurement 

type 

(frequency) 

Temperature 

range Cement 

paste 

Mortar Concrete 

Monfore 

[32] 

DC and AC  

(0.1 – 10 kHz) 

 2200 K   

Hope et 

al. [61] 

AC (1 kHz) 5°C to 25°C   2900 K 

This 

project 

AC 

(0.1 – 40 MHz) 

(0.1 – 10 kHz)  

(1 kHz) 

-28°C to 20°C   2200 K – 

5500 K 

 

 

• When temperature and the moisture contents of concrete are viewed 

in combination, the effect on the electrical resistivity can be 

summarised as follows:  The effect of moisture contents appears to 

follow the same trend at all temperatures, however, the temperature 

introduces a level shift (increased to a higher level at decreased 

temperature).  

 

• The measurements appear to be frequency dependent at lower 

temperatures and lower moisture contents.  It seems as if a constant 

measurement frequency will describe impedances with increasing 

imaginary components at lower temperatures and lower moisture 

contents.  No conclusion is possible to make due to the low amounts 
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of data, however, the indication is clear.  It is recommended that 

more research is performed to map out the frequencies proper for 

measurements at lower temperatures and lower moisture contents. 

However, for practical purposes constant measurements frequencies 

between 100 and 5000 Hz appears to be appropriate at normal 

moisture contents ( >70 %) and at temperatures above 0°C. 

 

•  The presentation of the EIS data by impedance plot (Nyquist 

diagrams) confirm the observations made by Bürcheler, Elsener and 

Böhni [44] that the semicircles describing the impedance in concrete 

are suppressed which indicates dispersed relaxation times, i.e. the 

impedance describes the different phases of conduction in concrete 

(e.g. cement particles, liquids, adsorbate).  The impedance will 

therefore describe a semicircle that is suppressed below the real axis.   
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6.3 Effect of temperature on corrosion of steel in concrete 
 

 

6.3.1 Effect of temperature on corrosion of steel in concrete 
highlighted by an example 

 

 

Based on the observations summarised in section 6.2 it is now possible to 

estimate the effect of temperature on the corrosion rate of steel embedded 

in concrete based on certain assumptions.  The assumptions and 

observations are: 

 

• The electrodes are identically sized on both the anode and the 

cathode. 

 

• The cathodic reaction is impeded by the supply of reactants at lower 

overpotentials by decreasing temperatures as observed in the CRR 

experiments. 

 

• The anodic electrode is assumed to be easier polarised tending 

towards a transpassive state for decreasing temperatures, i.e. the 

slope of the anodic polarisation curve will increase for decreasing 

temperatures. 

 

• The electrical resistivity of concrete increases quite intensively with 

decreasing temperatures, and even though the current density is 

assumed to decrease in the corrosion circuit, one may predict that the 
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ohmic drop induced (by the concrete resistance) in the corrosion 

circuit remains more or less stable.  

 

• The respective anodic and cathodic corrosion potentials will attend 

approximately the same values at various temperatures.  Slight 

changes will occur, but in eyes of the effect of the temperature on the 

other processes this will only play a second order role. 

 

 

Based on the above assumptions and observations Evans diagrams for four 

temperatures are given in Figure 6.5.  
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Figure 6. 5 Plausible effect of temperature on the corrosion couple 

illustrated by Evans diagrams for temperatures of 20°C, 0°C,   

-20°C and -40°C. 

 

Certainly , the illustrated effect on the corrosion rate (Figure 6.5) represents 

only a qualified guess based on my best knowledge; however, it is plausible 

that it illustrates the effect of temperature on a corrosion couple in concrete 

given the assumed conditions. 

 

At 20°C the cathodic electrode is assumed to be in the linear region of the 

polarisation curve at its corrosion potential, the anodic electrode is in the 

active part and the ohmic drop (ir) is quite substantial due to the high 

activity, though the electrolytic resistance is low. 
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At 0°C the cathodic process starts to be restricted by the supply of oxygen 

and the slope of the anodic curve is increased due to higher activation 

energy.  The ohmic drop is the same although the activity is decreased 

since the electrolytic resistance is increased in the circuit. 

At the temperatures of -20°C and -40°C the situation from 0°C is 

amplified.  The cathodic electrode is reaching a situation similar to 

concentration polarisation and the anodic electrode is more and more 

steeply polarised. 
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Figure 6. 6 Summary of the assumed effect of temperature on corrosion 

rate of steel in concrete.   
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Clearly, a quantification of the direct temperature effect on the corrosion 

rate is not possible by the observations in this project.   However, it is 

strongly indicated that the corrosion rate decreases with decreasing 

temperature, and that it is inhibited by both the investigated corrosion 

parameters.  The cathodic reaction current density was shown to decrease 

strongly by temperature with activation energy constants from 2500 K to 

5000 K.  Likewise, the electrical resistivity increased equally much with 

decreasing temperatures.   

 

If the temperature effect of the cathodic reaction rate and the temperature 

effect of the electrical resistivity of concrete are superimposed, the effects 

should result in a decrease of the corrosion rate according an activation 

energy constant of approximately 25000 K.  This implies that the corrosion 

rate should decrease by nearly 15% per °C.  Clearly, the effect of 

temperature on the corrosion rate can not be estimated by superimposing 

the effects. 

 

Due to the complexity of the corrosion processes in concrete, e.g. 

geometrical considerations, reaction kinetics, available current pathways 

etc, to go beyond the elaborations just made is too uncertain to justify the 

attempt.   

 

In order to clarify the direct effect of temperature on the corrosion rate in 

the low temperature range a large and accurate laboratory study seen in 

conjunction with field measurements is needed. 
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7 
 

CONCLUSIONS 
 

 

This chapter summarises the main conclusions based on the experimental 

work, reported in Chapters 4 through 6, and their most important 

consequences.  At the end some recommendations on further work is 

outlined. 

 

 

 

7.1 Main conclusions and their implications 
 

The results in this study demonstrate that: 

 

1) The cathodic reaction rate of passive steel embedded in concrete 

decreases for decreasing temperature. 

 

2) Ice formation in the capillary pore structure generates 

considerable hysteresis effect on the cathodic reaction rate of steel 

in concrete.  

 

3) The cathodic polarisation behaviour of passive steel is 

temperature dependent. 

 

4) The electrical resistivity of concrete is increasing by decreasing 

temperature 
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5) The electrical resistivity of concrete is governed by the moisture 

condition of concrete, increasing for decreasing moisture 

contents. 

 

 

 

7.1.1 Thermal effects on the cathodic reaction rate of passive state 
embedded steels in the low temperature range 

 

The conclusion that the cathodic reaction rate of passive embedded steels in 

concrete decreases for decreasing temperatures is based on the results from 

the CRR – experiments (Chapter 4) where all tested specimens showed a 

decrease in reaction rate for decreasing temperatures.  The decrease did in 

most cases follow the Arrhenius law.  The calculated activation energy 

constants formed a scatter in the range 2000 – 5000 K (activation energies 

according to Arrhenius law -17 – -45 kJ/mole). The variation of the 

activation energy constants could not be related to either the concrete 

porosity characteristics or the moisture content of the concrete.   

 

The observation of decreasing reaction rate for decreasing temperature 

confirms the reported findings for similar processes found in the literature 

and the range of the observed activation energy constants fits the reported 

range.  

 

The practical implication of these observations is that one should expect a 

change in cathodic reaction rate of steel in concrete of approximately 3 % 

to 5 % per °C at 20°C.   
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Furthermore, this implies that cathodic protection systems that are 

controlled after a fixed current (density) principle may generate extreme 

potentials on both the anodic electrode and the cathodic electrode 

(reinforcements) with the consequences that such potentials may have. 

 

 

7.1.2 Hysteresis effects due to ice formation in the capillary pores 
 

The conclusion that ice formation in the capillary pores causes the 

hysteresis effects is based on the results from the CRR – experiments seen 

in conjunction with low-temperature calorimetric data.   

 

The specimens having the highest moisture contents, i.e. thereby the largest 

potential for ice in the capillaries, behaved differently during thawing 

compared to during freezing.  On freezing these specimens acted 

differently than the specimens containing less moisture, while on thawing 

the results were corresponding to those containing less moisture. The 

specimens that contained less moisture did not show hysteresis effects.  

This was a strong indicative that some of the capillaries were demobilised 

and did not contribute to the reaction rate.  The fact that the data from the 

low-temperature calorimetry substantiated the hysteresis effects due to the 

difference in how water freezes and thaws in concrete gave this conclusion. 

 

The practical consequences of these observations is that while working at 

low temperatures with wet or saturated concrete one has to bare in mind 

that ice may interfere measurements of all kind in concrete. 
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7.1.3 Temperature dependency of the cathodic polarisation curves for 
passive state steel in concrete. 

 

The conclusion that the cathodic polarisation curves for passive steel in 

concrete have a temperature dependency is based on the polarisation 

experiments in the CRR – section of the experimental programme.  During 

polarisation in the range, 0 to -1.2 V/MMO, at three specific temperatures, 

20°C, 0°C and -20°C, the shapes of the polarisation curves changed by 

changes in temperature.  It was found that the slope of the steepest parts of 

the polarisation curves increased by decreasing temperatures.  For some of 

the variants the situation at -20°C approached a situation of concentration 

polarisation. 

 

 

7.1.4 Thermal aspects of the electrical resistivity of concrete in the low 
temperature range. 

 

The conclusion that the electrical resistivity increases by decreasing 

temperatures is based on the ER – experiments where the electrical 

resistivity of all specimens were found to increase by decreasing 

temperatures.  The change in electrical resistivity was found to follow 

Hinrichson – Rasch law in many cases giving activation energy constants 

in the range 2000 – 5500 K.  The wetter the concrete the less it could be 

described by a single activation energy constant according to Hinrichson – 

Rasch law, indicating presence of changes in the electrolyte that is not 

activation governed.  It is assumed that some of these effects could be 

attributed to ice formation in the capillaries.  
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7.1.5 The moisture condition governs the electrical resistivity of 
 concrete also in the low temperature range. 
 

The conclusion that the moisture content of concrete governs the electrical 

resistivity was found previously by several authors.  However, this study 

extends the conclusion to the electrical resistivity at low temperatures.  

This conclusion is based on the observations in the ER – experiments 

(chapter 5).   

 

Temperature introduces a level shift to the relation between moisture 

content and the electrical resistivity.  The curves for the four specific 

temperatures investigated in this project were nearly following the same 

course for all temperatures, however, with a temperature induced level 

change. 

 

 

 

7.2 Recommendations for further work 
 

 

More work should be made in order to clarify the effect ice has on the 

electrolytic behaviour of concrete.  This could include a variety of 

experiments, but it is indeed recommended that finer resolutions on the 

temperature intervals are used, and that the range is widened compared to 

the experimental programme in this project. 

 

More work on the relation between moisture content and electrical 

resistivity should be made in order to verify the indications found in this 
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project that a critical resistivity is reached at specific moisture contents 

given by the concrete porosity characteristics.  Such an investigation is 

recommended to include a wider range of materials (e.g. cement types, 

additives) and concentrate on only one temperature.  A thorough 

investigation could result in a method to characterise in-situ concrete in 

terms of durability by its moisture-resistivity relation.   

 

It would be of great value to perform a statistical study of several structures 

suffering of reinforcement corrosion where in-situ measurements were 

correlated with the experimental data found in this project and similar 

projects in order to verify if the observations could be translated into 

existing structures. 
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