End of Bridge Girder at Abutment North

# 5 Sectional forces in Bridge Girder K12 August 2019

K12 is chosen as the preferred option, and the latest results from the files ShipCollision\_K12\_06 and K12\_07\_PROD\_load\_combinations\_bridge\_direct\_expected\_max are shown below.

| Ship<br>coll | Ν   | Mz    | Му  | т   | Vz  | Vy  |
|--------------|-----|-------|-----|-----|-----|-----|
| Mz+          | 51  | 5876  | 346 | 64  | -13 | 48  |
| Mz-          | -50 | -5838 | 252 | -92 | -16 | -44 |

| ULS 3 | Ν  | Mz    | Му  | т   | Vz  | Vy  |
|-------|----|-------|-----|-----|-----|-----|
| Mz+   | 6  | 2439  | -47 | 144 | -12 | 11  |
| Mz-   | 30 | -2680 | 801 | 51  | -22 | -11 |

Units: meter and MN

Figure 5-1 Maximal forces for K12

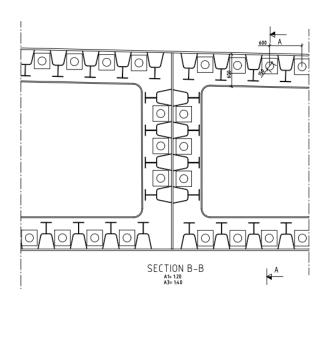
The SLS condition with no tension in the joint is governing for prestressing between the steel girder and the abutment.

Tendons c/c 600 mm both in plates and bulkheads give space for about 170 tendons.

It is chosen to have 54 tendons 6-19 in the webs and 48 in the bottom slab. In top slab 48 tendons 6-22 for partly counteracting the permanent My moment. (6-19 means 19 strands 0.6 in diameter ) Total compression from prestressing is 536 MN after losses.

Below is shown the steel stresses in the joint for the SLS combinations. (sig P =-119 are compression stress from the tendons).

| SLS | Ν   | Mz    | Му   | sig P | sig N | sig Mz | sig My | sum MPa |
|-----|-----|-------|------|-------|-------|--------|--------|---------|
| N+  | 39  | -228  | 426  | -141  | 10    | 8      | 70     | -52     |
| N-  | -34 | 183   | -51  | -141  | -9    | 7      | 8      | -135    |
| Mz+ | 4   | 1524  | -80  | -141  | 1     | 57     | 13     | -70     |
| Mz- | 19  | -1675 | 451  | -141  | 5     | 62     | 74     | 0       |
| My+ | 8   | -428  | 698  | -141  | 2     | 16     | 114    | -8      |
| My- | 3   | 572   | -281 | -141  | 1     | 21     | 46     | -73     |


Figure 5-2 SLSI forces and stresses.

The ALS capacity for Mz is about 8200 MNm, (1.4 x collision load).

End of Bridge Girder at Abutment North

# 6 Changes to Details in the end Section.

The end section is reinforced with T-stiffeners against the end plate, which has got manholes between the webs. The openings are provided with stiffening plates all around.



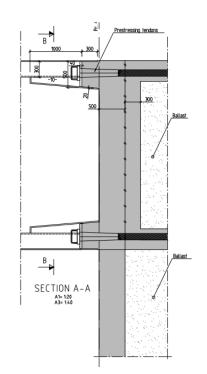



Figure 6-1 Details end section

# 7 Conclusion

The proposed design as shown in chapter 3 with the modifications shown in chapter 6, is found usable for transfer of forces from the floating bridge to the north abutment.



# Concept development, floating bridge E39 Bjørnafjorden

**Appendix K – Enclosure 5** 

10205546-13-NOT-086 Column design

# AAS-JAKOBSEN COWI Multiconsult Image: Base of the state of the stateo

# MEMO

| PROJECT | Concept development, floating bridge<br>E39 Bjørnafjorden | DOCUMENT CODE    | 10205546-13-NOT-086 |
|---------|-----------------------------------------------------------|------------------|---------------------|
| CLIENT  | Statens vegvesen                                          | ACCESSIBILITY    | Restricted          |
| SUBJECT | Column design                                             | PROJECT MANAGER  | Svein Erik Jakobsen |
| то      | Statens vegvesen                                          | PREPARED BY      | Espen Tuveng        |
| СОРҮ ТО |                                                           | RESPONSIBLE UNIT | AMC                 |

#### SUMMARY

Two different column geometries are used. One "long" column for floating bridge high part, axis 3-8, and a "short" column for floating bridge low part, axis 9-. The columns are identical for K11, K12, K13 and K14.

The columns have a rectangular section at the interface between pontoon and bridge girder. There is a transition at the bottom and top of the columns from a rectangular section to an 8-sided section used for the middle part of the columns.

A simplified screening of ULS and ALS combinations have been performed. The checks are based on elastic capacity. Columns have sufficient capacity to withstand ULS combinations.

Ship impact will result in plastic deformations of the columns. Plate thickness can alternatively be increased from 25 mm to 40 mm for the columns to absorb more energy during an impact. Another alternative is to increase the size of the narrow middle part of the columns. This will increase the column ship impact capacity significantly, but will also increase wind drag.

| 1    | 24.05.2019 | Final issue    | E. Tuveng   | P. N. Larsen | S. E. Jakobsen |
|------|------------|----------------|-------------|--------------|----------------|
| 0    | 29.03.2019 | Status 2 issue | E. Tuveng   | P. N. Larsen | S. E. Jakobsen |
| REV. | DATE       | DESCRIPTION    | PREPARED BY | CHECKED BY   | APPROVED BY    |

# **1** Column properties

Two different column geometries are used. One "long" column for floating bridge high part, axis 3-8, and a "short" column for floating bridge low part, axis 9-. The column properties are identical for K11, K12, K13 and K14, only the length varies.

The columns are designed as quadratic or rectangular sections. The middle part of the columns has chamfered corners and is narrower than the top and bottom. This is done to improve wind drag, and to give the columns a more aesthetic appearance. The transition piece from a rectangular section to a chamfered section with 8-sides is designed with triangular pieces. The transition to a chamfered and narrower section is unfavorable when transferring loads through the column. From a structural design point of view, the chamfering and narrowing can be removed to increase the load bearing capacity of the columns.

Column geometry is shown in Figure 1-1 and is tabulated in Table 1-1.

Section properties are presented in Table 1-2. Section capacity calculated according to NS-EN 1993-1-1 [1], section 6 are presented in Table 1-3.

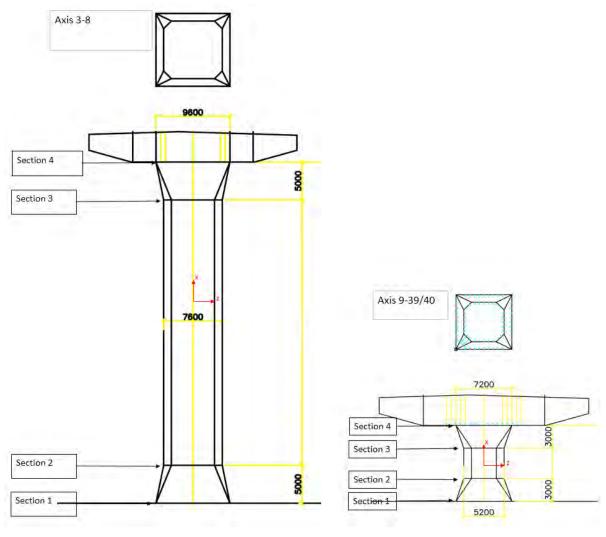



Figure 1-1 Column axis 3-8 (left) and axis 9- (right)

Table 1-1 Column geometry

|        |                          |                 | Overall dimensions for section |                        |                   |  |  |
|--------|--------------------------|-----------------|--------------------------------|------------------------|-------------------|--|--|
|        | Section                  | Section<br>name | L (y-axis,<br>N-S dir)         | W (z-axis,<br>E-W dir) | t<br>(skin plate) |  |  |
|        |                          |                 | [m]                            | [m]                    | [mm]              |  |  |
| Bottom | Long column - section 1  | L1              | 8                              | 8                      | 25                |  |  |
|        | Long column - section 2  | L2              | 7.6                            | 7.6                    | 25                |  |  |
|        | Long column - section 3  | L3              | 7.6                            | 7.6                    | 25                |  |  |
| Тор    | Long column - section 4  | L4              | 9.6                            | 9.6                    | 25                |  |  |
| Bottom | Short column - section 1 | S1              | 8                              | 8                      | 25                |  |  |
| I      | Short column - section 2 | S2              | 6                              | 5.2                    | 25                |  |  |
|        | Short column - section 3 | S3              | 6                              | 5.2                    | 25                |  |  |
| Тор    | Short column - section 4 | S4              | 8                              | 7.2                    | 25                |  |  |

#### Table 1-2 Column section properties

| Section<br>name | A <sub>x</sub><br>[m^2] | A <sub>y</sub><br>[m^2] | A <sub>z</sub><br>[m^2] | l <sub>x</sub><br>[m^4] | l <sub>y</sub><br>[m^4] | l <sub>z</sub><br>[m^4] | W <sub>y</sub><br>[m^3] | Wz<br>[m^3] | 2*t*AE<br>[m^3] |
|-----------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------|-----------------|
| L1              | 1.280                   | 0.640                   | 0.640                   | 20.170                  | 13.650                  | 13.650                  | 3.396                   | 3.396       | 5.120           |
| L2              | 1.122                   | 0.608                   | 0.608                   | 17.280                  | 10.120                  | 10.120                  | 2.650                   | 2.650       | 4.621           |
| L3              | 1.122                   | 0.608                   | 0.608                   | 17.280                  | 10.120                  | 10.120                  | 2.650                   | 2.650       | 4.621           |
| L4              | 1.536                   | 0.768                   | 0.768                   | 34.950                  | 23.590                  | 23.590                  | 4.895                   | 4.895       | 7.373           |
| S1              | 1.280                   | 0.640                   | 0.640                   | 20.170                  | 13.650                  | 13.650                  | 3.396                   | 3.396       | 5.120           |
| S2              | 0.802                   | 0.480                   | 0.416                   | 6.804                   | 3.398                   | 4.164                   | 1.297                   | 1.379       | 2.496           |
| S3              | 0.802                   | 0.480                   | 0.416                   | 6.804                   | 3.398                   | 4.164                   | 1.297                   | 1.379       | 2.496           |
| S4              | 1.216                   | 0.640                   | 0.576                   | 17.190                  | 10.780                  | 12.630                  | 2.979                   | 3.142       | 4.608           |

 $N_{\text{Rd}}$  is calculated according to section 6.2.4 of NS-EN 1993-1-1 [1].

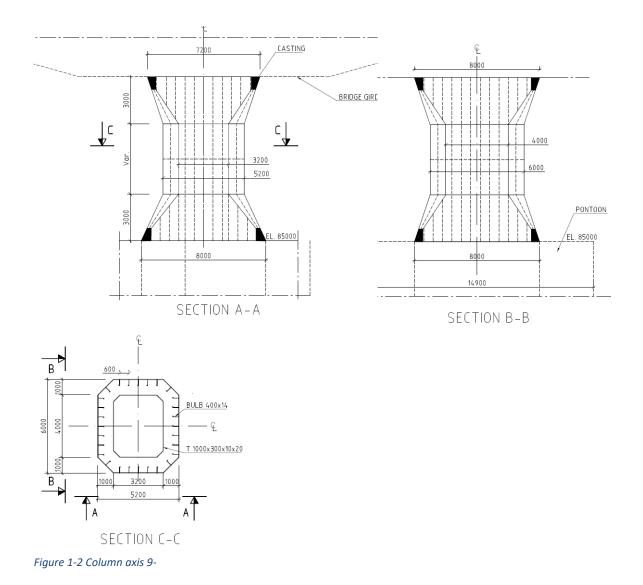
 $V_{\text{Rd}}$  is calculated according to section 6.2.6 of NS-EN 1993-1-1 [1].

 $M_{Rd}$  is calculated according to section 6.2.5 of NS-EN 1993-1-1 [1].

M<sub>T,Rd</sub> is based on Bredt's 1<sup>st</sup> formula.

Table 1-3 Column section capacities

| Section name | N <sub>Rd</sub> | $V_{y,pl,Rd}$ | $V_{z,pl,\text{Rd}}$ | $M_{y,Rd}$ | $M_{z,Rd}$ | $M_{T,Rd}$ |
|--------------|-----------------|---------------|----------------------|------------|------------|------------|
|              | [MN]            | [MN]          | [MN]                 | [MNm]      | [MNm]      | [MNm]      |
| L1           | 488.7           | 141.1         | 141.1                | 1 296.7    | 1 296.7    | 1 117.4    |
| L2           | 428.4           | 134.0         | 134.0                | 1 011.8    | 1 011.8    | 1 007.9    |
| L3           | 428.4           | 134.0         | 134.0                | 1 011.8    | 1 011.8    | 1 007.9    |
| L4           | 586.5           | 169.3         | 169.3                | 1 869.0    | 1 869.0    | 1 611.8    |
| S1           | 488.7           | 141.1         | 141.1                | 1 296.7    | 1 296.7    | 1 117.4    |
| S2           | 306.3           | 105.8         | 91.7                 | 495.2      | 526.5      | 542.4      |
| S3           | 306.3           | 105.8         | 91.7                 | 495.2      | 526.5      | 542.4      |
| S4           | 464.3           | 141.1         | 127.0                | 1 137.4    | 1 199.7    | 1 005.1    |


#### 1.1 Plates and stiffenening system

For columns at axis 3-8, the plate thickness is 25 mm (optionally 40 mm). The plates are stiffened by horizontal T-profiles with dimension 1000 x 300 x 10.0 x 20.0 mm, and vertical bulb-profiles with dimension BF 400 x 14.0 mm. The T-profiles have a center distance of 3000 mm. Bulb-profiles have a center distance of 600 mm.

For columns at axis 9-, the plate thickness is 25 mm (optionally 40 mm). The plates are stiffened by horizontal T-profiles with dimension 1000 x 300 x 10.0 x 20.0 mm, and vertical bulb-profiles with dimension BF 400 x 14.0 mm. The T-profiles have a center distance of 3000 mm. Bulb-profiles have a center distance of 600 mm. The column is shown in Figure 1-2.

The stiffener dimensions are chosen so that buckling is not limiting to the capacity of the columns. A buckling check utilizing Stipla DNV-RP-C201 [2] has been performed. A summary where yield stress 420 MPa / 1.1 = 381 MPa is applied is shown on the next page. As expected, the yield check for the plate show full utilization. Buckling control show remaining capacity.

The optional 40 mm plate thickness is added to increase the column capacity for an eccentric ship impact where torsion is the dominant force.



| DNVRPG                                             |             |          |                   | Proje    | ct: Bjørnafjorden                   |                            |             | Page:<br>1/1 |
|----------------------------------------------------|-------------|----------|-------------------|----------|-------------------------------------|----------------------------|-------------|--------------|
| Girder check based on Di                           | NV-RP-C2    | 01/05    | S-C101            | Identi   | fication: Test bukling søylev       | vega - midtparti           | Date: 22.0  |              |
| Version 2.2.1<br>Copyright (C) 2004-2015           | StruProg    | AB       |                   | Identi   | incation. Test buking søylev        | legg - miotparti           | Time: 10:   |              |
|                                                    | -           |          | eaninaer\søvl     | er\kap;  | asitetskontroll\sjekk platefelt     | - lang søvle drog          | nine. to.   | 43           |
|                                                    |             |          | - <u>-</u>        |          |                                     | in any object py           |             |              |
| Material/Safety Format:                            |             |          | 20/61/ 420        |          | General:                            | Lk - 5000                  |             |              |
| Plate/girder:                                      | fun/fua     |          | 20/NV-420         | Do       | Buckling length<br>Mom fact - Field |                            | mm          |              |
| /ield stress                                       | fyp/fyg     |          | 420/420 N         |          |                                     |                            |             |              |
| oungs modulus                                      | E           | =        | 2.10E+5 N         | Ра       | - Support                           | km1 = 12.0                 |             |              |
| Material Factor:                                   | gm          | =        | 1.10              |          | Continuous girder                   |                            |             |              |
| Allowable Usage Factor:                            | UF          | =        | 1.00              |          |                                     |                            |             |              |
| Geometry:                                          |             |          |                   |          | Stiffened plate:                    |                            |             |              |
| Girder spacing                                     | L1          | =        | 3000 m            | nm       |                                     |                            |             |              |
| -                                                  | L2          | =        | 3000 m            | nm       | у<br>у                              |                            |             |              |
| Girder span                                        | Lg          | =        | 5600 m            | nm       | ×                                   |                            |             |              |
| ength of panel                                     | Lp          | =        | 30000 m           |          |                                     |                            |             |              |
| Lat tors buckl length                              | Lt          | =        | 2000 m            |          |                                     |                            |             |              |
| Stiffener spacing:                                 | s           | =        | 600 m             | nm       |                                     | ╢───╢                      |             |              |
| Plate thickness                                    | t           | =        | 25.0 m            | nm       |                                     | ┨┝━━━┫╟────┨║              | - H         | ŕ            |
| Stiffener: BF 400x14.0                             |             |          |                   |          |                                     |                            | L'II        | Lt           |
| Stiffener continuos through                        | h girder (E | q 8.4)   |                   |          |                                     | <b>.</b>                   |             | -            |
| -                                                  |             |          |                   |          |                                     |                            | ļ.          | 2            |
| Stress/Force:                                      |             |          |                   |          |                                     |                            |             |              |
| Sigx1 = -381.0 MPa                                 |             |          |                   |          |                                     |                            | <b>'</b>    |              |
| Sigx3 = -381.0 MPa                                 |             |          |                   |          | Sigx L1                             | <sup>3</sup> L2            |             |              |
| Sigy = 0.0 MPa                                     |             |          |                   |          |                                     | 1 Lp                       |             |              |
| Tau = 0.0 MPa                                      | а           |          |                   |          |                                     | л                          |             |              |
| Girder: Built-up: T 1000x3                         | 300x10.0x   | 20.0     |                   | Girc     | ler property:                       | Girder incl. eff. plate:   |             |              |
|                                                    |             |          |                   | н        | = 1000 mm                           | zp = 231                   | .0 mm (elas | tic)         |
| .7                                                 |             |          |                   | В        | = 300 mm                            | zp = 6.                    | .3 mm (plas | tic)         |
| k L₽↑ <sup>Z</sup>                                 |             | .        |                   | tw       | = 10.0 mm                           | Ae = 4.141E+               | 4 mm2       |              |
| · · · · · · · · · · · · · · · · · · ·              |             | Ŧ,       |                   | tf       | = 20.0 mm                           | le = 6.764E+               | •9 mm4      |              |
| <u> </u>                                           | L           | <b>т</b> |                   | Α        | = 15800 mm2                         | Plate in compression:      |             |              |
|                                                    |             |          |                   | g        | = 124.0 kg/m                        | Wep = 2.928E+              | -7 mm3      |              |
|                                                    | +51         |          |                   | ly       | = 1.715E+9 mm4                      | Weg = 8.655E+              | •6 mm3      |              |
|                                                    | ∎ <u>₩</u>  |          |                   | Iz       | = 4.500E+7 mm4                      | Plate in tension:          |             |              |
| k <sup>B</sup> →                                   | *           |          |                   |          |                                     | Wep = 3.040E+              |             |              |
|                                                    | -           |          |                   |          |                                     | Weg = 7.652E+              | -6 mm3      |              |
|                                                    |             |          |                   |          |                                     | Webclass: 1 M - PI in c    |             |              |
| ocal buckling of web take                          | en into acc | ount     |                   |          |                                     | Webclass: 4 M - PI in t    | ens.        |              |
| according to Eurocode 3/N                          |             | Junt     |                   |          |                                     | Webclass: 4 N - Axial f    | orce        |              |
|                                                    |             |          |                   |          |                                     | Flangeclass: 2             |             |              |
|                                                    | 201./1.0    |          |                   |          | - elete)                            |                            |             |              |
| GIRDER BUCKLING CONTE<br>Le = 1262.5 mm Sigxsd = - |             |          |                   |          |                                     |                            |             |              |
| UF1g=Nsd/NksRd-2*NSd/NR                            |             |          |                   |          |                                     |                            |             |              |
| -                                                  |             |          |                   |          | .780)/(2921.6*(1-0.0/447039.5))     | ) =                        | 0.26 < 1    | 1.00 (Eq 7.  |
|                                                    |             |          |                   |          | +(768.3+0.0*-0.780)/(11606.6*(      |                            |             | 1.00 (Eq 7.5 |
|                                                    |             |          |                   |          | +(384.1-0.0*-0.780)/(2921.6*(1-     | 0.0/447039.5)) =           | 0.13 <1     | 1.00 (Eq 7.5 |
| UF2p=Nsd/NkpRd-2*NSd/NR                            |             |          |                   |          |                                     |                            |             |              |
| C                                                  | ).0/15739.2 | -2*0.0/  | 15809.3+(384.1    | -0.0*-0. | 780)/(11181.2*(1-0.0/447039.5))     | ) =                        | 0.03 < 1    | 1.00 (Eq 7.  |
| Recommended maximum dis                            | tance betw  | een trip | ping brackets to  | o avoid  | lateral torsional buckling = 296    | 9 mm (Eq 8.31)             |             |              |
| GIRDER YIELD CHECK: (ch                            | eck at poin | ts 1-2.  | plate(p) and ging | der(a)). | Effective width Le = 3000.0, ref    | f DNV OS C101, sec 5. G400 |             |              |
| Point 1p: UF = Sigjd/fyd = 38                      |             |          | and give          |          |                                     |                            | 1.00 < 1    | .00          |
| Point 1g: UF = Sigy/fyd = 0.0                      |             |          |                   |          |                                     |                            | 0.00 < 1    |              |
| GIRDER WEB AREA: (DNV-                             |             | 000 F (  | 2 603)+           |          |                                     |                            |             |              |

GIRDER WEB AREA: (DNV-OS-C101, sec 5, G 603): Web area at support: tw/t = 0.00/10.0 =

0.00 < 1.00

# 2 Forces from global analysis

Input for capacity checks of the columns are based on the following global analysis results presented in Table 2-1 and Table 2-2.

Table 2-1 Global analysis, ULS

| Bridge | Revision | Date       |
|--------|----------|------------|
| K11    | 07       | 20.03.2019 |
| K12    | 05       | 20.03.2019 |
| К13    | 06       | 20.03.2019 |
| K14    | 06       | 20.03.2019 |

#### Table 2-2 Global analysis, ALS - Ship impact

| Bridge | Revision | Date       |
|--------|----------|------------|
| K11    | 07       | 20.03.2019 |
| K12    | 05       | 20.03.2019 |
| К13    | 06       | 20.03.2019 |
| К14    | 06       | 20.03.2019 |

# 3 Capacity check

The capacity is checked with a linear summation of the utilization for each load component according to NS-EN 1993-1-1 [1], section 6.2.1 (7). The check is elastic.

$$\frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} < 1.0$$
 (3.1)

Shear capacity  $V_{Pl,Rd}$  is calculated according to section 6.2.6 [1], and reduced due to torsion according to 6.2.7 (9).

$$V_{pl,T,Rd} = \left[1 - \frac{\tau_{t,Ed}}{(f_y/\sqrt{3})/\gamma_{M0}}\right]$$
(3.2)

The shear force can according to section 6.2.8 (2) be ignored for combinations of moment and shear if  $V_{Ed} < 0.5 * V_{pl,T,Rd}$ .

#### 3.1 Material properties

Steel with quality S420N [3] have been used for all parts.

Density: 7850 tonne/m<sup>3</sup>

# 3.2 Material factors

Material factors according to NS-EN 1993-2 [4] have been used.

ULS:  $\gamma_{M0} = 1.1$ 

ALS: γ<sub>M0</sub> = 1.0

# 4 ULS capacity check

From "envelopes" results, the following combinations have been checked:

- Min N
- Min M longit
- Min M transv
- Min T
- Min V longit
- Min V transv
- Max N
- Max M longit
- Max M transv
- Max T
- Max V longit
- Max V transv

From "expmax" results, the following combinations have been checked:

- Worst
- Case 1
- Case 2
- Case 3
- Case 4

ULS 2 and ULS 3 combinations have been checked for both "envelopes" and "expmax".

The columns are divided in several elements, and forces are reported at the node for each element. Column section properties corresponding to the elevation of the column are used when checking the capacity. See example in Table 4-1 below.

|                |           |          |          |          | Mii      | n N      |          |          |
|----------------|-----------|----------|----------|----------|----------|----------|----------|----------|
|                |           |          | Ν        | M longit | M transv | Т        | V longit | V transv |
| Chosen section |           |          | MN       | MNm      | MNm      | MNm      | MN       | MN       |
|                | tag       | z        |          |          |          |          |          |          |
| L1             | A3 bottom | 3.5      | -33.6536 | 7.938879 | 2.287161 | 2.550667 | -0.0747  | -0.40694 |
| L2             |           | 9.196115 | -33.0566 | 4.428309 | 2.980319 | 2.550667 | -0.08579 | -0.41371 |
| L2             |           | 9.196115 | -33.0566 | 4.428309 | 2.980319 | 2.550667 | -0.08579 | -0.41371 |
| L2             |           | 14.89223 | -32.459  | 1.727235 | 3.346456 | 2.550666 | -0.04387 | -0.5342  |
| L2             |           | 14.89223 | -32.459  | 1.727235 | 3.346456 | 2.550666 | -0.04387 | -0.5342  |
| L2             |           | 20.58835 | -31.8602 | -1.32955 | 3.606427 | 2.550666 | -0.0487  | -0.5389  |
| L2             |           | 20.58835 | -31.8602 | -1.32955 | 3.606427 | 2.550666 | -0.0487  | -0.5389  |
| L2             |           | 26.28446 | -31.2614 | -4.41417 | 3.889151 | 2.550666 | -0.05259 | -0.54362 |
| L3             |           | 26.28446 | -31.2614 | -4.41417 | 3.889151 | 2.550666 | -0.05259 | -0.54362 |
| L3             |           | 31.98058 | -30.6638 | -7.5256  | 4.192842 | 2.550666 | -0.05566 | -0.54836 |
| L3             |           | 31.98058 | -30.6638 | -7.5256  | 4.192842 | 2.550666 | -0.05566 | -0.54836 |
| L3             |           | 37.67669 | -30.0651 | -11.1199 | 4.312051 | 2.550665 | 0.012458 | -0.71298 |
| L3             |           | 37.67669 | -30.0651 | -11.1199 | 4.312051 | 2.550665 | 0.012458 | -0.71298 |
| L3             |           | 43.37281 | -29.4675 | -15.196  | 4.243019 | 2.550671 | 0.010589 | -0.71774 |
| L3             |           | 43.37281 | -29.4675 | -15.196  | 4.243019 | 2.550671 | 0.010589 | -0.71774 |
| L4             | A3 top    | 49.06892 | -28.8669 | -17.2417 | 4.205392 | 2.550672 | 0.00983  | -0.72011 |

#### Table 4-1 Correlation column properties and global analysis section forces

#### A summary of utilizations is presented in Table 4-2.

#### Table 4-2 ULS results summary

|                      | Max utiliza | tion    |
|----------------------|-------------|---------|
| Bridge / combination | Axis 3-8    | Axis 9- |
| K11_envelopes_ULS2   | 0.18        | 0.26    |
| K11_envelopes_ULS3   | 0.38        | 0.42    |
| K11_expmax_ULS2      | 0.26        | 0.35    |
| K11_expmax_ULS3      | 0.65        | 0.59    |
| K12_envelopes_ULS2   | 0.19        | 0.22    |
| K12_envelopes_ULS3   | 0.37        | 0.32    |
| K12_expmax_ULS2      | 0.27        | 0.27    |
| K12_expmax_ULS3      | 0.58        | 0.51    |
| K13_envelopes_ULS2   | 0.24        | 0.30    |
| K13_envelopes_ULS3   | 0.43        | 0.43    |
| K13_expmax_ULS2      | 0.34        | 0.38    |
| K13_expmax_ULS3      | 0.63        | 0.61    |
| K14_envelopes_ULS2   | 0.28        | 0.33    |
| K14_envelopes_ULS3   | 0.50        | 0.42    |
| K14_expmax_ULS2      | 0.35        | 0.38    |
| K14_expmax_ULS3      | 0.72        | 0.60    |
| MAX                  | 0.72        | 0.61    |

Maximum utilization observed is 0.72. This occurs for K14\_expmax\_ULS3. A more detailed summary for this concept and combination is shown in Table 4-3. The "Worst" combination is triggering the maximum utilization.

Table 4-3 Capacity check - K14\_expmax\_ULS3

| Worst |      | Case1 |      | Case2 |      | Case3 |      | Case4 |      | V <sub>y,max,Ed</sub> /V <sub>pl,Rd</sub> | Vz,max,Ed/Vpl,Rd |
|-------|------|-------|------|-------|------|-------|------|-------|------|-------------------------------------------|------------------|
| Min   | Max  |                                           |                  |
| 0.72  | 0.67 | 0.46  | 0.45 | 0.57  | 0.54 | 0.54  | 0.49 | 0.71  | 0.65 | 0.07                                      | 0.09             |
| 0.60  | 0.58 | 0.49  | 0.48 | 0.55  | 0.53 | 0.49  | 0.48 | 0.52  | 0.50 | 0.07                                      | 0.14             |

Investigating further, we see that it is a L3 section near the top of the column that has the highest utilization. The section has relatively large longitudinal- and transversal moments.

| <b>Column properties</b> |              |      | Utili | zation |       |             | For         | ces   |          |          |
|--------------------------|--------------|------|-------|--------|-------|-------------|-------------|-------|----------|----------|
|                          |              |      | W     | orst   | N     | M<br>longit | M<br>transv | т     | V longit | V transv |
| Column<br>section        | tag          | z    | Min   | Max    | MN    | MNm         | MNm         | MNm   | MN       | MN       |
| L1                       | A3<br>bottom | 3.5  | 0.15  | 0.10   | -30.0 | -60.2       | -52.0       | -79.7 | -9.1     | -4.8     |
| L2                       |              | 9.1  | 0.27  | 0.22   | -29.5 | -76.6       | -128.3      | -79.7 | -9.1     | -4.8     |
| L2                       |              | 14.7 | 0.34  | 0.29   | -29.0 | -94.1       | -180.4      | -79.7 | -9.2     | -5.1     |
| L2                       |              | 20.3 | 0.41  | 0.36   | -28.4 | -116.3      | -232.7      | -79.7 | -9.3     | -5.1     |
| L2                       |              | 25.9 | 0.49  | 0.43   | -27.9 | -139.8      | -285.3      | -79.7 | -9.3     | -5.1     |
| L3                       |              | 31.6 | 0.56  | 0.51   | -27.4 | -166.6      | -337.8      | -79.7 | -9.3     | -5.1     |
| L3                       |              | 37.2 | 0.64  | 0.59   | -26.8 | -195.1      | -390.5      | -79.7 | -9.4     | -5.5     |
| L3                       |              | 42.8 | 0.72  | 0.67   | -26.3 | -224.6      | -443.3      | -79.7 | -9.3     | -5.4     |
| L4                       | A3 top       | 48.4 | 0.42  | 0.39   | -25.7 | -239.5      | -469.7      | -79.7 | -9.3     | -5.4     |

Table 4-4 Capacity check - K14\_expmax\_ULS3 Worst - Axis 3

For all checked combinations, ULS capacity is sufficient for the current column design. Based on the results, there is no basis for claiming that one bridge concept is favorable with regards to column design. There will be stress concentrations at the transition between top/bottom and middle part of the columns (4-sided to 8-sided).

ULS column forces are also checked in a finite element model (FEM). Results show overall acceptable stress level. The analysis is documented in memo 10205546-13-NOT-099 [5].

# 5 ALS capacity check

The forces are extracted from a time-series analysis with centric and eccentric ship collision from revision and date as shown in Table 2-2.

The capacity has been checked using the methodology explained in chapter 3. The check is elastic. Ship impact forces are significant and there will be plastic deformations in the column, therefore an elastic check is not that relevant. The intention here is to screen the ship impact forces and to evaluate how the columns can handle the impact forces. Further work has been done to evaluate the columns ability to absorb energy from a ship impact. The columns have been run with both implicit and explicit finite element analysis with non-linear material properties. This is documented in Appendix J [6] and memo 10205546-13-NOT-099 [5]. The conclusion from the analyzes is that the column capacity can be increased considerably by using 40 mm plate thickness instead of 25 mm. A plate thickness of 40 mm can take approximately 50% of the ship impact energy. Another alternative for increasing the structural capacity is to increase the size of the narrow mid-section of the columns so that the walls are straight. This is an even more effective way of increasing the structural capacity. The downside will be increased wind drag and possibly a less aesthetic column.

| Bottom  |       | Capacity check (3. | 1)     | She   | ear capacity cheo | :k (3.2) |
|---------|-------|--------------------|--------|-------|-------------------|----------|
|         | 0 deg | 30 deg             | 60 deg | 0 deg | 30 deg            | 60 deg   |
| K11_A3  | 1.09  | 1.57               | 1.86   | ОК    | Fail              | Fail     |
| K11_A4  | 1.02  | 1.50               | 1.83   | ОК    | Fail              | Fail     |
| K11_A5  | 0.94  | 1.38               | 1.66   | ОК    | Fail              | Fail     |
| K11_A10 | 0.47  | 0.63               | 0.78   | ОК    | Fail              | Fail     |
| K11_A20 | 0.31  | 0.40               | 0.51   | ОК    | Fail              | Fail     |
| K11_A30 | 0.32  | 0.43               | 0.36   | ОК    | Fail              | Fail     |
| Тор     |       |                    |        |       |                   |          |
| K11_A3  | 0.07  | 0.08               | 0.08   | ОК    | Fail              | Fail     |
| K11_A4  | 0.06  | 0.07               | 0.13   | ОК    | ОК                | Fail     |
| K11_A5  | 0.07  | 0.10               | 0.12   | ОК    | ОК                | Fail     |
| K11_A10 | 0.11  | 0.15               | 0.16   | ОК    | Fail              | Fail     |
| K11_A20 | 0.19  | 0.24               | 0.29   | ОК    | Fail              | Fail     |
| K11_A30 | 0.21  | 0.25               | 0.20   | ОК    | Fail              | Fail     |

#### Table 5-1 K11 - Ship impact

Т

Not all columns have been checked. A pattern can however be seen from the checked columns. It is expected that the results for columns not checked will be similar to the results found for checked columns.

A limited number of columns have been checked for K12 and K13. The forces does not vary much between K11, K12, K13 and K14. It is expected that the results will be similar to the results shown for K11 and K14.

#### Table 5-2 K12 - Ship impact

| Bottom  | Capacity check NS-EN 1993-1-1 6.2.1 (6.2) |        |        | Shear capacity check |        |        |
|---------|-------------------------------------------|--------|--------|----------------------|--------|--------|
|         | 0 deg                                     | 30 deg | 60 deg | 0 deg                | 30 deg | 60 deg |
| K12_A3  | 1.10                                      | 1.56   | 1.87   | ОК                   | Fail   | Fail   |
| K12_A10 | 0.48                                      | 0.63   | 0.83   | ОК                   | Fail   | Fail   |
| Тор     |                                           |        |        |                      |        |        |
| K12_A3  | 0.07                                      | 0.08   | 0.09   | ОК                   | Fail   | Fail   |
| K12_A10 | 0.11                                      | 0.15   | 0.17   | ОК                   | Fail   | Fail   |

#### Table 5-3 K13 - Ship impact

| Bottom  | Capacity check NS-EN 1993-1-1 6.2.1 (6.2) |        |        | S     | hear capacity ch | neck   |
|---------|-------------------------------------------|--------|--------|-------|------------------|--------|
|         | 0 deg                                     | 30 deg | 60 deg | 0 deg | 30 deg           | 60 deg |
| K13_A3  | 1.06                                      | 1.52   | 1.79   | ОК    | Fail             | Fail   |
| K13_A10 | 0.45                                      | 0.61   | 0.77   | ОК    | Fail             | Fail   |
| Тор     |                                           |        |        |       |                  |        |
| K13_A3  | 0.07                                      | 0.08   | 0.09   | ОК    | Fail             | Fail   |
| K13_A10 | 0.12                                      | 0.16   | 0.18   | ОК    | Fail             | Fail   |

#### Table 5-4 K14 - Ship impact

| Bottom  | Capacity o | heck NS-EN 1993-1 | L-1 6.2.1 (6.2) | S     | hear capacity ch | neck   |
|---------|------------|-------------------|-----------------|-------|------------------|--------|
|         | 0 deg      | 30 deg            | 60 deg          | 0 deg | 30 deg           | 60 deg |
| K14_A3  | 1.08       | 1.58              | 1.86            | ОК    | Fail             | Fail   |
| K14_A4  | 1.04       | 1.49              | 1.84            | ОК    | Fail             | Fail   |
| K14_A5  | 0.98       | 1.36              | 1.60            | ОК    | Fail             | Fail   |
| K14_A10 | 0.46       | 0.62              | 0.79            | ОК    | Fail             | Fail   |
| K14_A20 | 0.31       | 0.44              | 0.51            | ОК    | Fail             | Fail   |
| K14_A30 | 0.29       | 0.43              | 0.35            | ОК    | Fail             | Fail   |
| Тор     |            |                   |                 |       |                  |        |
| K14_A3  | 0.07       | 0.08              | 0.09            | ОК    | Fail             | Fail   |
| K14_A4  | 0.07       | 0.07              | 0.11            | ОК    | ОК               | Fail   |
| K14_A5  | 0.08       | 0.10              | 0.14            | ОК    | ОК               | Fail   |
| K14_A10 | 0.12       | 0.15              | 0.17            | ОК    | Fail             | Fail   |
| K14_A20 | 0.19       | 0.26              | 0.28            | ОК    | Fail             | Fail   |
| K14_A30 | 0.19       | 0.27              | 0.21            | ОК    | Fail             | Fail   |

For the long columns at axis A3-A5, there is large moment about longitudinal- and transversal- axis. The moment is primarily at the bottom of the columns. Very little moment at the top of the columns. Large torsional forces causes the shear capacity check to fail for most of the columns. Their ability to absorb energy from a ship impact without a structural collapse is documented in Appendix J and memo 10205546-13-NOT-099 [5].

#### 5.1 Weight calculation

Table 5-5 Properties for weight calculation

|        |        | Height | Weight  |
|--------|--------|--------|---------|
| Column | Part   | [m]    | [tonne] |
| Long   | Upper  | 5      | 53.5    |
| Long   | Middle | Varies | Varies  |
| Long   | Lower  | 5      | 47.3    |
| Short  | Upper  | 3      | 25.5    |
|        |        |        |         |
| Short  | Middle | Varies | Varies  |

The total weight of the columns for each of the bridge concepts are presented in Table 5-6. Slightly different column lengths cause the difference in weight between concepts.

If the option of using 40 mm plate thickness instead of 25 mm, the weight will increase with approximately 35 %. A straight column without the narrow mid section will increase the weight by approximately 28 %.

Table 5-6 Total column weight [tonne]

| K11     | K12     | K13     | К14     |
|---------|---------|---------|---------|
| 5 095.1 | 5 095.1 | 4 857.1 | 4 967.3 |

# 6 Summary

The columns as designed now can handle the ULS forces with 25 a mm skin plate.

The overall picture from a simplified screening is that the moment is likely to be handled by plastic redistribution of forces at the column top and bottom. With 25 mm plate thickness, the low columns are unable to absorb the current magnitude of energy from a ship impact. To absorb 50% of the ship impact energy, the plate thickness must be increased to 40 mm. This will increase the weight of the columns by 35%. Alternatively, the geometry can be changed by widening the narrow part of the column. This is more effective than just to increase the plate thickness, but wind drag will increase and the columns may appear less aesthetic. See Appendix J [6] and memo 10205546-13-NOT-099 [5] for detailed results from the FEM analyzes.

For ULS and ALS, no significant difference between columns for bridge K11, K12, K13 and K14 has been observed. If the column structural capacity is increased by widening the narrow part of the columns, wind drag will increase. This is unfavorable for K11 as it is more sensitive to wind forces than the other concepts.

Weight for the columns differs little between concepts. Column design is identical for all concepts.

# 7 References

- [1] CEN, NS-EN 1991-1-1 Eurocode 1: Actions on structures. Part 1-1: General actions. Densities, self-weight, imposed loads of buildings, 2002+NA:2008.
- [2] DNV-GL, Recommended practice DNV-RP-C201, Buckling strength of plated structures, Oslo: DNV-GL, 2010.
- [3] CEN, "NS-EN 10025-3; Hot rolled products of structural steels. Part 3: Technical delivery conditions for normalized/normalized rolled weldable fine grain structural steels," 2004.
- [4] CEN, NS-EN 1993-2:2006+NA:2009 Eurocode 3: Design of steel structures, Part 2 Steel Bridges, 2009.
- [5] AMC, "10205546-13-NOT-099 : FEM analysis of bridge girder and column," 24.05.2019.
- [6] AMC, "SBJ-32-C5-AMC-27-RE-110 : Appendix J: Ship collision Rev. 0," 24.05.2019.
- [7] StruProg AB, "Stipla DNV-RP-C201, ver 2.2," 2014.



# Concept development, floating bridge E39 Bjørnafjorden

**Appendix K – Enclosure 6** 

10205546-13-NOT-087 Design of pontoons

# AAS-JAKOBSEN COWI Multiconsult

# MEMO

| PROJECT | Concept development, floating bridge<br>E39 Bjørnafjorden | DOCUMENT CODE    | 10205546-13-NOT-087              |
|---------|-----------------------------------------------------------|------------------|----------------------------------|
| CLIENT  | Statens vegvesen                                          | ACCESSIBILITY    | Restricted                       |
| SUBJECT | Design of pontoons                                        | PROJECT MANAGER  | Svein Erik Jakobsen              |
| то      | Statens vegvesen                                          | PREPARED BY      | Frode Fløtten /<br>Andreas Landa |
| СОРҮ ТО |                                                           | RESPONSIBLE UNIT | AMC                              |

#### SUMMARY

The structural layout and strength assessment of the pontoons for the low bridge part of the Bjørnafjorden floating bridge is performed. The strength assessment is based on simplified and conservative load assumptions. The pontoon structure assessment has been performed for Ultimate limit state (ULS) and Accidental limit state (ALS). Fatigue limit state (FLS) has not been evaluated in this document, but will be evaluated in Appendix I.

The proposed structural dimensions show acceptable utilization both with regards to maximum allowable stress level and minimum scantling requirements and buckling utilization, for both ULS and ALS conditions. The results are presented in section 4.5, 5.5 and 6. The structural net scantling weight for the "base case" pontoon without mooring lines is 705 ton for a displacement of 3710 m<sup>3</sup>, and the structural weight for the "base case" pontoon with mooring lines is 934 Ton for a displacement of 5565 m<sup>3</sup>. These pontoons will be used for all concepts.

The splash zone has been calculated based on 100-year coupled motions taken from the global analysis, in addition to the largest wave over 100 years. The extent of the splash zone has been found to be 6.5m starting from the top of the pontoon. The duplex steel will be placed in this area. The splash zone is based on vertical movement from environmental loads with a return period of 100 years. This seems to be too conservative considered the 100 year wave height shall be divided by 3 according to DNVGL-OS-C101, ref. /3/. In next stage of the project a movement with a lower return period should be considered for determination of the splash zone.

Compared to revision 0 of this document the tank plan has been updated. The changes are assumed to have no negative effect on the pontoon structural capacity. In addition, the steel quality has been changed from NV36 to NV42 which will increase the reported margins against buckling failure.

| 1    | 24.05.2019 | Final issue    | A. Landa    | P. N. Larsen | S. E. Jakobsen |
|------|------------|----------------|-------------|--------------|----------------|
| 0    | 29.03.2019 | Status 2 issue | F. Fløtten  | P. N. Larsen | S. E. Jakobsen |
| REV. | DATE       | DESCRIPTION    | PREPARED BY | CHECKED BY   | APPROVED BY    |

# **Table of Contents**

| 1 | Intro | oduct  | tion                                             | . 4 |
|---|-------|--------|--------------------------------------------------|-----|
| 2 | Desi  | gn Ba  | asis                                             | . 4 |
|   | 2.1   | Gen    | eral description                                 | . 4 |
|   | 2.2   | Desi   | gn rules                                         | . 4 |
|   | 2.3   | Mat    | erial properties                                 | . 5 |
|   | 2.4   | Unit   | S                                                | . 6 |
|   | 2.5   | Ana    | lysis tools                                      | . 6 |
|   | 2.6   | Соо    | rdinate system                                   | . 6 |
|   | 2.7   | Spee   | cial provisions for plating and stiffeners       | . 7 |
|   | 2.7.3 | 1      | Minimum plate thickness                          | . 7 |
|   | 2.7.2 | 2      | Bending of plating                               | . 7 |
|   | 2.7.3 | 3      | Stiffeners                                       | . 8 |
|   | 2.8   | Envi   | ronmental data                                   | . 8 |
|   | 2.9   | Corr   | osion allowance                                  | . 8 |
|   | 2.10  | Spla   | sh zone                                          | . 8 |
| 3 | Calc  | ulatio | on method                                        | 11  |
|   | 3.1   | Load   | ds                                               | 11  |
|   | 3.1.: | 1      | ULS loads – external sea pressure                | 11  |
|   | 3.1.2 | 2      | External sea pressure at Stillwater draft (SWL)  | 14  |
|   | 3.1.3 | 3      | ULS loads – mooring line tension                 | 15  |
|   | 3.1.4 | 1      | FLS loads                                        | 16  |
|   | 3.1.  | 5      | ALS loads – external sea pressure                | 16  |
|   | 3.1.0 | 5      | ALS loads – filling of pontoon compartments      | 18  |
|   | 3.1.  | 7      | ALS loads – failure in mooring system            | 18  |
|   | 3.1.8 | 3      | Load combinations – "pontoon base case"          | 18  |
|   | 3.1.9 | Э      | Load combinations – "pontoon with mooring lines" | 19  |
|   | 3.1.: | 10     | Material factors                                 | 21  |
|   | 3.2   | Acce   | eptance criteria                                 | 21  |
| 4 | FE a  | nalys  | is – pontoon base case                           | 22  |
|   | 4.1   | Des    | cription of FE model                             | 22  |
|   | 4.2   | Арр    | lied loads                                       | 22  |
|   | 4.3   | Bou    | ndary conditions                                 | 29  |
|   | 4.4   | Mat    | erial dimensions                                 | 29  |
|   | 4.5   | Resu   | ılts                                             | 35  |
|   | 4.5.2 | 1      | Yield assessment                                 | 35  |
|   | 4.5.2 | 2      | Buckling and minimum scantling assessment        | 42  |
| 5 | FE a  | nalys  | is – pontoon with mooring line supports          | 65  |

| Design of | pontoon | S                                           |     |
|-----------|---------|---------------------------------------------|-----|
|           | 5.1     | Description of FE model                     | 65  |
|           | 5.2     | Applied loads                               | 65  |
|           | 5.3     | Boundary conditions                         | 66  |
|           | 5.4     | Material dimensions                         | 66  |
|           | 5.5     | Results                                     | 73  |
|           | 5.5.    | 1 Yield assessment                          | 74  |
|           | 5.5.    | 2 Buckling and minimum scantling assessment | 84  |
| 6         | Wei     | ght and material quantities                 | 112 |
|           | 6.1     | Base case pontoon                           | 112 |
|           | 6.2     | Pontoon with mooring lines                  | 113 |
| 7         | Refe    | erences                                     | 115 |
|           |         |                                             |     |

# 1 Introduction

This memo describes the structural analyses performed for two pontoons for the low bridge part of the Bjørnafjorden floating bridge. The structural layout and dimensions have been established for one pontoon without mooring lines and for one pontoon with supports for mooring lines, the dimensions is shown in Table 2-1 and Table 2-2. The pontoons are dimensioned for operating conditions (ULS) and for accidental filling of pontoon compartments (ALS). An conservative approach to loads have been used where external sea pressure is set to top of the pontoons with relevant load factors for ULS and ALS limit states.

# 2 Design Basis

#### 2.1 General description

The pontoons have a "Circtangel" shape i.e. a rectangle with half cylinders at each end in the transverse bridge girder direction and with flat bottom and top plate.

The outer shell plates, inner transverse- and longitudinal bulkheads are reinforced with bulb stiffeners. Additional structural strength is provided by web-frames in the bridge girder longitudinal direction.

Table 2-1 Pontoon dimensions for low bridge section with a pontoon distance of 125 m. Pontoon without mooring lines

| Length in<br>X-direction<br>[m] | Width in<br>X-direction<br>[m] | Radius<br>[m] | Draft [m] | Freeboard<br>[m] | Total<br>height<br>[m] | Displacement<br>[m <sup>3</sup> ] |
|---------------------------------|--------------------------------|---------------|-----------|------------------|------------------------|-----------------------------------|
| 53.0                            | 14.9                           | 7.45          | 5.0       | 3.5              | 8.5                    | 3710                              |

Table 2-2 Pontoon dimensions for low bridge section with a pontoon distance of 125 m. Pontoon with mooring lines

| Length in<br>X-<br>direction<br>[m] | Width in<br>X-<br>direction<br>[m] | Radius<br>[m] | Draft [m] | Freeboard<br>[m] | Total<br>height<br>[m] | Displacement<br>[m <sup>3</sup> ] |
|-------------------------------------|------------------------------------|---------------|-----------|------------------|------------------------|-----------------------------------|
| 53.0                                | 14.9                               | 7.45          | 7.5       | 3.5              | 11.0                   | 5565                              |

### 2.2 Design rules

The bridge as a whole will be designed according to the following standards:

- N400 Bruprosjektering
- NS-EN 1990 Basis of structural design
- NS-EN 1991 Eurocode 1 Actions on structures
- NS-EN 1993 Eurocode 3 Design of steel structures

For the pontoons the following offshore codes apply:

• DNVGL-OS-C101 Design of Offshore Steel Structures, general - LRFD design)

- DNVGL-OS-C103 Structural design of column stabilised units LRFD method
- DNVGL-RP-C201 Buckling strength of plated structures
- DNVGL-RP-C202 Buckling strength of shells
- DNVGL-RP-C203 Fatigue design of offshore steel structures
- DNVGL-RP-C205 Environmental conditions and environmental loads

The regulations are based on N400, Eurocode and offshore regulations, in that order.

#### 2.3 Material properties

The following steel material grades are used in the pontoon design and is according to Eurocode.

Steel material grade S355 for material thickness t  $\leq$  40 mm

| Modulus of Elasticity           | 2.10·10 <sup>11</sup> N/m <sup>2</sup>                |
|---------------------------------|-------------------------------------------------------|
| Poisson`s Ratio                 | 0.3                                                   |
| Thermal Expansion Coefficient   | 1.6·10 <sup>-5</sup> °C <sup>-1</sup>                 |
| Density                         | 7850 kg/m³                                            |
| Acceleration of gravity         | 9.81 m/s <sup>2</sup>                                 |
| Yield Strength f <sub>y</sub>   | 355 N/mm²                                             |
| Tensile Strength f <sub>u</sub> | 470 N/mm²                                             |
| Steel material grade S420 for m | laterial thickness t $\leq$ 40 mm                     |
| Modulus of Elasticity           | 2.10·10 <sup>11</sup> N/m <sup>2</sup>                |
| Poisson`s Ratio                 | 0.3                                                   |
| Thermal Expansion Coefficient   | 1.2·10 <sup>-5</sup> <sup>0</sup> C <sup>-1</sup>     |
| Density                         | 7850 kg/m³                                            |
| Acceleration of gravity         | 9.81 m/s <sup>2</sup>                                 |
| Yield Strength f <sub>y</sub>   | 420 N/mm <sup>2</sup>                                 |
| Tensile Strength f <sub>u</sub> | 520 N/mm <sup>2</sup>                                 |
|                                 |                                                       |
| Steel material grade 25CR supe  | r duplex (SDSS) for material thickness t $\leq$ 40 mm |
| Modulus of Elasticity           | 2.10·10 <sup>11</sup> N/m <sup>2</sup>                |
| Poisson`s Ratio                 | 0.3                                                   |
| Thermal Expansion Coefficient   | 1.2·10 <sup>-5</sup> °C <sup>-1</sup>                 |
| Density                         | 7850 kg/m <sup>3</sup>                                |
| Acceleration of gravity         | 9.81 m/s <sup>2</sup>                                 |

Yield Strength f<sub>y</sub>

Tensile Strength f<sub>u</sub>

550 N/mm<sup>2</sup>

800 N/mm<sup>2</sup>

### 2.4 Units

Units of the S.I. (System International) metric system are used.

Table 2-3 Units

| Description | Unit     | Symbol                   |
|-------------|----------|--------------------------|
| Length      | Metre    | m                        |
| Mass        | Kilogram | Кд                       |
|             | Tonne    | T (tonne), 1 T = 1000 kg |
| Force       | Newton   | Ν                        |
| Pressure    | Pascal   | Pa = N/m <sup>2</sup>    |

#### 2.5 Analysis tools

The SESAM software package supported by DNV GL Software has been used for the analyses performed for the pontoons:

| GeniE  | Pre-processor for concept design and analysis of offshore structures                             |
|--------|--------------------------------------------------------------------------------------------------|
| HydroD | Pre-processor for hydrostatic and hydrodynamic analysis                                          |
| Sestra | Finite element analysis solver                                                                   |
| Xtract | Post-processor for presentation, animation and reporting of results from finite element analyses |

For the plate buckling calculations performed the STIPLA software by StruProg AB has been utilized.

#### 2.6 Coordinate system

The pontoon structural model uses right-handed coordinate system which is oriented as follows:

- The X-axis is parallel with the bridge girder direction
- The Y-axis is transverse to the bridge girder direction
- The Z-axis is in the vertical direction and pointing upwards

The origin of the coordinate axis system is taken at:

- The longitudinal centre line of the pontoon
- The transverse centre line of the pontoon
- The bottom plate of the pontoon

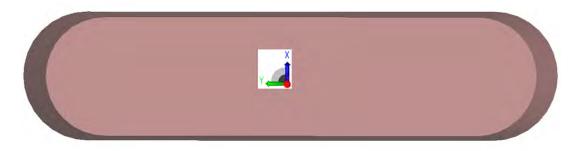



Figure 2-1 Local coordinate system for the pontoons

#### 2.7 Special provisions for plating and stiffeners

The requirements for minimum scantlings are taken from DNVGL-OS-C101, ref./3/.

#### 2.7.1 Minimum plate thickness

The thickness of plates should not be less than:

$$t = \frac{14.3 \cdot t_0}{\sqrt{f_{yd}}} \ (mm)$$

Where:

- $f_{yd}~$  = design yield strength  $f_y/\gamma_M$  ,  $f_y$  is the minimum yield stress
- t<sub>0</sub> = 7.0 mm for primary structural elements, and 5.0 mm for secondary elements

 $\gamma_{M}$  = 1.10 material factor for steel

#### 2.7.2 Bending of plating

The thickness of plating subjected to lateral pressure shall not be less than:

$$t = \frac{15.8 \cdot k_a \cdot s \cdot \sqrt{p_d}}{\sqrt{\sigma_{pd1} \cdot k_{pp}}} \ (mm)$$

Where:

k<sub>a</sub> = correction factor for aspect ratio of plate field

$$= (1.1 - 0.25 \text{ s/l})^2$$

- = maximum 1.0 for s/l = 0.4
- = maximum 0.72 for s/l = 1.0
- s = stiffener spacing (m), measured along the plating
- $p_d$  = design pressure (kN/m<sup>2</sup>)
- $\sigma_{pd1}$  = design bending stress (N/mm<sup>2</sup>), taken as the smaller of

- 1.3(f\_{yd} -  $\sigma_{jd})$  , and

$$- f_{yd} = f_y / \gamma_M$$

 $\sigma_{jd}$  = equivalent stress for in-plane membrane stress:

$$\sigma_{jd} = \sqrt{\sigma_{xd}^2 + \sigma_{yd}^2 - \sigma_{xd}\sigma_{yd} + 3\tau_d^2}$$

- $k_{pp}$  = fixation parameter for plate
  - = 1.0 for clamped edges
  - = 0.5 for simply supported edges

# 2.7.3 Stiffeners

The minimum section modulus for stiffeners subjected to lateral pressure shall not be less than:

$$Z_{s} = \frac{l^{2} s p_{d}}{k_{m} \sigma_{pd2} k_{ps}} 10^{6} \ (mm^{3}), minimum \ 15 \cdot 10^{3} \ (mm^{3})$$

Where:

I = stiffener span (m)

k<sub>m</sub> =bending moment factor

 $\sigma_{pd2}$  = design stress (N/mm<sup>2</sup>)

 $= f_{yd} - \sigma_{jd}$ 

k<sub>ps</sub> = fixation parameter for stiffeners

= 1.0 if at least one end is clamped

= 0.9 if both ends are simply supported

# 2.8 Environmental data

The environmental conditions applied are based on "Design Basis Bjørnafjorden" ref./1/.

- Significant wave height  $H_s = 2.1 \text{ m}$  for 100 year return period

- Maximum wave height (approx.)  $H_{max} \approx 1.86H_s = 1.86\cdot 2.1 \text{ m} = 3.91 \text{ m}$  for 100 year return period

# 2.9 Corrosion allowance

The pontoons will be provided with several corrosion reduction measures, such as passive galvanic cathodic protection for steel surfaces permanently submerged, all steel surfaces in the tidal and splash zone to be of super duplex steel and all other external and internal surfaces will be treated with special coating system and no corrosion allowance is considered in the structural strength assessment of the pontoons.

# 2.10 Splash zone

The extent of the splash zone is defined in "Design Basis, Bjørnafjorden floating bridges" ref./1/ and in DNVGL-OS-C101 ref./3/.

The splash zone height is calculated according to DNVGL-OS-C101 and the following equations:

The upper limit of the splash zone  $(SZ_U)$  is calculated by:

$$SZ_U = U_1 + U_2 + U_3 + U_4 + U_5$$

Where:

 $U_1$  = 60 % of 1/3  $^{rd}$  of the maximum wave height  $H_{max}$ 

U<sub>2</sub> = highest astronomical tide level (not applicable for floater structure)

U<sub>3</sub> = foundation settlement (not applicable)

- U<sub>4</sub> = range of operation draught
- $U_5$  = motion of structure

The lower limit of the splash zone (SZ<sub>L</sub>) is calculated by:

 $SZ_L = L_1 + L_2 + L_3 + L + L_5$ 

Where:

 $L_1 = 40 \%$  of  $1/3^{rd}$  of the maximum wave height  $H_{max}$ 

L<sub>2</sub> = lowest astronomical tide (not applicable for floater structure)

 $L_3$  = range of operating draught

L<sub>4</sub> = motions of the structure

The motion of the structure is taken from the global analysis. Coupled heave and roll motion is used. The motions are shown in Table 2-4, and it is seen that the 100-year return periods give the largest amplitudes and is hence used in the calculations of the splash zone.

Table 2-4 Combined motions, heave and roll

|                             | Amplitude [m] |      |  |  |  |  |
|-----------------------------|---------------|------|--|--|--|--|
|                             | K12           | K14  |  |  |  |  |
| 100-year combined wind/wave | 2.29          | 1.96 |  |  |  |  |
| 1-year wind/wave w/traffic  | 0.55          | 0.50 |  |  |  |  |

The upper limit of the splash zone ( $SZ_U$ ) is then:

 $U_1 = 1/3 \cdot 0.60 \cdot H_{max} = 1/3 \cdot 0.6 \cdot 3.91m = 0.78 m$ 

- U<sub>2</sub> not applicable
- U<sub>3</sub> not applicable
- U<sub>4</sub> not applicable
- $U_5 = D_{amplitude} = 2.29 \text{ m}$

 $SZ_U = U_1 + U_2 + U_3 + U_4 + U_5 = 0.78m + 2.29m = 3.07m$  above SWL

The lower limit of the splash zone (SZ<sub>L</sub>) is then:

 $L_1 = 1/3 \cdot 0.40 \cdot H_{max} = 1/3 \cdot 0.4 \cdot 3.91 m = 0.52 m$ 

- L<sub>2</sub> not applicable
- L<sub>3</sub> not applicable
- $L_4 = D_{amplitude} = 2.29 m$

 $SZ_L = L_1 + L_2 + L_3 + L + L_5 = 0.52 + 2.29 = 2.81 m$  below SWL

According to "Design Basis, Bjørnafjorden floating bridges" ref. /1/ an addition of  $\Delta H = 30$  cm shall be added to the calculated splash zone.

 $SZ_{U_{total}} = 3.07 \text{ m} + 0.15 \text{ m} = 3.22 \text{ m}$  Upper limit above SWL

 $SZ_{L_{total}} = 2.81 \text{ m} + 0.15 \text{ m} = 2.96 \text{ m}$  Lower limit below SWL

The pontoon draft at static condition is 5.0 m measured from the pontoon bottom and upwards. Total extent of the calculated splash zone is 6.18 m. However, to avoid having 300mm with stainless steel between the upper limit of the splash zone and the top plate of the pontoon, the super duplex part is used all the way to the top of the pontoon. Hence; the extent of the splash zone is 6.5m.



Figure 2-2 Extent of splash zone

# 3 Calculation method

#### 3.1 Loads

The external loads are considered in a simplified and conservative way. The loads from the bridge girder and column will be counteracted by the buoyancy of the pontoon. The only external load applied to the pontoons is sea pressure and mooring line tension, since the pontoon will not experience severe freeboard exceedance in 100-year condition will this be a conservative approach. The sea pressure consists of a static part and a dynamic part. The static pressure is applied from the pontoon bottom up to the Stillwater line (SWL). The dynamic part is applied from the SWL up to pontoon top plate. The static and dynamic part of the sea pressure is combined with relevant ULS and ALS load factors.

#### 3.1.1 ULS loads – external sea pressure

External sea pressure is calculated in the following way for load case ULS1 and ULS2:

$$P_{ULS} = \delta \cdot g \cdot (D \cdot 1.2 + (T - D) \cdot 1.6)$$

Where

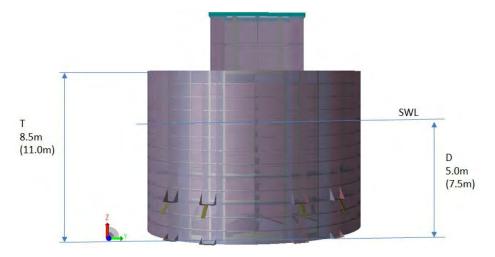
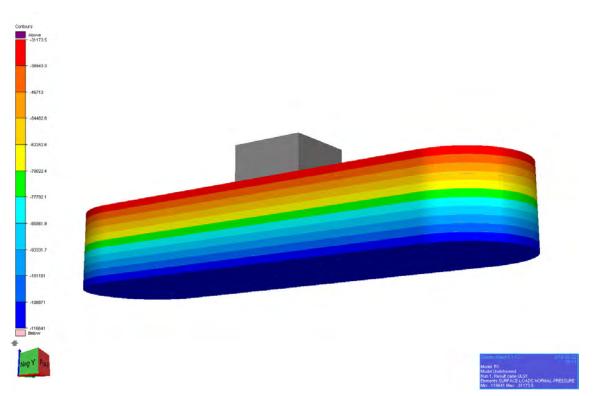
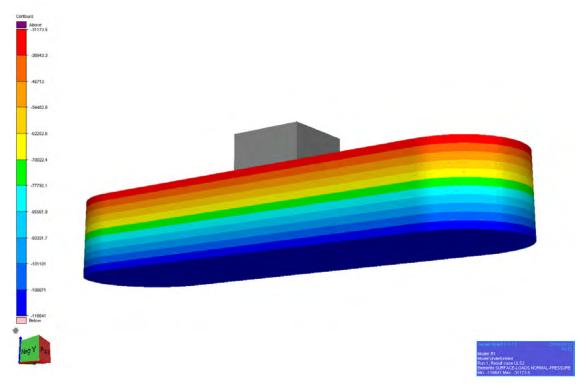
 $\delta = 1025 \text{ kg/m}^3$ 

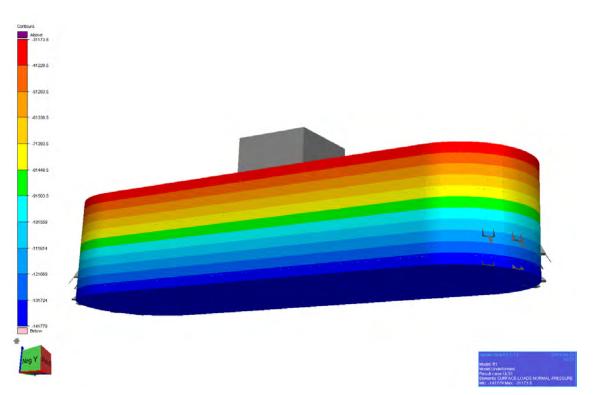
 $g = 9.81 \text{ m/s}^2$ 

D = draught

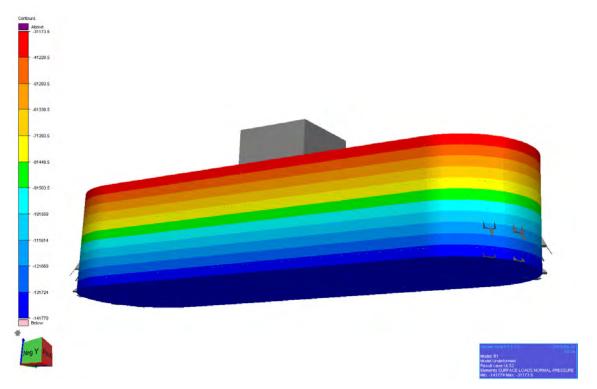
T = pontoon height

SWL = Stillwater line



Figure 3-1 frontal view of pontoon with height definitions




*Figure 3-2 Verification of applied external pressure for load case "ULS1" for "base case" pontoon without mooring lines* 



*Figure 3-3 Verification of applied external pressure for load case "ULS2" for "base case" pontoon without mooring lines* 



*Figure 3-4 Verification of applied external pressure for load case "ULS1" for "base case" pontoon with mooring lines* 



*Figure 3-5 Verification of applied external pressure for load case "ULS2" for "base case" pontoon with mooring lines* 

# 3.1.2 External sea pressure at Stillwater draft (SWL)

External sea pressure is calculated in the following way for load case P\_SWL at Stillwater level without load factors:

$$P_{SWL} = \delta \cdot g \cdot D$$

Where

 $\delta = 1025 \text{ kg/m}^3$ 

g = 9.81 m/s<sup>2</sup>

D = draught

T = pontoon height

SWL = Stillwater line

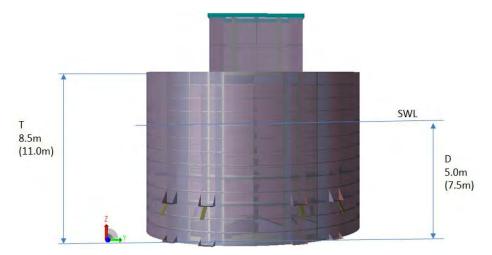



Figure 3-6 frontal view of pontoon with height definitions

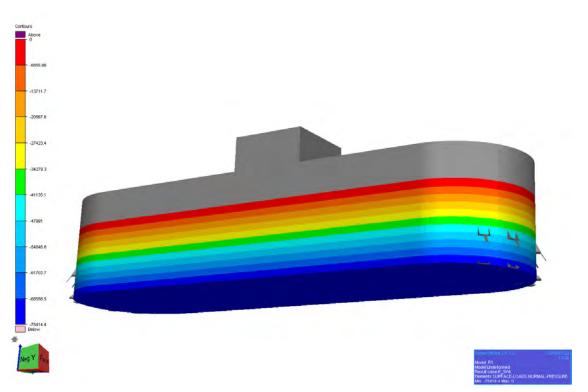



Figure 3-7 Verification of applied external pressure for load case "P\_SWL" for "base case" pontoon with mooring lines

#### 3.1.3 ULS loads – mooring line tension

Mooring line tension of 5620 kN has been used for the ULS assessment. There are assumed eight mooring lines per pontoon. A vertical angle of 40 degrees and a horizontal angle of 22.5 degrees and 45 degrees are used in the analysis. The mooring line tension for the operating condition is extracted from ref./2/. The following load cases uses the mooring line tension of 5620 kN multiplied with a load factor of 1.3; FL1ULS, FL2ULS, FL3ULS, FL4ULS, FL5ULS, FL6ULS, FL7ULS AND FL8ULS.

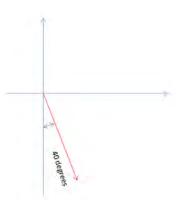



Figure 3-8 Vertical angle of mooring lines

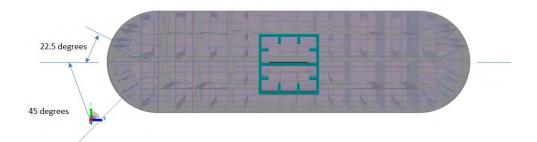



Figure 3-9 Horizontal angles of mooring lines

#### 3.1.4 FLS loads

No fatigue assessment has been performed for the pontoons or the connection area between the pontoons and the columns.

#### 3.1.5 ALS loads – external sea pressure

External sea pressure is calculated in the following way for load case ALSP25 where T = 8.5 m and 11.0 respectively:

$$P_{ALS} = \delta \cdot g \cdot (D \cdot 1.0 + (T - D) \cdot 1.0)$$

Where

$$\delta = 1025 \text{ kg/m}^3$$

 $g = 9.81 \text{ m/s}^2$ 

D = draught

T = pontoon height

SWL = Stillwater line

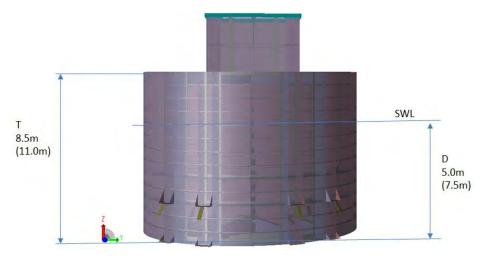
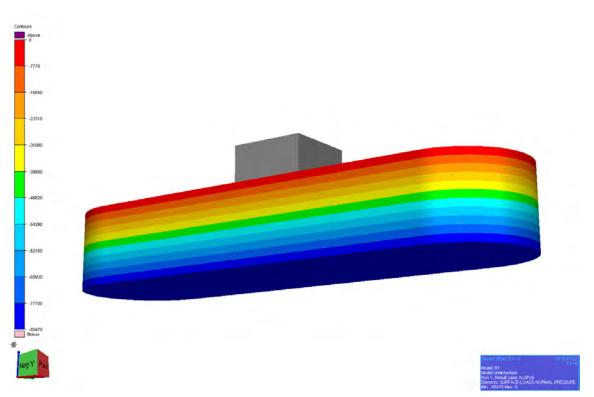
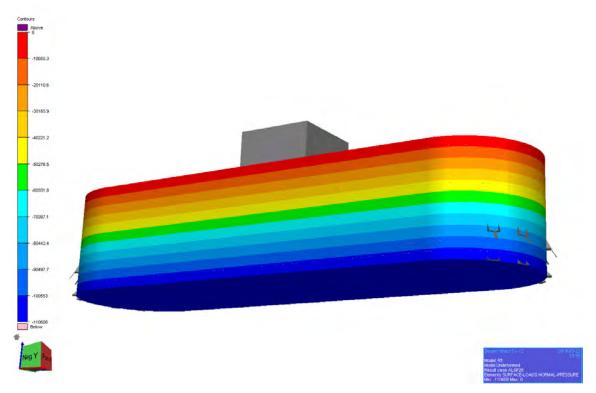





Figure 3-10 frontal view of pontoon with height definitions



*Figure 3-11 Verification of applied external pressure for load case "ALSP25" for "base case" pontoon without mooring lines* 



*Figure 3-12 Verification of applied external pressure for load case "ALSP25" for "base case" pontoon with mooring lines* 

#### 3.1.6 ALS loads – filling of pontoon compartments

The "base case" pontoon has been divided into 24 compartments as shown in Figure 3-13. Accidental filling of the pontoon compartments for ALS assessment of the pontoon structure has been considered in the ALS load combinations shown in section 3.1.8 and 3.1.9.

| 1  |    |    | 4  | 5  | 6  |    |    |    |
|----|----|----|----|----|----|----|----|----|
| 1  | 2  | 3  | 7  | 8  | 9  | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 | 17 | 18 | 22 | 23 | 24 |
| 13 | 14 | 15 | 19 | 20 | 21 | 22 | 25 |    |



Figure 3-13 Pontoon compartments

#### 3.1.7 ALS loads – failure in mooring system

The maximum breaking strength (MBL) of one mooring line is combined with the operational mooring line tension for seven mooring lines. MBL = 15000 kN is considered, ref./2/. The same mooring line angles as used for the ULS assessment is used, ref section 3.1.3. The load cases FL1ALS, FL2ALS, FL3ALS, FL4ALS, FL5ALS, FL6ALS, FL7ALS and FL8ALS consist of the MBL of 15000 kN multiplied with a load factor of 1.25 (for one line) and the operation load which is 5620 kN is multiplied with a load factor of 1.3 (for seven lines).

#### 3.1.8 Load combinations – "pontoon base case"

The load factors and load combinations for the pontoon without mooring lines is shown in Table 3-1 and Table 3-2.

| Load and                            | l combinatio         | on factors   | in ULS                 | (comb B)            | - STR                                   | 2                                          |             |
|-------------------------------------|----------------------|--------------|------------------------|---------------------|-----------------------------------------|--------------------------------------------|-------------|
| Dominant loads                      |                      | G- EQK       | Q-<br>Trf <sub>K</sub> | Q-<br>Tempĸ         | Q-<br>E <sub>env(1y)</sub><br>w/traffic | Q-<br>E <sub>env(100y)</sub><br>No traffic | Qĸ          |
| Station State                       |                      | γ x Ψ0       | $\gamma \ge \Psi_0$    | $\gamma \ge \Psi_0$ | γ x Ψ0                                  | γ x Ψ0                                     | γ x Ψ0      |
| Permanent load                      | the second second    |              |                        |                     | 1.000                                   | 10.0                                       |             |
| Permanent load 1)                   | G- EQK               | 1.35/1.<br>0 | 1.2/1.0                | 1.2/1.0             | 1.2/1.0                                 | 1.2/1.0                                    | 1.2/1.<br>0 |
| Variable loads                      | 1.25                 |              |                        |                     | 1.7.                                    |                                            | 14          |
| Traffic loads                       | Q-Trf <sub>K</sub>   | 0.95         | 1.35                   | 0.95                | 0.95                                    | -                                          | 0.95        |
| Temperature loads                   | Q-<br>Тетрк          | 0.84         | 0.84                   | 1.2                 | 0.84                                    | 0.84                                       | 0.84        |
| Environmental loads with traffic    | Q-E <sub>K(ly)</sub> | 1.12         | 1.12                   | 1.12                | 1.6                                     |                                            | 1.12        |
| Environmental loads without traffic | Q-EK(100y)           |              | 4                      | 4                   | 4                                       | 1.6                                        | 1           |
| Other loads                         | Qĸ                   | 1.05         | 1.05                   | 1.05                | 1.05                                    | 1.05                                       | 1.5         |

Table 3-1Load and combination factors for ULS

|         | ALS |     |     |     |     |     |     |     |     |      |      |      |      | ULS  |      |      |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|
|         | LC1 | LC2 | LC3 | LC4 | LC5 | LC6 | LC7 | LC8 | LC9 | LC10 | LC11 | LC12 | LC13 | LC14 | LC15 | LC16 |
| ALSP1   | х   |     |     |     |     |     |     | х   |     |      | х    |      |      |      |      |      |
| ALSP2   |     | х   |     |     |     |     |     | х   |     |      | х    |      |      |      |      |      |
| ALSP3   |     |     | х   |     |     |     |     |     |     |      | х    |      |      |      |      |      |
| ALSP4   |     |     |     | х   |     |     |     |     | х   |      |      |      | х    |      |      |      |
| ALSP5   |     |     |     |     | х   |     |     |     | х   | х    |      | х    |      |      |      |      |
| ALSP6   |     |     |     |     |     |     |     |     | х   |      |      |      |      |      |      |      |
| ALSP7   |     |     |     |     |     | x   |     |     |     |      | х    |      | х    |      |      |      |
| ALSP8   |     |     |     |     |     |     | х   |     |     | х    | х    | х    |      |      |      |      |
| ALSP9   |     |     |     |     |     |     |     |     |     |      | х    |      |      |      |      |      |
| ALSP10  |     |     |     |     |     |     |     |     |     |      | х    |      |      |      |      |      |
| ALSP11  |     |     |     |     |     |     |     |     |     |      | х    |      |      |      |      |      |
| ALSP12  |     |     |     |     |     |     |     |     |     |      | х    |      |      |      |      |      |
| ALSP13  |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
| ALSP14  |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
| ALSP15  |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
| ALSP16  |     |     |     |     |     |     |     |     |     |      |      |      | х    |      |      |      |
| ALSP17  |     |     |     |     |     |     |     |     |     |      |      | х    |      |      |      |      |
| ALSP18  |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
| ALSP19  |     |     |     |     |     |     |     |     |     |      |      |      | х    |      |      |      |
| ALSP20  |     |     |     |     |     |     |     |     |     |      |      | х    |      |      |      |      |
| ALSP21  |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
| ALSP22  |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
| ALSP23  |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
| ALSP24  |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
| ALSP25  | х   | х   | x   | х   | х   | x   | х   | х   | х   | х    | х    | x    | х    |      |      |      |
| Gravity | x   | х   | x   | х   | х   | x   | х   | х   | х   | х    | х    | х    | х    | х    | х    | х    |
| ULS1    |     |     |     |     |     |     |     |     |     |      |      |      |      |      | х    |      |
| ULS2    | 1   |     |     |     |     |     |     |     |     |      |      |      |      |      |      | х    |

#### 3.1.9 Load combinations – "pontoon with mooring lines"

The load factors and load combinations for the pontoon without mooring lines is shown in Table 3-3, Table 3-4 and Table 3-5. The load factor for mooring line loads is 1.25\*MBL for ALS condition and 1.3\*(mooring line 100 year operating tension) for the ULS condition.

| Load and                            | l combinatio         | n factors    | in ULS                 | (comb B)           | - STR                                   | 2                                          | 1.11               |
|-------------------------------------|----------------------|--------------|------------------------|--------------------|-----------------------------------------|--------------------------------------------|--------------------|
| Dominant loads                      |                      | G- EQK       | Q-<br>Trf <sub>K</sub> | Q-<br>Тетрк        | Q-<br>E <sub>env(1y)</sub><br>w/traffic | Q-<br>E <sub>env(100y)</sub><br>No traffic | Qĸ                 |
|                                     |                      | γ x Ψ0       | $\gamma \ge \Psi_0$    | γ x Ψ <sub>0</sub> | γ x Ψ <sub>0</sub>                      | γ x Ψ0                                     | γ x Ψ <sub>0</sub> |
| Permanent load                      | 1-1-1-1              | 1 2011       | 1. The S.              |                    | 1.54                                    |                                            |                    |
| Permanent load 1)                   | G-EQK                | 1.35/1.<br>0 | 1.2/1.0                | 1.2/1.0            | 1.2/1.0                                 | 1.2/1.0                                    | 1.2/1.<br>0        |
| Variable loads                      |                      |              |                        |                    | - T                                     |                                            | _                  |
| Traffic loads                       | Q-Trf <sub>K</sub>   | 0.95         | 1.35                   | 0.95               | 0.95                                    | -                                          | 0.95               |
| Temperature loads                   | Q-<br>Тетрк          | 0.84         | 0.84                   | 1.2                | 0.84                                    | 0.84                                       | 0.84               |
| Environmental loads with traffic    | Q-E <sub>K(ly)</sub> | 1.12         | 1.12                   | 1.12               | 1.6                                     | - C - 1                                    | 1.12               |
| Environmental loads without traffic | Q-EK(100y)           | 1.4          | 4                      | 4                  | 4                                       | 1.6                                        |                    |
| Other loads                         | Qĸ                   | 1.05         | 1.05                   | 1.05               | 1.05                                    | 1.05                                       | 1.5                |

Table 3-4 Load combinations for pontoon with mooring lines

|         | ALS |     |     |     |     |     |     |     |     |      |      |      |      |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
|         | LC1 | LC2 | LC3 | LC4 | LC5 | LC6 | LC7 | LC8 | LC9 | LC10 | LC11 | LC12 | LC13 |
| ALSP1   | х   |     |     |     |     |     |     | х   |     |      | х    |      |      |
| ALSP2   |     | х   |     |     |     |     |     | х   |     |      | х    |      |      |
| ALSP3   |     |     | Х   |     |     |     |     |     |     |      | х    |      |      |
| ALSP4   |     |     |     | х   |     |     |     |     | х   |      |      |      | х    |
| ALSP5   |     |     |     |     | х   |     |     |     | х   | Х    |      | х    |      |
| ALSP6   |     |     |     |     |     |     |     |     | х   |      |      |      |      |
| ALSP7   |     |     |     |     |     | х   |     |     |     |      | х    |      | х    |
| ALSP8   |     |     |     |     |     |     | х   |     |     | х    | х    | Х    |      |
| ALSP9   |     |     |     |     |     |     |     |     |     |      | х    |      |      |
| ALSP10  |     |     |     |     |     |     |     |     |     |      | х    |      |      |
| ALSP11  |     |     |     |     |     |     |     |     |     |      | х    |      |      |
| ALSP12  |     |     |     |     |     |     |     |     |     |      | х    |      |      |
| ALSP13  |     |     |     |     |     |     |     |     |     |      |      |      |      |
| ALSP14  |     |     |     |     |     |     |     |     |     |      |      |      |      |
| ALSP15  |     |     |     |     |     |     |     |     |     |      |      |      |      |
| ALSP16  |     |     |     |     |     |     |     |     |     |      |      |      | х    |
| ALSP17  |     |     |     |     |     |     |     |     |     |      |      | х    |      |
| ALSP18  |     |     |     |     |     |     |     |     |     |      |      |      |      |
| ALSP19  |     |     |     |     |     |     |     |     |     |      |      |      | х    |
| ALSP20  |     |     |     |     |     |     |     |     |     |      |      | х    |      |
| ALSP21  |     |     |     |     |     |     |     |     |     |      |      |      |      |
| ALSP22  |     |     |     |     |     |     |     |     |     |      |      |      |      |
| ALSP23  |     |     |     |     |     |     |     |     |     |      |      |      |      |
| ALSP24  |     |     |     |     |     |     |     |     |     |      |      |      |      |
| ALSP25  | х   | х   | х   | х   | х   | х   | х   | Х   | х   | х    | х    | х    | х    |
| Gravity | Х   | х   | х   | х   | х   | х   | х   | х   | х   | х    | х    | Х    | х    |
| P_SWL   |     |     |     |     |     |     |     |     |     |      |      |      |      |
| ULS1    |     |     |     |     |     |     |     |     |     |      |      |      |      |
| ULS2    |     |     |     |     |     |     |     |     |     |      |      |      |      |

|         | ALS  |      |      | ULS  |      |      |      |
|---------|------|------|------|------|------|------|------|
|         | LC14 | LC15 | LC16 | LC17 | LC18 | LC19 | LC20 |
| ALSP25  | х    | х    |      |      |      |      |      |
| Gravity | х    | х    | х    | х    | х    | х    | X    |
| FL1ULS  |      | х    |      | х    | х    | х    | x    |
| FL2ULS  | х    |      | х    |      | х    | х    | x    |
| FL3ULS  | х    | х    | х    | х    | х    | х    | x    |
| FL4ULS  | х    | х    | х    | х    | х    | х    | x    |
| FL5ULS  | х    | х    | х    | х    | х    | х    | x    |
| FL6ULS  | х    | х    | х    | х    | х    | х    | X    |
| FL7ULS  | х    | х    | х    | х    | х    | х    | X    |
| FL8ULS  | х    | х    | х    | х    | х    | х    | X    |
| FL1ALS  | х    |      | х    |      |      |      |      |
| FL2ALS  |      | х    |      | х    |      |      |      |
| FL3ALS  |      |      |      |      |      |      |      |
| FL4ALS  |      |      |      |      |      |      |      |
| FL5ALS  |      |      |      |      |      |      |      |
| FL6ALS  |      |      |      |      |      |      |      |
| FL7ALS  |      |      |      |      |      |      |      |
| FL8ALS  |      |      |      |      |      |      |      |
| P_SWL   |      |      | х    | х    | х    |      |      |
| ULS1    |      |      |      |      |      | х    |      |
| ULS2    |      |      |      |      |      |      | х    |

Table 3-5 Load combinations for pontoon with mooring lines

#### 3.1.10 Material factors

The material factors considered in the analyses are  $\gamma_{M2}$  = 1.10 for the ULS strength check and  $\gamma_{M2}$  = 1.00 for the ALS strength check.

#### 3.2 Acceptance criteria

The allowable stress limit for yield assessment is as follows:

- ULS:  $\sigma_{Allowable}$  = 355/1.1 MPa = 322 MPa for steel quality S355
- ULS:  $\sigma_{Allowable} = 550/1.1 \text{ MPa} = 500 \text{ MPa}$  for steel quality SDSS
- ALS:  $\sigma_{Allowable}$  = 355/1.0 MPa = 355 MPa for steel quality S355
- ALS:  $\sigma_{Allowable}$  = 550/1.0 MPa = 550 MPa for steel quality SDSS

For buckling and scantling assessment the material factor for ULS condition is  $\gamma_m = 1.1$  and for ALS condition the material factor  $\gamma_m = 1.0$  is used. With allowable utilisation of 1.0.

## 4 FE analysis – pontoon base case

#### 4.1 Description of FE model

A finite element model is made of the "base case" pontoon without mooring lines using DNVGL Sesam Software GeniE. A combination of 2<sup>nd</sup> order beam elements and plate elements has been used. The mesh size is set to 500 mm.

## 4.2 Applied loads

The considered ULS load cases for the "pontoon base case" are shown in Figure 4-1 and Figure 4-2 and consist of only external sea pressure as described in section 3.1.1 and 3.1.3. The considered ALS load combinations for the "pontoon base case" are shown in Figure 4-3 through Figure 4-15 and is described in section 3.1.6 and 3.1.7.

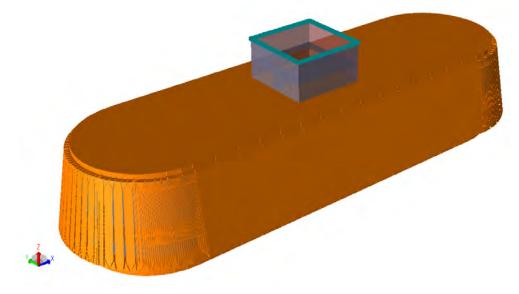



Figure 4-1 Load case "ULS1"

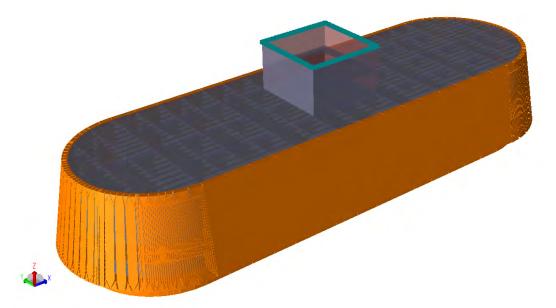



Figure 4-2 Load case "ULS2"

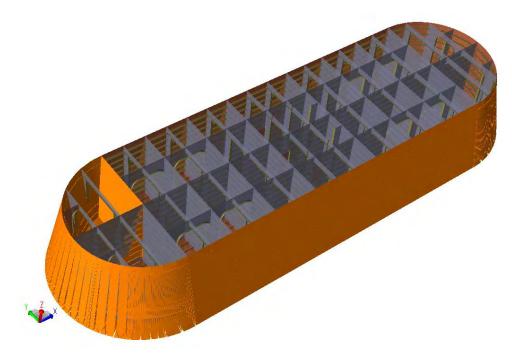



Figure 4-3 ALS load combination "LC1"

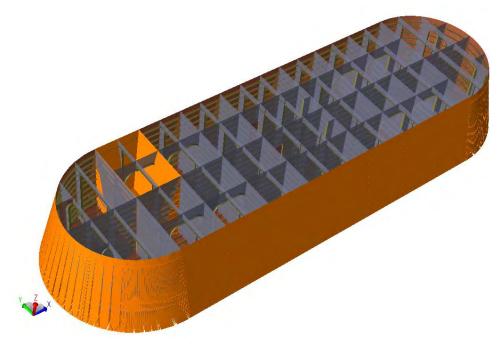



Figure 4-4 ALS load combination "LC2"

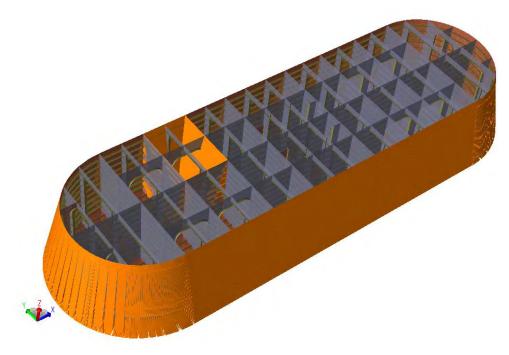



Figure 4-5 ALS load combination "LC3"

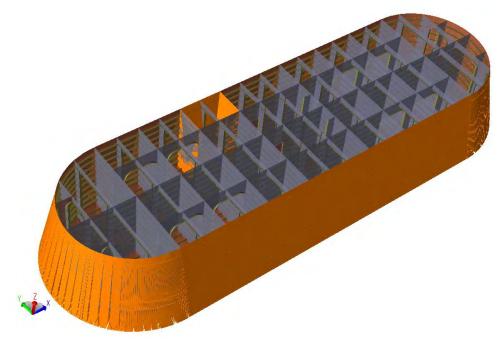



Figure 4-6 ALS load combination "LC4"

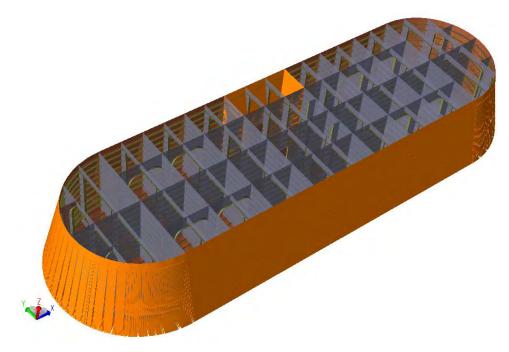



Figure 4-7 ALS load combination "LC5"

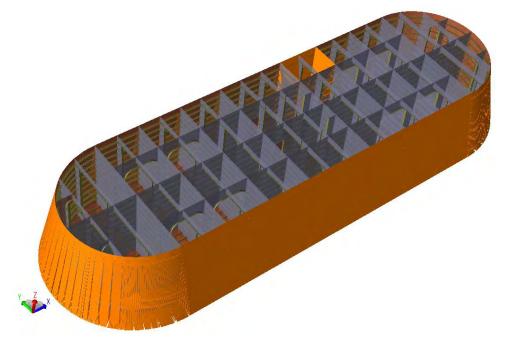



Figure 4-8 ALS load combination "LC6"

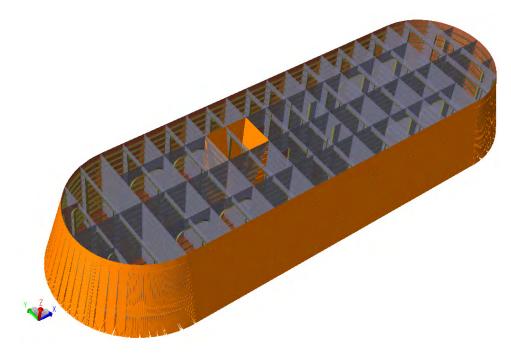



Figure 4-9 ALS load combination "LC7"

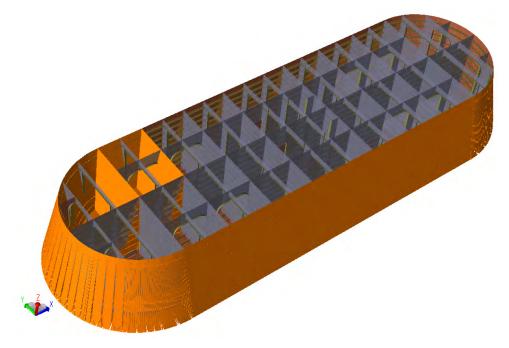



Figure 4-10 ALS load combination "LC8"

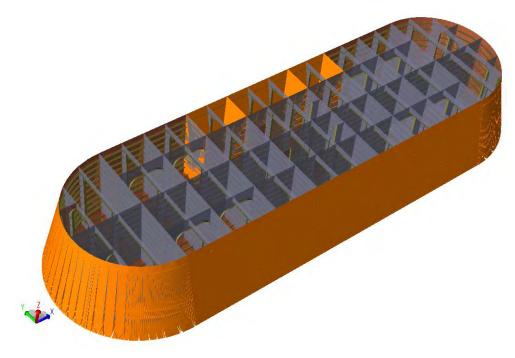



Figure 4-11 ALS load combination "LC9"

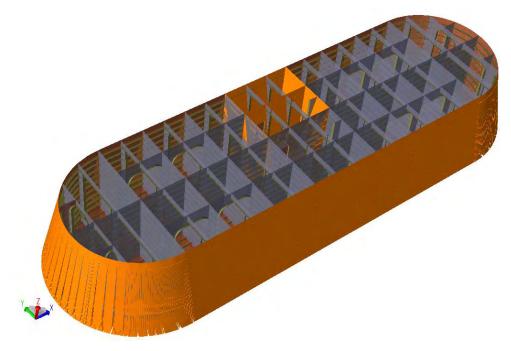



Figure 4-12 ALS load combination "LC10"

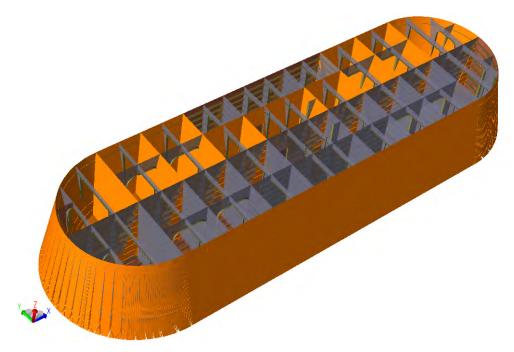



Figure 4-13 ALS load combination "LC11"

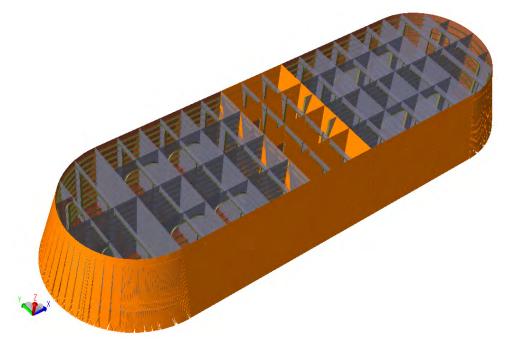



Figure 4-14 ALS load combination "LC12"

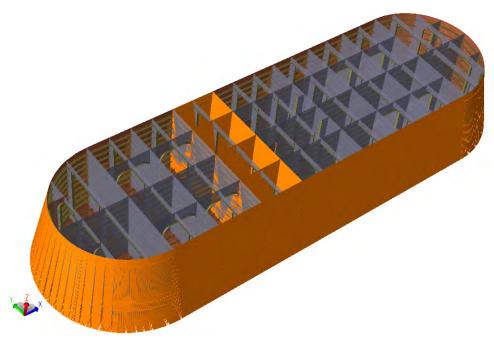



Figure 4-15 ALS load combination "LC13"

## 4.3 Boundary conditions

The boundary conditions are applied to the lower part of the column and are shown in Figure 4-16. All degrees of freedom are fixed.

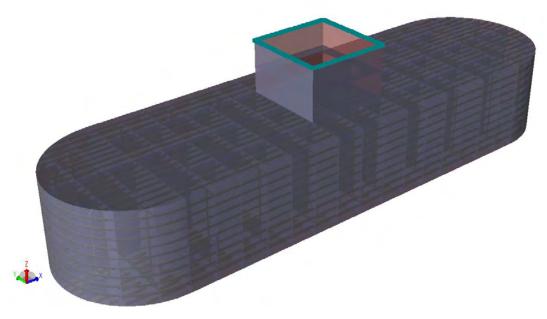



Figure 4-16 Boundary condition

## 4.4 Material dimensions

The plate thicknesses and stiffener dimensions used for the "pontoon base case" is shown in Figure 4-17 through Figure 4-27

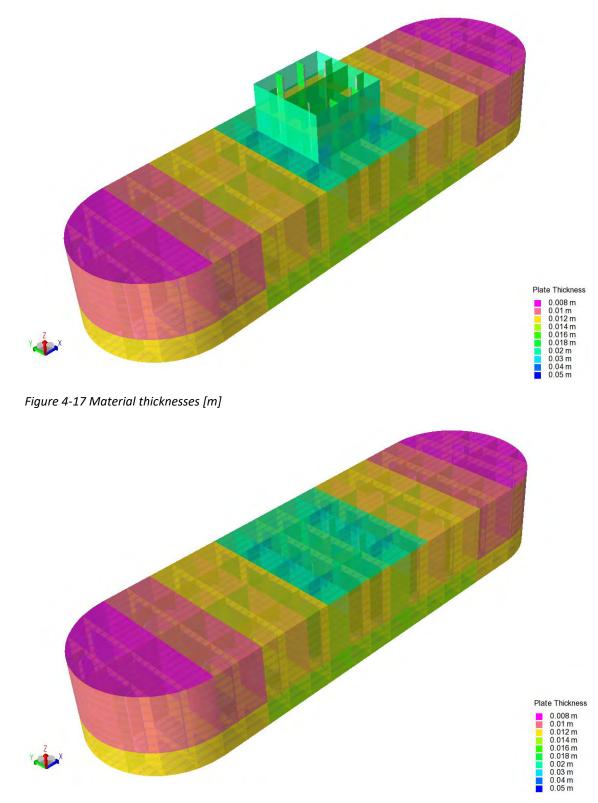



Figure 4-18 Material thicknesses [m]

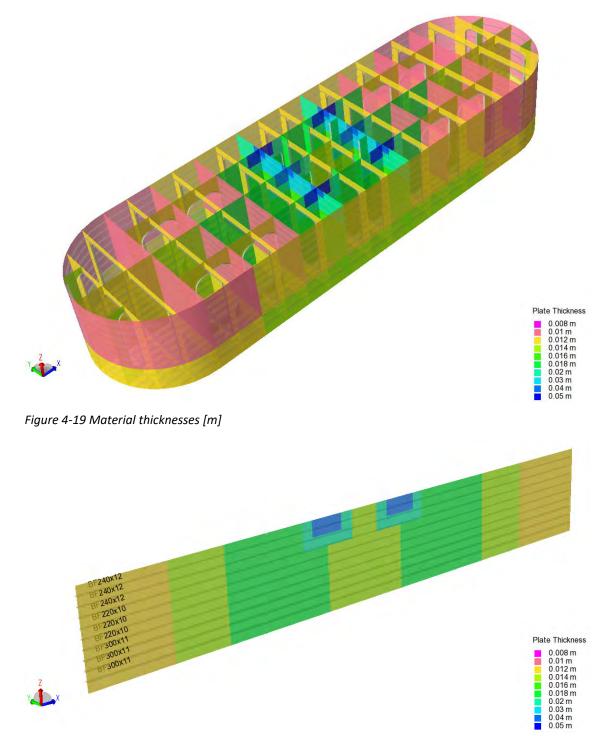



Figure 4-20 Material thicknesses [m] and section names, CL longitudinal bulkhead

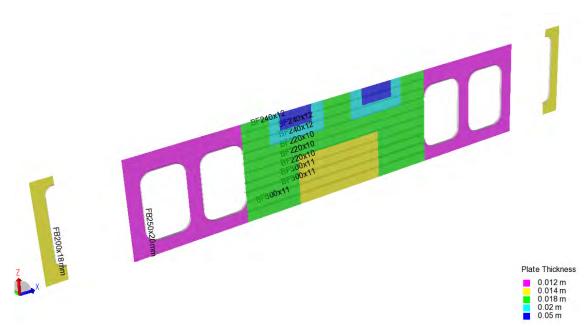



Figure 4-21 Material thicknesses [m] and section names, longitudinal bulkhead 4.0 m of CL

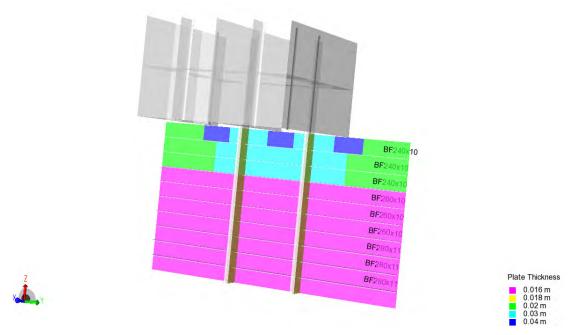



Figure 4-22 Material thicknesses [m] and section names, transverse bulkhead underneath column

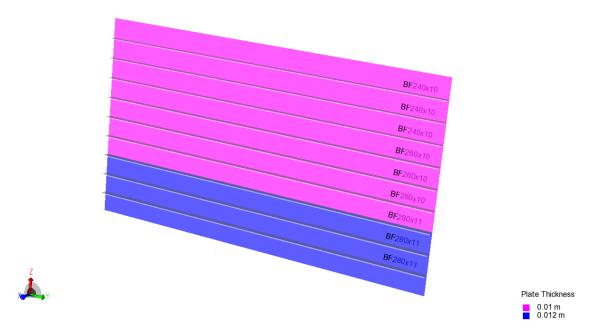



Figure 4-23 Material thicknesses [m] and section names, typical transverse bulkhead

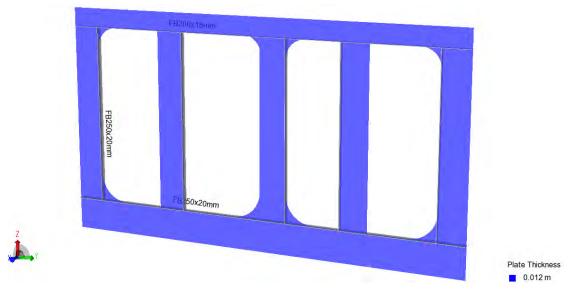



Figure 4-24 Material thicknesses [m] and section names, typical transverse web-frame

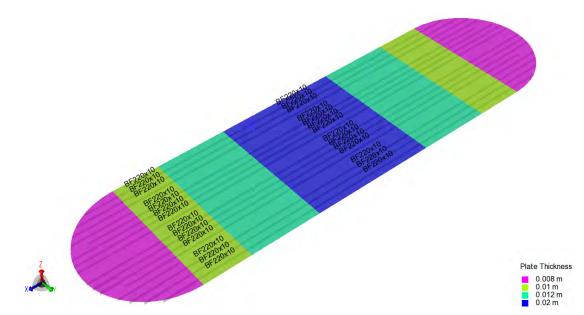



Figure 4-25 Material thicknesses [m] and section names, pontoon top plate

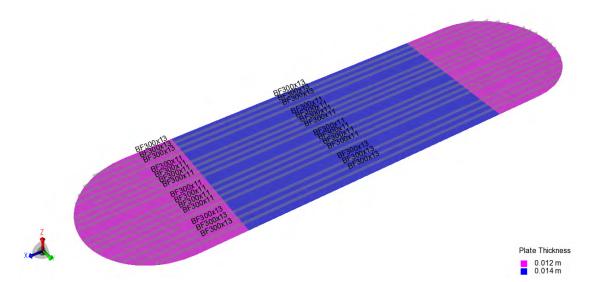



Figure 4-26 Material thicknesses [m] and section names, pontoon bottom plate

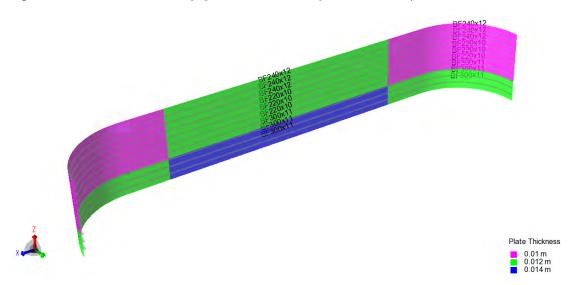



Figure 4-27 Material thicknesses [m] and section names, pontoon side shell

#### 4.5 Results

Note that the steel quality has been changed from S355 to S420 after the analysis presented below was performed. Hence; the allowable stresses are somewhat higher compared to upper limit in the stress plots shown. In addition, the results presented in Table 4-1 will be conservative, the pontoons buckling capacity will be increased after increasing the yield strength.

Note that the thickness of the outer shell was changed after changed after the analyses were performed; the plate joint at elevation 2600mm was moved 600mm down. This was done to limit number of plate joints in the splash zone. The thickness change is assumed to have minimal effect on the results taken the stress levels presented in the following into account.

In addition the tank plan has been changed; the longitudinal bulkheads located 4000mm from centre line has been made watertight. The plate thickness of the bulkheads is similar as shown in Figure 4-21, i.e. 12mm. The centre line bulkhead is made non-watertight by introducing manholes. These changes are not assumed to have any negative effect on the structural strength of the pontoon. The pontoon will be more robust against collisions from striking vessels hitting the side of the pontoon with a small angle

#### 4.5.1 Yield assessment

The yield assessment is based on scan of maximum von Mises membrane stresses for the ULS and ALS conditions respectively. Allowable stress limits are set according to the relevant limit state as follows:

- ULS:  $\sigma_{Allowable}$  = 355/1.1 MPa = 322 MPa for steel quality S355
- ULS:  $\sigma_{Allowable}$  = 550/1.1 MPa = 500 MPa for steel quality SDSS
- ALS:  $\sigma_{Allowable}$  = 355/1.0 MPa = 355 MPa for steel quality S355
- ALS:  $\sigma_{Allowable} = 550/1.0$  MPa = 550 MPa for steel quality SDSS

The yield assessment performed for the "pontoon base case" shows that the proposed structure scantling has sufficient strength. The results are shown in Figure 4-28 through Figure 4-41.

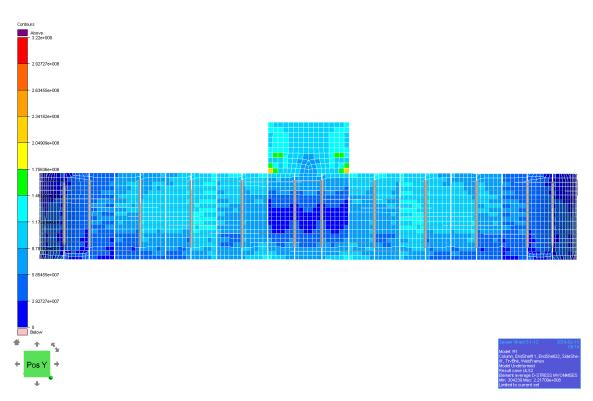



Figure 4-28 von Mises stresses for load case "ULS2" [N/m<sup>2</sup>] outer side shell

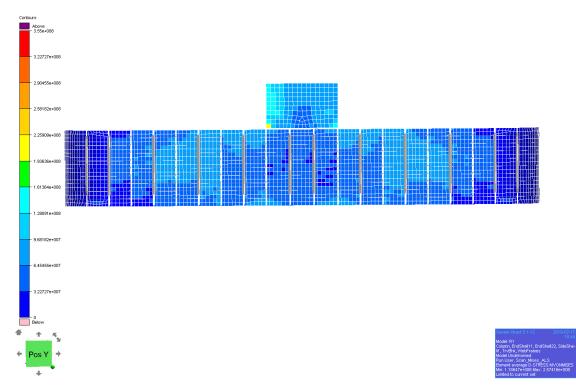



Figure 4-29 Scan of von Mises stresses for the ALS load combinations  $[N/m^2]$  outer side shell

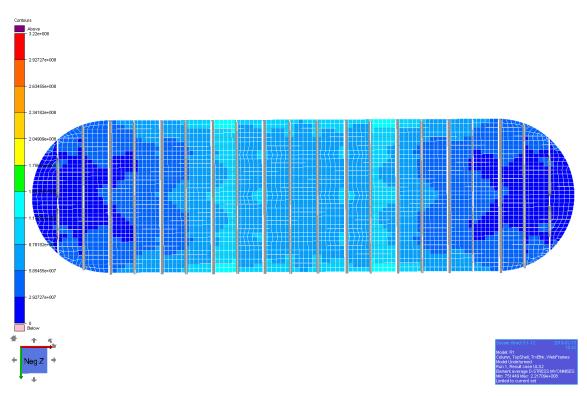



Figure 4-30 von Mises stresses for load case "ULS2" [N/m<sup>2</sup>] outer top shell

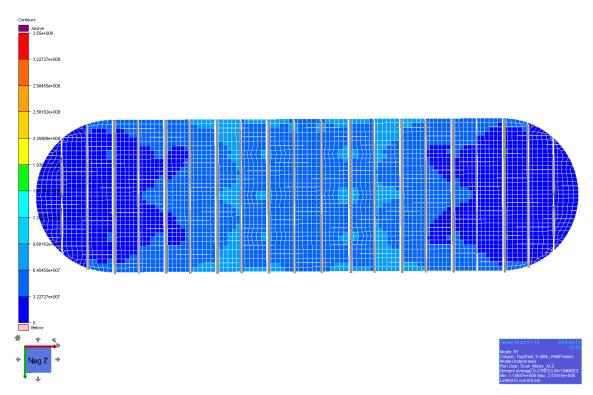



Figure 4-31 Scan of von Mises stresses for the ALS load combinations [N/m<sup>2</sup>] outer top shell

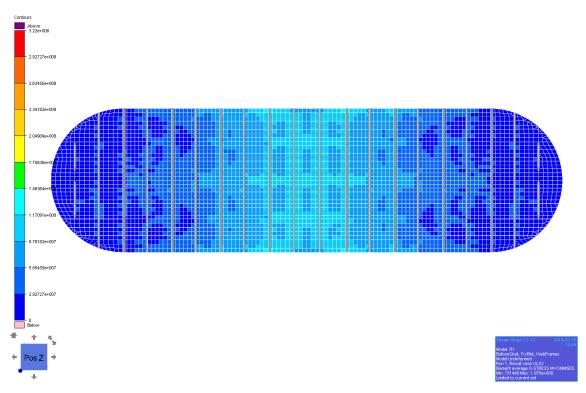



Figure 4-32 von Mises stresses for load case "ULS2" [N/m<sup>2</sup>] outer bottom shell

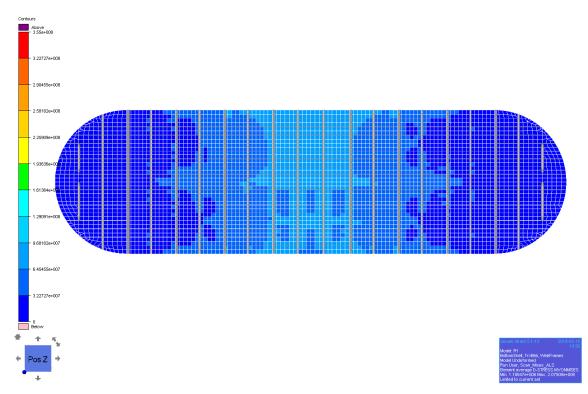



Figure 4-33 Scan of von Mises stresses for the ALS load combinations  $[N/m^2]$  outer bottom shell

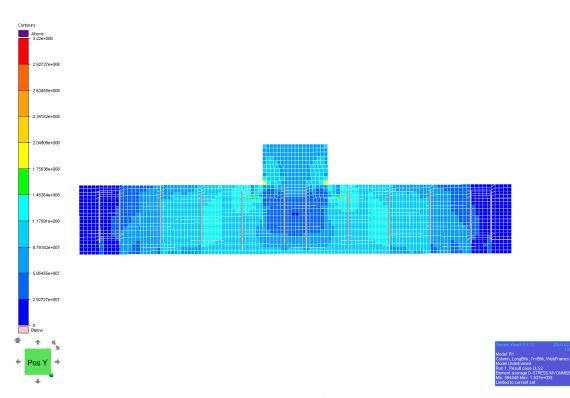



Figure 4-34 von Mises stresses for load case "ULS2" [N/m<sup>2</sup>] centreline bulkhead

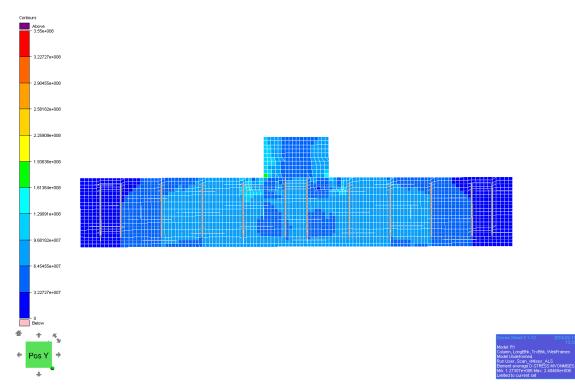
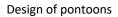




Figure 4-35 Scan of von Mises stresses for the ALS load combinations [N/m<sup>2</sup>] centreline bulkhead



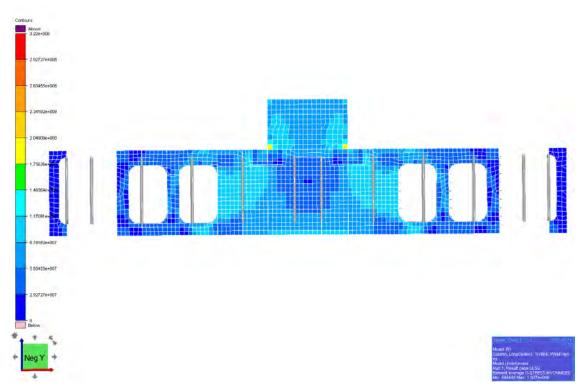



Figure 4-36 von Mises stresses for load case "ULS2" [N/m<sup>2</sup>] bulkhead 4.0 m of centreline

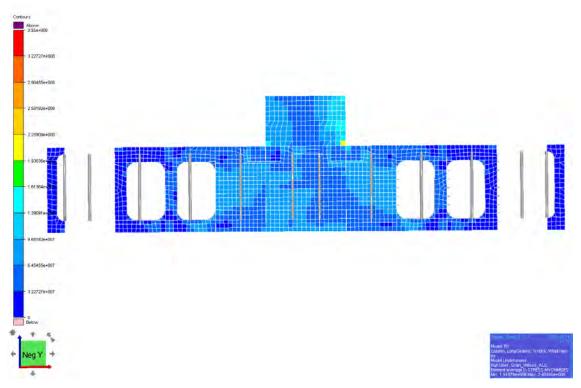
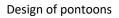




Figure 4-37 Scan of von Mises stresses for the ALS load combinations  $[N/m^2]$  bulkhead 4.0 m of centreline



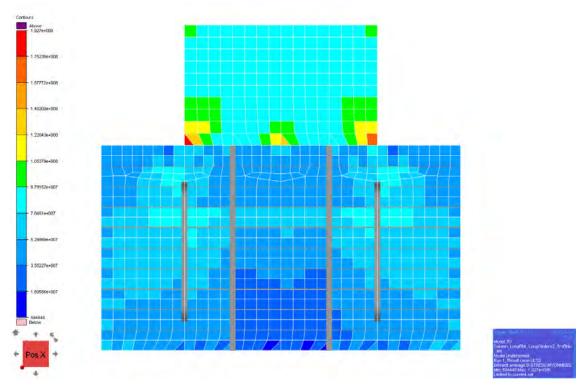



Figure 4-38 von Mises stresses for load case "ULS2" [N/m<sup>2</sup>] for transverse bulkhead supporting column

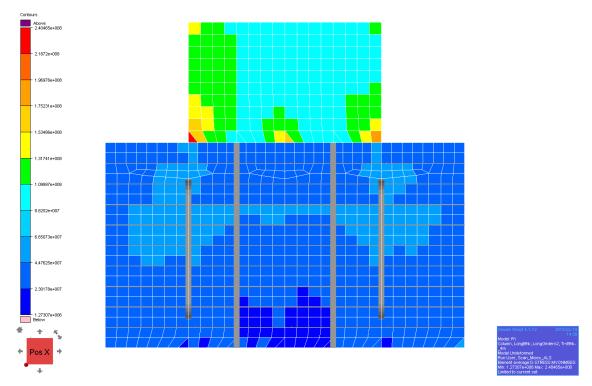



Figure 4-39 von Mises stresses for ALS load combinations [N/m<sup>2</sup>] for transverse bulkhead supporting column

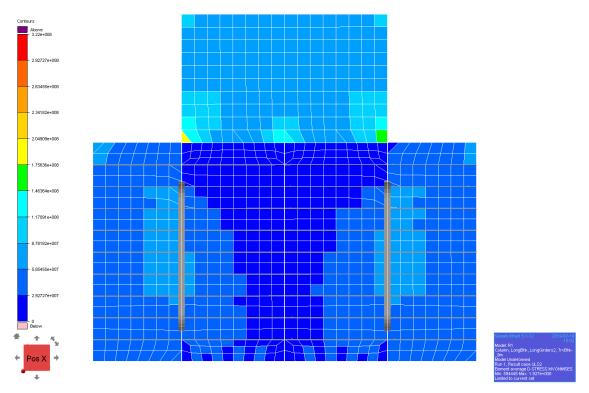



Figure 4-40 von Mises stresses for load case "ULS2" [N/m<sup>2</sup>] for a typical transverse bulkhead

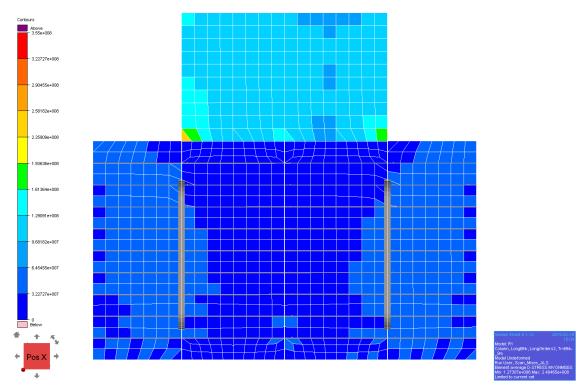



Figure 4-41 von Mises stresses for ALS load combinations  $[N/m^2]$  for a typical transverse bulkhead

## 4.5.2 Buckling and minimum scantling assessment

The buckling assessment is performed according to DNVGL-RP-C203 and the minimum scantling check is performed according to DNVGL-OS-C101 by use of STIPLA software.

Identification of the structural items checked herein is shown in Figure 4-42, Figure 4-46, Figure 4-50, Figure 4-54, Figure 4-61, Figure 4-68 and Figure 4-75 for the "pontoon base case".

The stress components in local x- and y- direction are taken from the result scans of the ULS and ALS load combinations respectively and shown herein.

The buckling and minimum scantling results are shown in Table 4-1, and the proposed structural scantling for the "pontoon base case" fulfil the rule requirements.

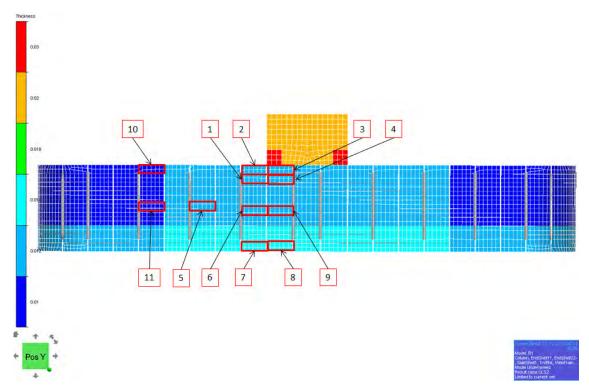



Figure 4-42 Identification of areas considered for buckling & scantling check for outer side shell

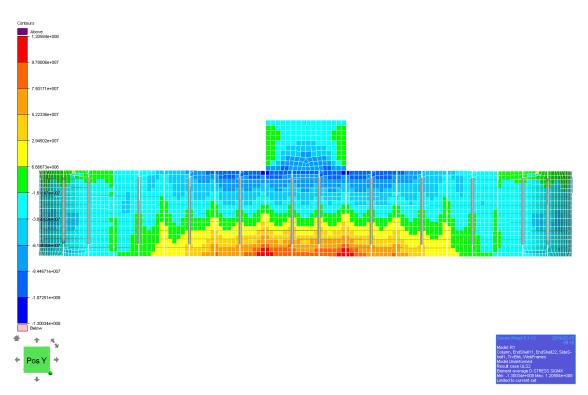



Figure 4-43 SIGMX stresses for load case "ULS2" [N/m<sup>2</sup>]

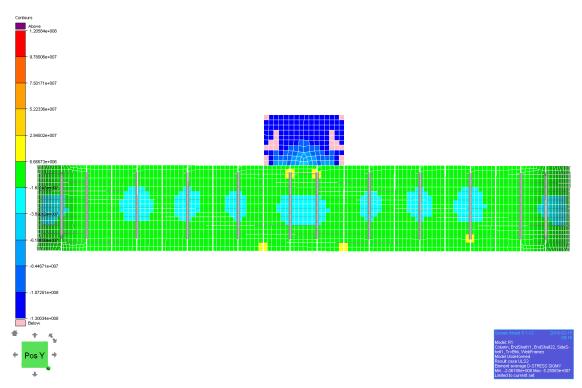



Figure 4-44 SIGMY stresses for load case "ULS2" [N/m<sup>2</sup>]

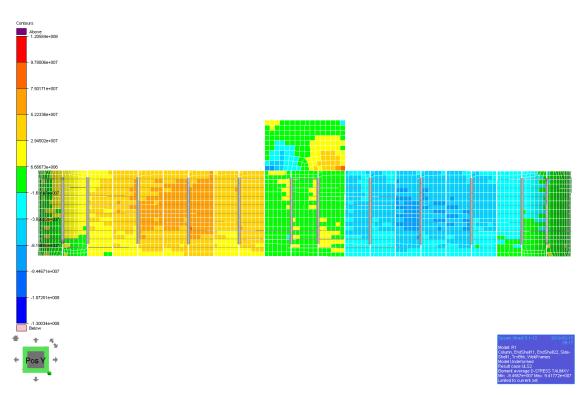



Figure 4-45 TAUMXY stresses for load case "ULS2" [N/m<sup>2</sup>]

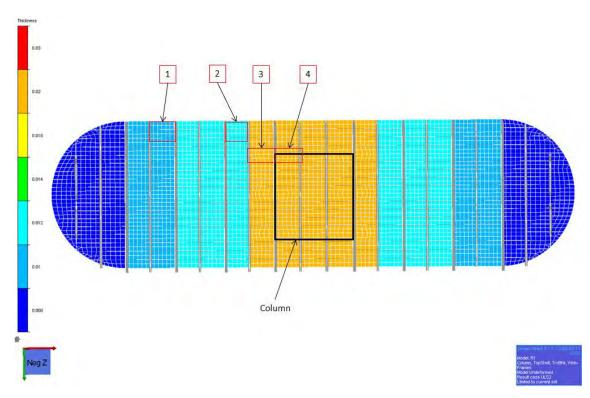



Figure 4-46 Identification of areas considered for buckling & scantling check for outer top shell

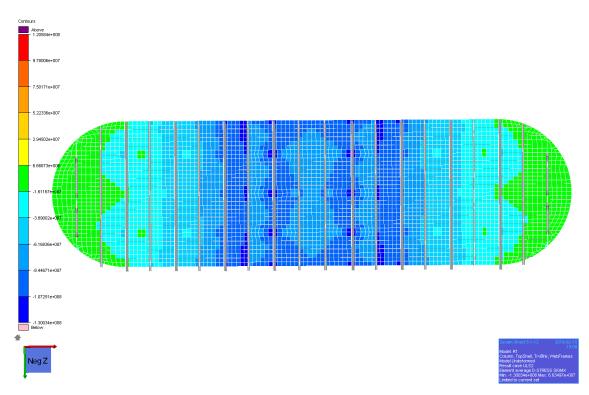



Figure 4-47 SIGMX stresses for load case "ULS2" [N/m<sup>2</sup>] for outer top shell

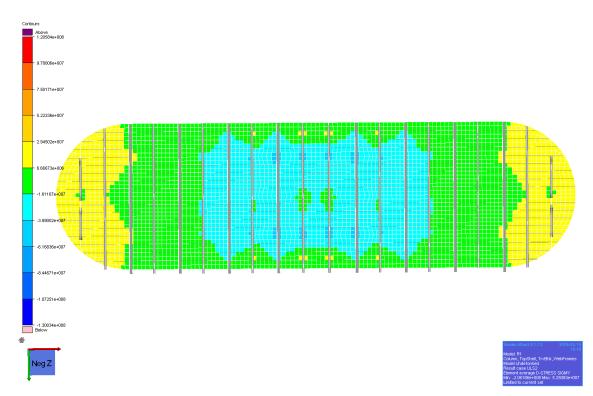



Figure 4-48 SIGMY stresses for load case "ULS2" [N/m<sup>2</sup>] for outer top shell

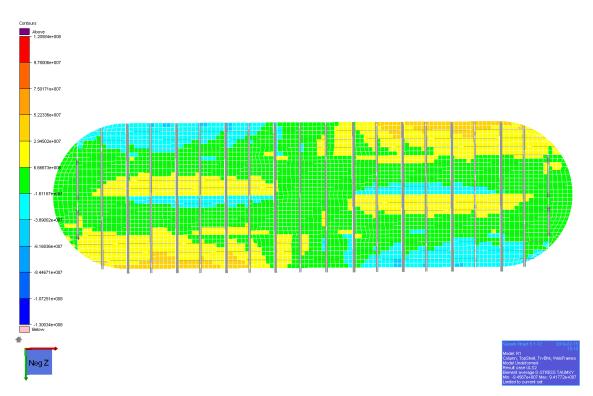



Figure 4-49 TAUMXY stresses for load case "ULS2" [N/m<sup>2</sup>] for outer top shell

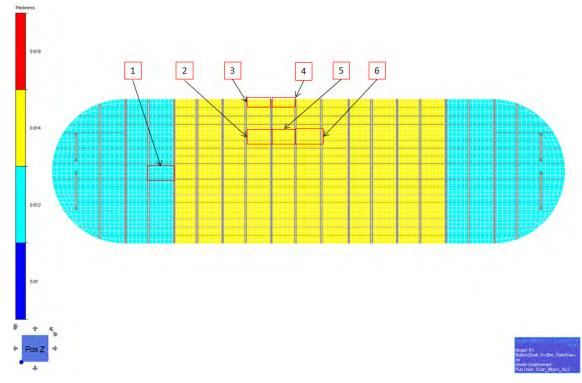



Figure 4-50 Identification of areas considered for buckling & scantling check for outer bottom shell

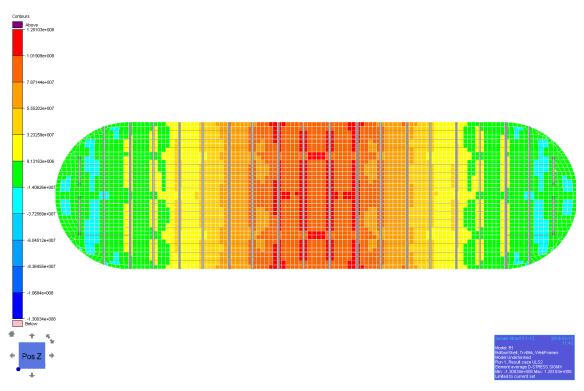
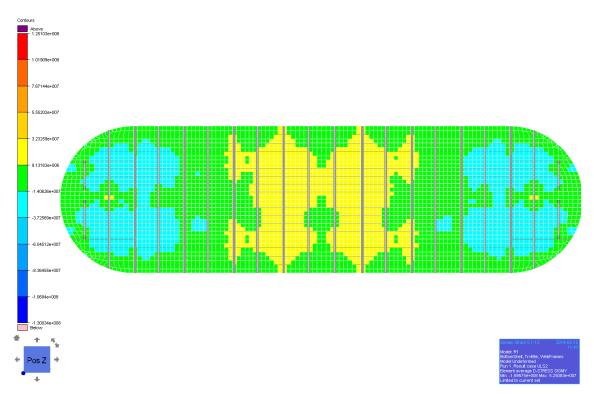
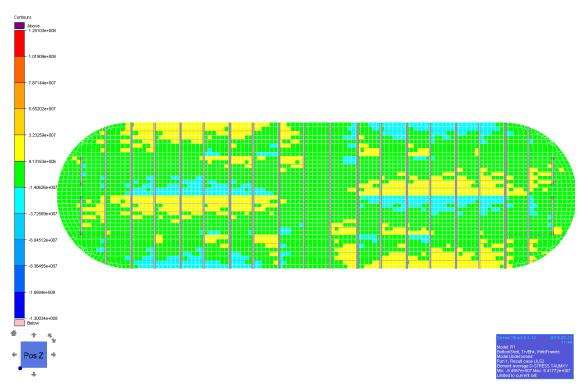





Figure 4-51 SIGMX stresses for load case "ULS2" [N/m<sup>2</sup>] for outer bottom shell



*Figure 4-52 SIGMY stresses for load case "ULS2"* [*N*/*m*<sup>2</sup>] *for outer bottom shell* 



*Figure 4-53 TAUMXY stresses for load case "ULS2"* [*N*/*m*<sup>2</sup>] *for outer bottom shell* 

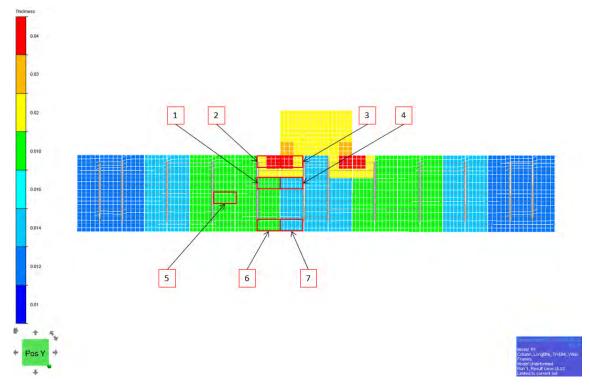



Figure 4-54 Identification of areas considered for buckling & scantling check for centreline bulkhead

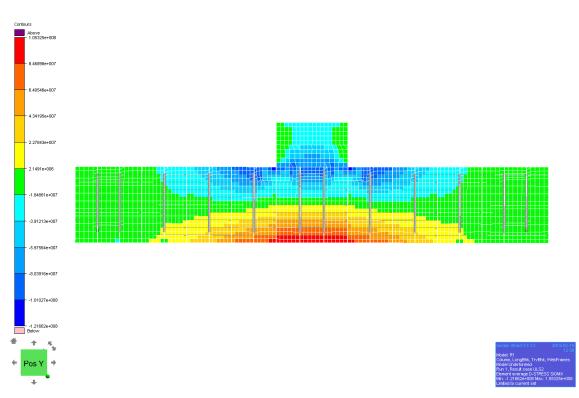
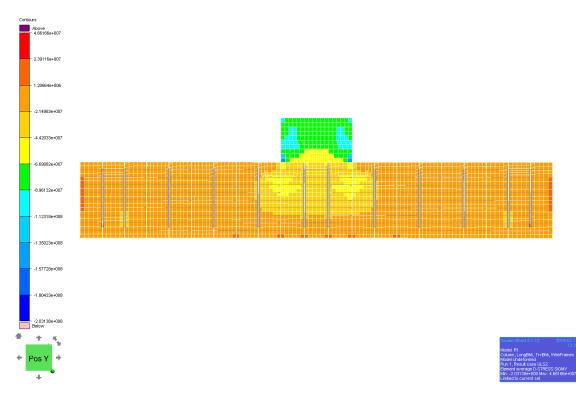




Figure 4-55 SIGMX stresses for load case "ULS2" [N/m<sup>2</sup>] for centreline bulkhead



*Figure 4-56 SIGMY stresses for load case "ULS2"* [*N*/*m*<sup>2</sup>] *for centreline bulkhead* 

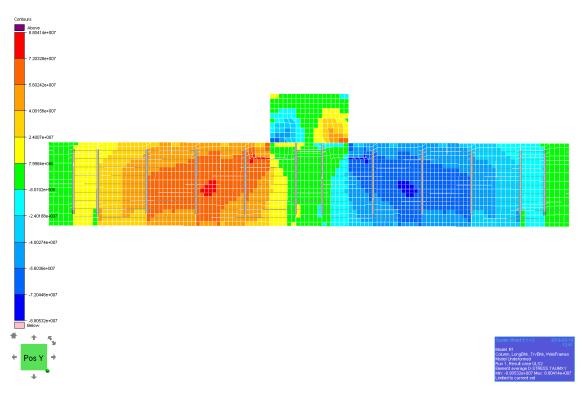
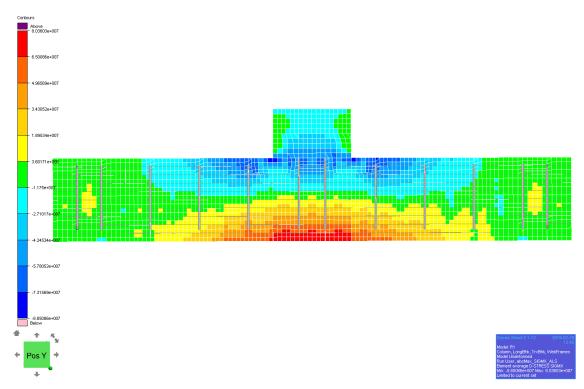




Figure 4-57 TAUMXY stresses for load case "ULS2" [N/m<sup>2</sup>] for centreline bulkhead



*Figure 4-58 SIGMX stresses for ALS load combinations* [N/m<sup>2</sup>] *for centreline bulkhead* 

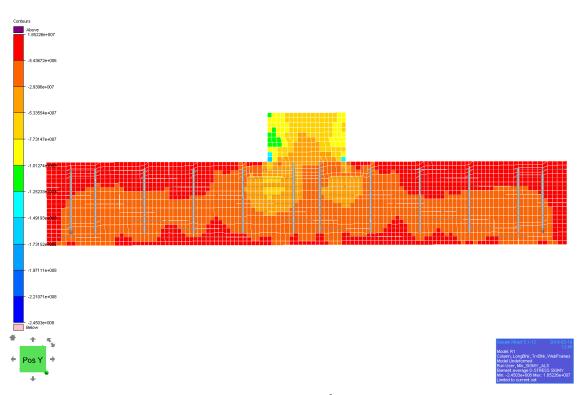



Figure 4-59 SIGMY stresses for ALS load combinations  $[N/m^2]$  for centreline bulkhead

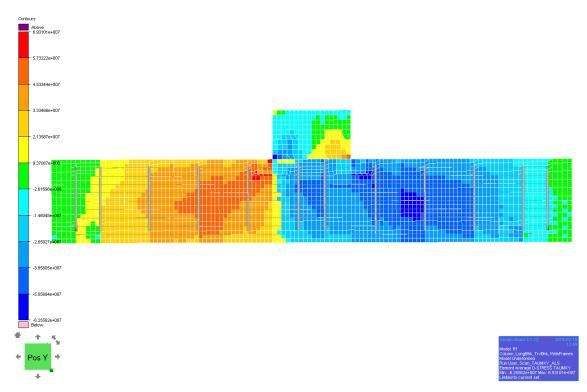
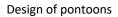
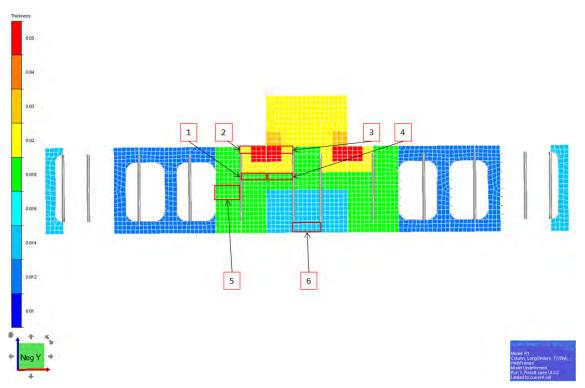





Figure 4-60 TAUMXY stresses for ALS load combinations [N/m<sup>2</sup>] for centreline bulkhead





*Figure 4-61 Identification of areas considered for buckling & scantling check for bulkhead 4.0 m of centreline* 

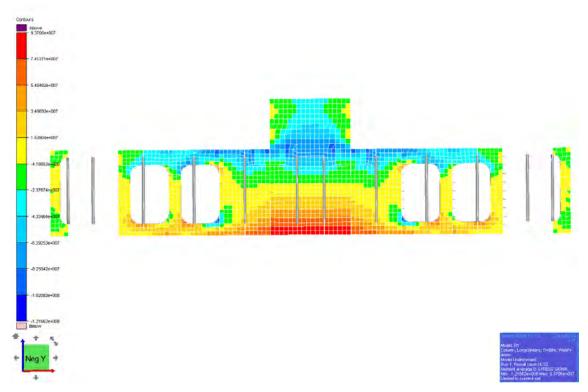



Figure 4-62 SIGMX stresses for load case "ULS2" [N/m<sup>2</sup>] for bulkhead 4.0 m of centreline

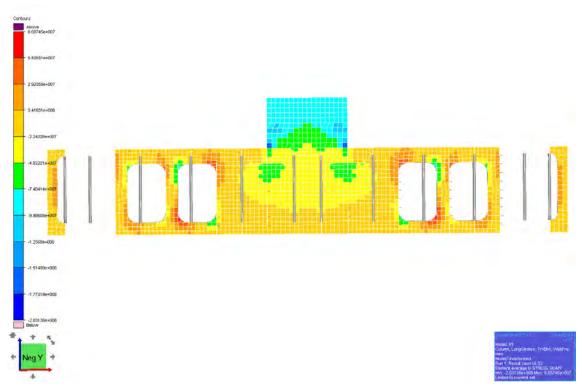



Figure 4-63 SIGMY stresses for load case "ULS2" [N/m<sup>2</sup>] for bulkhead 4.0 m of centreline

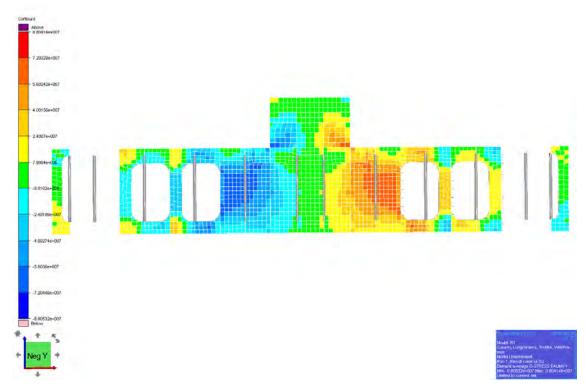
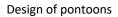




Figure 4-64 TAUMXY stresses for load case "ULS2" [N/m<sup>2</sup>] for bulkhead 4.0 m of centreline



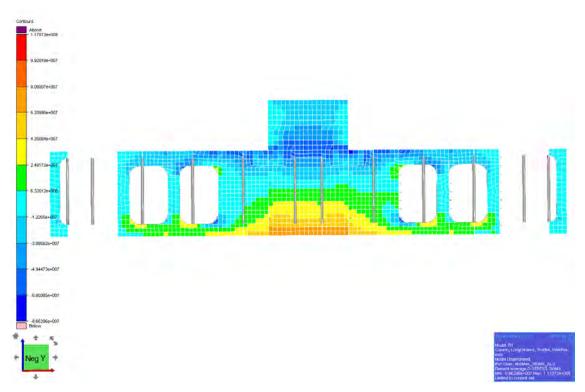



Figure 4-65 SIGMX stresses for ALS load combinations  $[N/m^2]$  for bulkhead 4.0 m of centreline

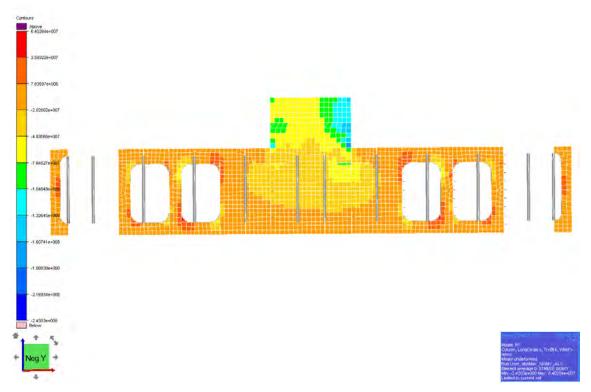



Figure 4-66 SIGMY stresses for ALS load combinations  $[N/m^2]$  for bulkhead 4.0 m of centreline

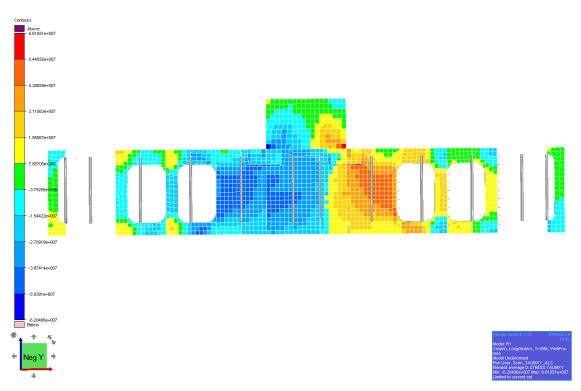
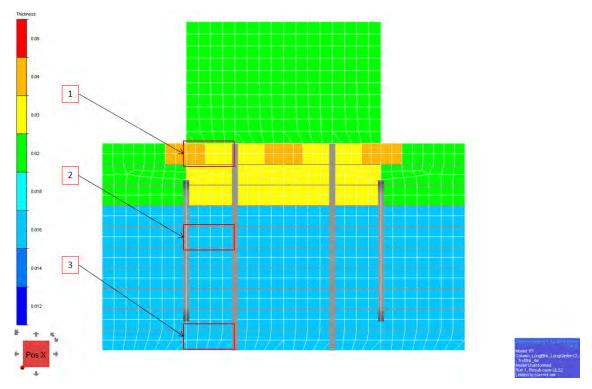




Figure 4-67 TAUMXY stresses for ALS load combinations  $[N/m^2]$  for bulkhead 4.0 m of centreline



*Figure 4-68 Identification of areas considered for buckling & scantling check for transverse bulkhead supporting column* 

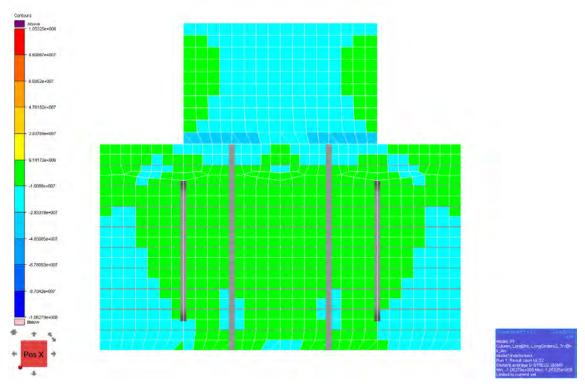



Figure 4-69 SIGMX stresses for load case "ULS2" [N/m<sup>2</sup>] for transverse bulkhead supporting column

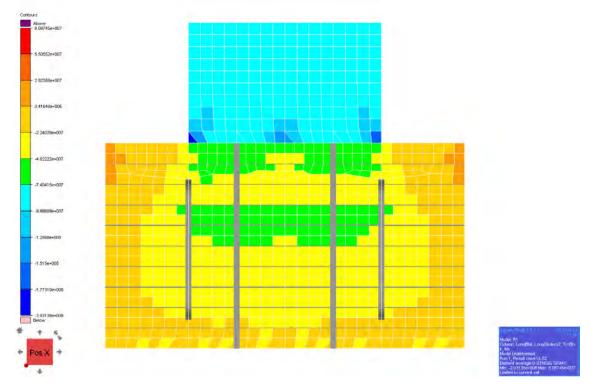



Figure 4-70 SIGMY stresses for load case "ULS2" [N/m<sup>2</sup>] for transverse bulkhead supporting column

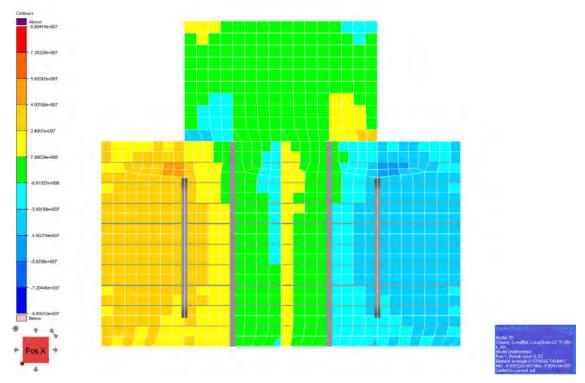



Figure 4-71 TAUMXY stresses for load case "ULS2" [N/m<sup>2</sup>] for transverse bulkhead supporting column

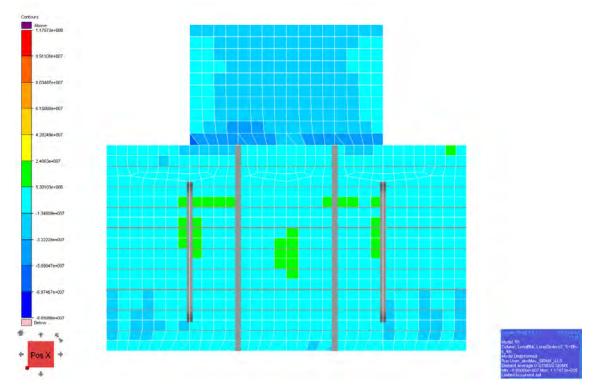



Figure 4-72 Scan of min SIGMX stresses for ALS load combinations [N/m<sup>2</sup>] for transverse bulkhead supporting column

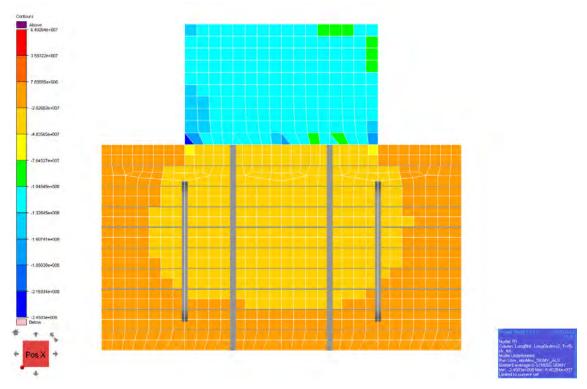



Figure 4-73 Scan of min SIGMY stresses for ALS load combinations [N/m<sup>2</sup>] for transverse bulkhead supporting column

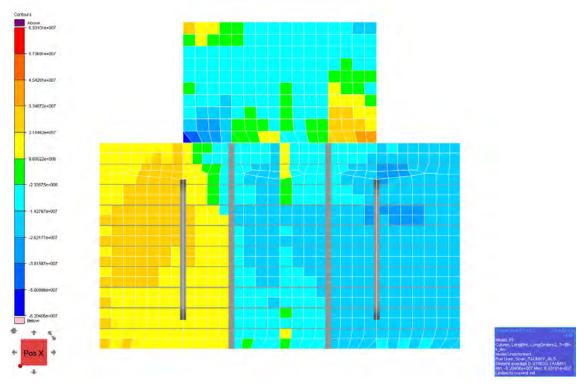
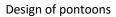
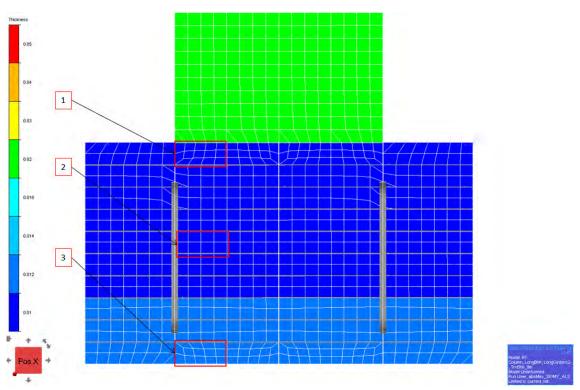





Figure 4-74 Scan of TAUMXY stresses for ALS load combinations [N/m<sup>2</sup>] for transverse bulkhead supporting column





*Figure 4-75 Identification of areas considered for buckling & scantling check for a typical transverse bulkhead* 



Figure 4-76 SIGMX stresses for load case "ULS2" [N/m<sup>2</sup>] for a typical transverse bulkhead

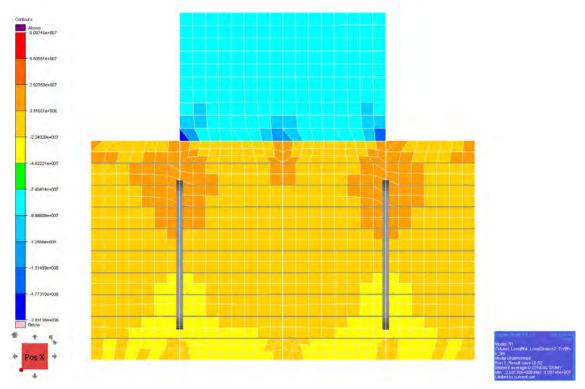



Figure 4-77 SIGMY stresses for load case "ULS2" [N/m<sup>2</sup>] for a typical transverse bulkhead

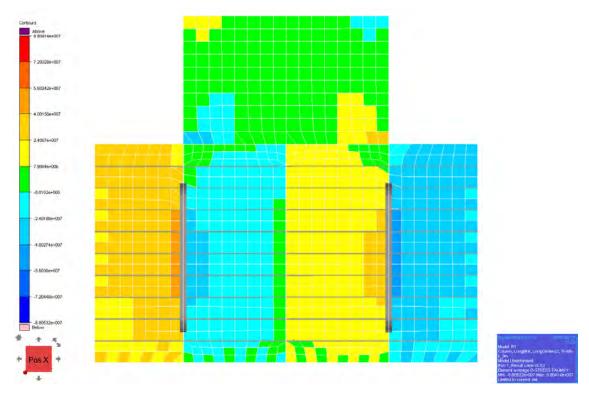



Figure 4-78 TAUMXY stresses for load case "ULS2" [N/m<sup>2</sup>] for a typical transverse bulkhead

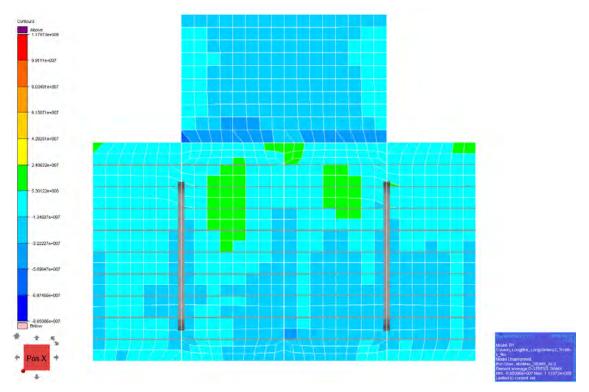



Figure 4-79 SIGMX stresses for ALS load combinations [N/m<sup>2</sup>] for a typical transverse bulkhead

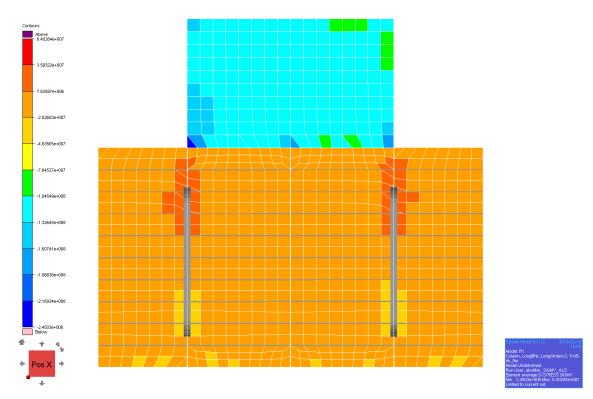
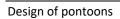




Figure 4-80 SIGMY stresses for ALS load combinations  $[N/m^2]$  for a typical transverse bulkhead

# Concept development, floating bridge E39 Bjørnafjorden



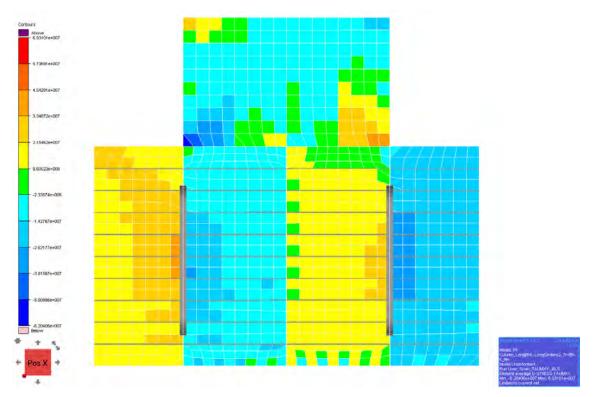



Figure 4-81 TAUMXY stresses for ALS load combinations [N/m<sup>2</sup>] for a typical transverse bulkhead

| Stipla output created on                                                 | 19.02.2019 17:17         |      |          |     |            |             |             |              |              |             |         |         |         |          |      |        |      |      |       |         |
|--------------------------------------------------------------------------|--------------------------|------|----------|-----|------------|-------------|-------------|--------------|--------------|-------------|---------|---------|---------|----------|------|--------|------|------|-------|---------|
| Identification:                                                          | Profile                  |      | -        | s1  | s2         | Sig×A       | SigxB       | SigyA        | SigyC        | Tau         | Pa      | PI Bckl | St Bckl | ShearChk | РIЛI | St YId | tMin | zMin | UFMax | UFMinRe |
| *Pontoon Base Case                                                       |                          |      | -        |     |            |             |             |              |              |             |         |         |         |          |      |        |      |      |       |         |
| % Pontoon<br>Side Shell 1ULS                                             | BF240x12.0               | 2508 | 12       | 850 | 850        | -79.5       | -79.5       | -6           | -6           | 42.9        | -0.0397 | 0.06    | 0.46    | 0.09     | 0.21 | 0.31   | 0.32 | 0.18 | 0.46  | 0.32    |
| Side Shell 2 ULS                                                         | BF240x12,0               | 2508 | 12       | 850 | 850        | -109        | -109        | -9           | -9           | 40.9        |         | 0,00    | 0,40    | 0.07     | 0,21 | 0,31   | 0,32 | 0,10 | 0,40  | 0,32    |
| Side Shell 3 ULS                                                         | BF240x12,0               | 2660 | 12       |     | 850        | -109        | -109        | -9           | -9           | 6           | -0,0312 | 0,11    | 0,62    | 0,07     | 0,33 | 0,40   |      | 0,18 | 0,62  | 0,37    |
| Side Shell 4 ULS                                                         | BF240x12,0               | 2660 | 12       |     | 850        | -80,6       | -80,6       | -7           | -7           | 8,4         | -0,0392 | 0,07    | 0,44    | 0,09     | 0,16 | 0,33   |      | 0,20 | 0,44  | 0,31    |
| Side Shell 5 ULS                                                         | BF220x10,0               | 2508 | 12       |     | 850        | -18         | -18         | -22          | -22          | 65,7        | -0,0739 |         | 0,58    | 0,22     | 0,23 | 0,29   | 0,43 | 0,36 | 0,58  | 0,43    |
| Side Shell 6 ULS                                                         | BF220x10,0               | 2508 | 12       |     | 850        | -33         | -33         | -21          | -21          | 43,6        |         |         | 0,57    | 0,24     | 0,19 | 0,29   |      | 0,43 | 0,57  | 0,45    |
| Side Shell 7 ULS                                                         | BF300x11,0               | 2508 | 14       | 850 | 850        | 120         | 120         | 8,5          | 8,5          | 28          | -0,1167 | 0,00    | 0,61    | 0,23     | 0,39 | 0,61   | 0,65 | 0,38 | 0,61  | 0,65    |
| Side Shell 8 ULS                                                         | BF300x11,0               | 2660 | 14       | 850 | 850        | 120         | 120         | 7,5          | 7,5          | 5,6         | -0,1167 | 0,00    | 0,59    | 0,24     | 0,36 | 0,64   | 0,63 | 0,43 | 0,64  | 0,63    |
| Side Shell 9 ULS                                                         | BF220x10,0               | 2660 | 12       | 850 | 850        | -33         | -33         | -23          | -23          | 4           | -0,0825 |         | 0,60    | 0,26     | 0,19 | 0,33   |      | 0,48 | 0,60  | 0,48    |
| Side Shell 10 ULS                                                        | BF240x12,0               | 2508 | 10       |     | 850        | -45         | -45         | -4,5         | -4,5         | 44,5        | -0,0397 |         | 0,42    | 0,09     | 0,27 | 0,29   |      | 0,16 | 0,42  | 0,48    |
| Side Shell 11ULS                                                         | BF220x10,0               | 2508 | 10       |     | 850        | -30         | -30         | -25          | -25          | 58          | -0,0739 |         | 0,80    | 0,22     | 0,24 | 0,27   |      | 0,39 | 0,80  | 0,52    |
| Top Shell 1ULS                                                           | BF220x10,0               | 2508 | 10       | 800 | 800        | -48,5       | -48,5       | -3,5         | -3,5         | 37,6        |         |         | 0,39    | 0,09     | 0,25 | 0,27   | 0,40 | 0,16 | 0,39  | 0,40    |
| Top Shell 2ULS                                                           | BF220x10,0               | 2508 | 12       |     | 862        | -117,6      | -117,6      | -14          | -14          | 42,5        | -0,0312 | 0,18    | 0,78    | 0,09     | 0,41 | 0,44   | 0,40 | 0,23 | 0,78  | 0,40    |
| Top Shell 3 ULS                                                          | BF220x10,0               | 2508 | 20       |     | 862        | -107        | -107        | -44          | -44          | 19          | -0,0312 | 0,32    | 0,52    | 0,09     | 0,31 | 0,40   |      | 0,21 | 0,52  | 0,22    |
| Top Shell 4 ULS                                                          | BF220x10,0<br>BF280x11,0 | 2660 | 20       |     | 800        | -77<br>34,4 | -77<br>34,4 | -43<br>-13.9 | -43<br>-13,9 | 8,7<br>21,2 | -0,0312 | 0,30    | 0,38    | 0,09     | 0,21 | 0,31   | 0,20 | 0,19 | 0,38  | 0,20    |
| Btm Shell 1ULS<br>Btm Shell 2ULS                                         | BF280x11,0<br>BF300x13,0 | 2508 | 12       |     | 800        | 34,4<br>100 | 34,4<br>100 | -13,9        | -13,9        | 13,5        | -0,1167 | 0,17    | 0,30    | 0,23     | 0,37 | 0,38   |      | 0,30 | 0,38  | 0,63    |
| Btm Shell 3 ULS                                                          | BF300x13,0               | 2508 | 14       |     | 862        | 123         | 123         | 14           | 14           | 14,8        | -0,1167 |         | 0,60    | 0,20     | 0,32 |        | 0,61 | 0,32 | 0,60  | 0,65    |
| Btm Shell 4 ULS                                                          | BF300x13,0               | 2660 | 14       |     | 862        | 123         | 123         | 14           | 14           | 12,6        | -0,1167 | 0,00    | 0,61    | 0,21     | 0,37 | 0,63   |      | 0,30 | 0,63  | 0,65    |
| Btm Shell 5 ULS                                                          | BF300x13,0               | 2660 | 14       |     | 862        | 107         | 107         | 27           | 27           | 17,2        | -0,1167 | 0,00    | 0,55    | 0,21     | 0,33 | 0,58   |      | 0,38 | 0,58  | 0,62    |
| Btm Shell 6 ULS                                                          | BF300x11,0               | 2660 | 14       |     | 800        | 105         | 105         | 19           | 19           | 3,5         | -0,1167 | 0,00    | 0,52    | 0,23     | 0,30 |        |      | 0,37 | 0,58  | 0,57    |
| CL. Bulkhead 1ULS                                                        | BF240x12,0               | 2508 | 18       | 850 | 850        | -41         | -41         | -58          | -58          | 67,7        | 0.00    | 0.52    | 0,37    | 0.00     | 0.40 |        |      | 0.04 | 0.52  | 0,31    |
| CL. Bulkhead 2 ULS                                                       | BF240x12,0               | 2508 | 20       |     | 850        | -106        | -106        | -42          | -42          | 46          | 0.00    | 0,31    | 0,53    | 0,00     | 0,38 |        |      | 0,04 | 0,53  | 0,28    |
| CL. Bulkhead 3 ULS                                                       | BF240x12,0               | 2660 | 20       |     | 850        | -99         | -99         | -60          | -60          | 11          | 0.00    | 0,44    | 0,47    | 0,00     | 0,27 | 0,31   | 0,28 | 0,04 | 0,47  | 0,28    |
| CL. Bulkhead 4 ULS                                                       | BF240x12,0               | 2660 | 14       | 850 | 850        | -30         | -30         | -60          | -60          | 18          | 0.00    | 0,67    | 0,31    | 0,00     | 0,19 | 0,19   | 0,40 | 0,04 | 0,67  | 0,40    |
| CL. Bulkhead 5 ULS                                                       | BF220x10,0               | 2508 | 18       |     | 850        | -24         | -24         | -10          | -10          | 72          | 0.00    | 0,09    | 0,26    | 0,00     | 0,39 | 0,39   |      | 0,05 | 0,39  | 0,31    |
| CL. Bulkhead 6 ULS                                                       | BF300x11,0               | 2508 | 18       | 850 | 850        | 88          | 88          | -7           | -7           | 40          | 0.00    | 0,06    | 0,37    | 0,00     | 0,36 | 0,36   |      | 0,02 | 0,37  | 0,31    |
| CL. Bulkhead 7 ULS                                                       | BF300x11,0               | 2660 | 14       | 850 | 850        | 105         | 105         | -10          | -10          | 8           | 0.00    | 0,11    | 0,44    | 0,00     | 0,34 |        | 0,40 | 0,02 | 0,44  | 0,40    |
| CL. Bulkhead 1ALS                                                        | BF240x12,0               | 2508 | 18       | 850 | 850        | -28         | -28         | -60          | -60          | 51,9        | -0,0342 | 0,48    | 0,31    | 0,07     | 0,29 | 0,29   |      | 0,11 | 0,48  | 0,24    |
| CL. Bulkhead 2 ALS                                                       | BF240x12,0               | 2508 | 20       |     | 850        | -89         | -89         | -43          | -43          | 42          | -0,0086 |         | 0,41    | 0,02     | 0,30 |        |      | 0,04 | 0,41  | 0,11    |
| CL. Bulkhead 3 ALS<br>CL. Bulkhead 4 ALS                                 | BF240x12,0               | 2660 | 20       |     | 850<br>850 | -82         | -82         | -59          | -59          | 21          | -0,086  | 0,40    | 0,44    | 0,19     | 0,23 | 0,37   | 0,33 | 0,37 | 0,44  | 0,37    |
|                                                                          | BF240x12,0<br>BF220x10,0 | 2508 |          |     | 850        | -21<br>-17  | -21<br>-17  | -65          | -65          | 35,3        |         | 0,66    |         |          |      |        |      | 0,13 | 0,66  | 0,30    |
| CL. Bulkhead 5 ALS<br>CL. Bulkhead 6 ALS                                 | BF300x11,0               | 2508 | 18<br>18 |     | 850        | -17         | -17         | -11<br>-6    | -11<br>-6    | 52<br>31    | -0,0428 | 0,09    | 0,24    | 0,11     | 0,26 | 0,26   |      | 0,18 | 0,26  | 0,26    |
| CL. Bulkhead 7 ALS                                                       | BF300x11,0               | 2660 | 14       |     | 850        | 80          | 80          | -0           | -0           | 16          | -0,085  | 0,03    | 0,20    | 0,15     | 0,24 | 0,34   |      | 0,13 | 0,34  | 0,31    |
| Long. Bkh.1-4.0 m of CLULS                                               | BF240x12,0               | 2508 | 18       |     | 850        | -16         | -16         | -51          | -51          | 61          | 0.00    | 0,45    | 0,28    | 0,00     | 0,25 | 0,40   |      | 0,04 | 0,40  | 0,40    |
| Long. Bkh.2 -4.0 m of CL ULS                                             | BF240x12,0               | 2508 | 20       |     | 850        | -89         | -89         | -36          | -36          | 32          | 0.00    | 0,26    | 0,42    | 0.00     | 0.30 | 0.30   |      | 0.04 | 0,40  | 0,28    |
| Long. Bkh.3-4.0 m of CL ULS                                              | BF240x12,0               | 2660 | 20       |     | 850        | -94         | -94         | -64          | -64          | 12          | 0.00    | 0,47    | 0,46    | 0,00     | 0,27 | 0,29   |      | 0,04 | 0,47  | 0,28    |
| Long. Bkh.4 -4.0 m of CL ULS                                             | BF240x12,0               | 2660 | 18       |     | 850        | -12         | -12         | -52          | -52          | 32          | 0.00    | 0,46    | 0,24    | 0,00     | 0,23 | 0,23   |      | 0,04 | 0,46  | 0,31    |
| Long. Bkh.5-4.0 m of CL ULS                                              | BF220x10,0               | 2508 | 18       | 850 | 850        | -5          | -5          | -21          | -21          | 63          | 0.00    | 0,19    | 0,20    | 0,00     | 0,34 | 0,34   | 0,31 | 0,05 | 0,34  | 0,31    |
| Long. Bkh.6 -4.0 m of CL ULS                                             | BF300x11,0               | 2660 | 14       | 850 | 850        | 93          | 93          | -10          | -10          | 4           | 0.00    | 0,11    | 0,39    | 0,00     | 0,31 | 0,31   | 0,40 | 0,02 | 0,39  | 0,40    |
| Long. Bkh.1-4.0 m of CL ALS                                              | BF240x12,0               | 2508 | 18       | 850 | 850        | -12         | -12         | -39          | -39          | 45          | -0,0342 | 0,31    | 0,23    | 0,07     | 0,24 | 0,24   | 0,23 | 0,11 | 0,31  | 0,23    |
| Long. Bkh.2 -4.0 m of CL ALS                                             | BF240x12,0               | 2508 | 20       |     | 850        | -65         | -65         | -27          | -27          | 21          | -0,0086 | 0,18    | 0,27    | 0,02     | 0,19 | 0,20   | 0,10 | 0,04 | 0,27  | 0,10    |
| Long. Bkh.3-4.0 m of CL ALS                                              | BF240x12,0               | 2660 | 20       |     | 850        | -58         | -58         | -50          | -50          | 33          | -0,0086 |         | 0,29    | 0,02     | 0,22 | 0,22   | 0,10 | 0,04 | 0,34  | 0,10    |
| Long. Bkh.4-4.0 m of CL ALS                                              | BF240x12,0               | 2660 | 18       |     | 850        | -11         | -11         | -40          | -40          | 38          | -0,0342 | 0,32    | 0,24    | 0,07     | 0,21 | 0,21   | 0,23 | 0,12 | 0,32  | 0,23    |
| Long. Bkh.5-4.0 m of CL ALS                                              | BF220x10,0               | 2508 | 18       |     | 850        | -4          | -4          | -16          | -16          | 46          | -0,0428 | 0,13    | 0,23    | 0,11     | 0,23 | 0,23   | 0,26 | 0,18 | 0,23  | 0,26    |
| Long. Bkh.6 -4.0 m of CL ALS                                             | BF300x11,0               | 2660 | 14       |     | 850        | 72          | 72          | -8           | -8           | 26          | -0,0855 | 0,08    | 0,36    | 0,16     | 0,25 | 0,38   |      | 0,22 | 0,38  | 0,48    |
| Trv. Bkh.1-4.0 m of Long CL ULS                                          | BF240x10,0               | 2000 | 30       |     | 850        | -25         | -25         | -58          | -58          | 16          | 0.00    | 0,25    | 0,11    | 0,00     | 0,18 | 0,18   |      | 0,04 | 0,25  | 0,19    |
| Trv. Bkh.2 - 4.0 m of Long CL ULS<br>Trv. Bkh.3 - 4.0 m of Long CL ULS   | BF260x10,0<br>BF280x11,0 | 2000 | 16<br>16 | 850 | 850<br>850 | -9<br>-10   | -9<br>-10   | -51<br>-24   | -51<br>-24   | 30<br>21    | 0.00    | 0,43    | 0,13    | 0,00     | 0,22 | 0,22   | 0,35 | 0,03 | 0,43  | 0,35    |
| Trv. Bkh. 3 - 4.0 m of Long CL OLS<br>Trv. Bkh. 1 - 4.0 m of Long CL ALS | BF280x11,0<br>BF240x10,0 | 2000 | 30       |     | 850        | -10         | -10         | -24          | -24          | 15          | -0,0086 | 0,20    | 0,07    | 0,00     | 0,13 | 0,13   | 0,35 | 0,03 | 0,20  | 0,35    |
| Trv. Bkh.2 -4.0 m of Long CL ALS                                         | BF240x10,0<br>BF260x10,0 | 2000 | 16       | 850 | 850        | -13         | -13         | -45          | -45          | 20          | -0,0000 |         | 0,03    | 0,02     | 0,15 | 0,15   | 0,07 | 0,04 | 0,13  | 0,07    |
| Trv. Bkh.3 -4.0 m of Long CL ALS                                         | BF280x10,0               | 2000 | 16       | 850 | 850        | -12         | -12         | -17          | -17          | 17          | -0,0420 | 0,32    | 0,14    | 0,00     | 0,22 | 0,13   | 0,50 | 0,00 | 0,32  | 0,50    |
| Try. Bkh.1-9.0 m of Long CL ULS                                          | BF240x10,0               | 4000 | 10       |     | 850        | -8          | -8          | 7            | 7            | 15          | 0.00    | 0,00    | 0,06    | 0,00     | 0,09 | 0,09   |      | 0,04 | 0,09  | 0,56    |
| Trv. Bkh.2 -9.0 m of Long CL ULS                                         | BF260x10,0               | 4000 | 10       |     | 850        | -20         | -20         | -15          | -15          | 29          | 0.00    | 0,27    | 0,26    | 0.00     | 0,17 | 0,17   | 0,56 | 0.03 | 0,27  | 0.56    |
| Trv. Bkh.3 - 9.0 m of Long CL ULS                                        | BF280x11,0               | 4000 | 12       |     | 850        | -26         | -26         | -27          | -27          | 20          | 0.00    | 0,42    | 0,27    | 0,00     | 0,14 | 0,14   | 0,46 | 0,03 | 0,42  | 0,46    |
| Trv. Bkh.1-9.0 m of Long CL ALS                                          | BF240x10,0               | 4000 | 10       | 850 | 850        | -6          | -6          | 2            | 2            | 13          | -0,0086 | 0,00    | 0,09    | 0,04     | 0,07 | 0,08   |      | 0,09 | 0,09  | 0,22    |
| Trv. Bkh.2 -9.0 m of Long CL ALS                                         | BF260x10,0               | 4000 | 10       | 850 | 850        | -27         | -27         | -25          | -25          | 24          | -0,0428 | 0,45    | 0,68    | 0,17     | 0,23 | 0,26   | 0,49 | 0,37 | 0,68  | 0,49    |
| Try. Bkh.3 - 9.0 m of Long CL ALS                                        | BF280x11.0               | 4000 | 12       | 850 | 850        | -27         | -27         | -20          | -20          | 16          | -0,1167 | 0.31    | 0,76    | 0,39     | 0.44 | 0.64   | 0,67 | 0,79 | 0,76  | 0,79    |

## Table 4-1 Buckling and scantling results for ULS and ALS load combinations

# 5 FE analysis – pontoon with mooring line supports

### 5.1 Description of FE model

A finite element model is made of the "base case" pontoon with support structure for eight mooring lines using DNVGL Software GeniE. A combination of 2<sup>nd</sup> order beam elements and plate elements has been used. The mesh size is set to 500 mm.

### 5.2 Applied loads

The considered ULS and ALS load cases for the "pontoon with mooring lines" are shown in Figure 5-1 and in section 4.2.

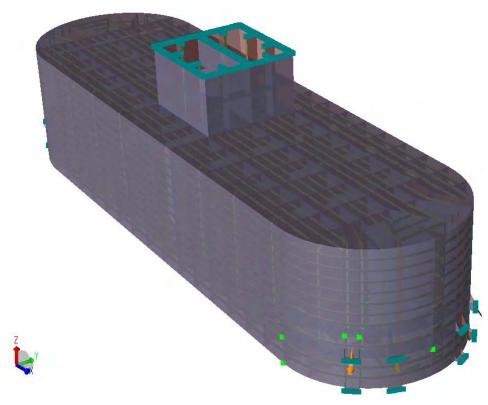



Figure 5-1 Load case "FL1ULS"

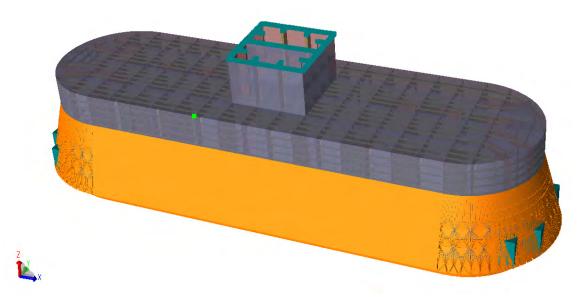



Figure 5-2 Load case "P\_SWL"

### 5.3 Boundary conditions

The boundary conditions are applied to the lower part of the column and are shown in Figure 5-3. All degrees of freedom are fixed.

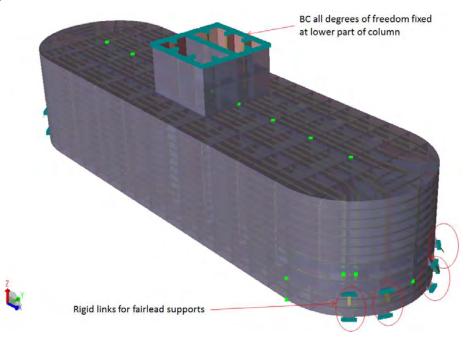
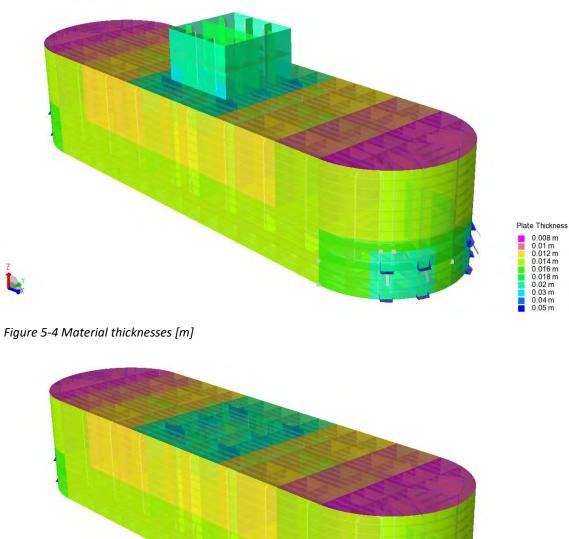




Figure 5-3 Boundary condition

# 5.4 Material dimensions

The material dimensions are for pontoon with mooring lines is shown herein.



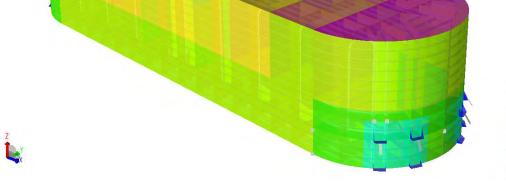



Figure 5-5 Material thicknesses [m]

Plate Thickness

0.018 m 0.011 m 0.012 m 0.012 m 0.014 m 0.016 m 0.018 m 0.03 m 0.03 m 0.04 m

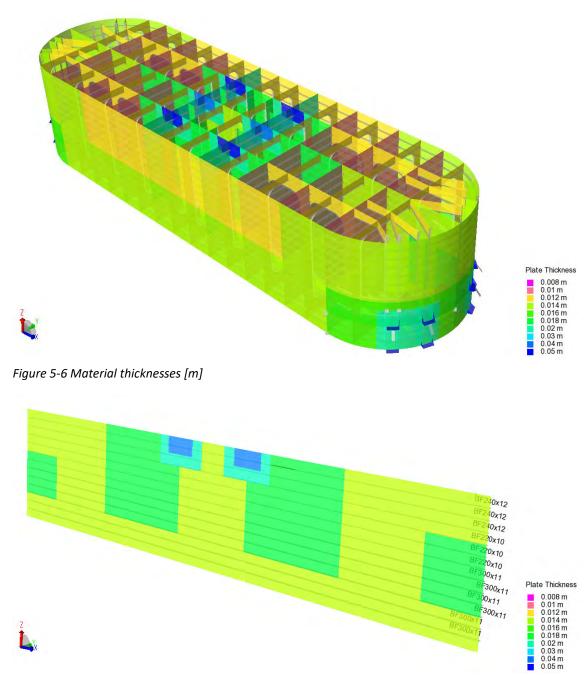



Figure 5-7 Material thicknesses [m] and section names, CL longitudinal bulkhead

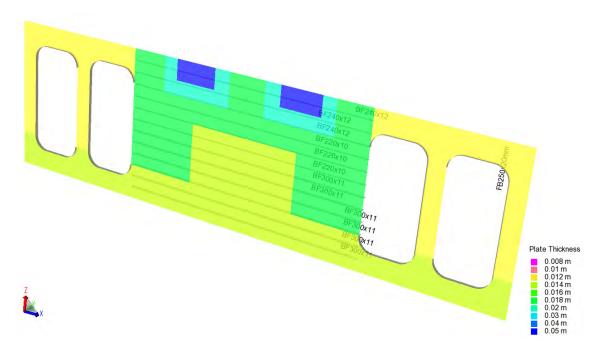



Figure 5-8 Material thicknesses [m] and section names, longitudinal bulkhead 4.0 m of CL

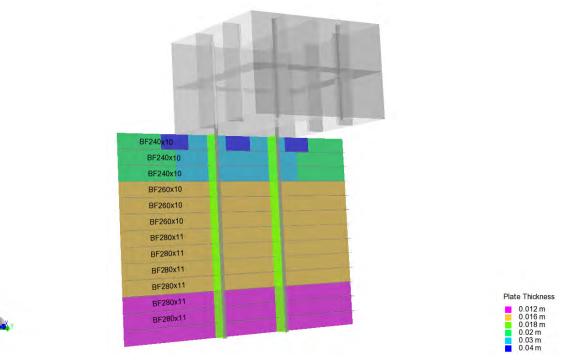



Figure 5-9 Material thicknesses [m] and section names, transverse bulkhead underneath the column

|                | BF240x10 |                   |
|----------------|----------|-------------------|
|                | BF240x10 |                   |
|                | BF240x10 |                   |
|                | BF260x10 |                   |
|                | BF260x10 |                   |
|                | BF260x10 |                   |
|                | BF280x11 |                   |
|                | BF280×11 |                   |
| z              | BF280x11 |                   |
| L <sub>Y</sub> |          | Plate Thickness   |
|                |          | 0.01 m<br>0.012 m |
|                |          | 0.012 m           |

Figure 5-10 Material thicknesses [m] and section names, typical transverse bulkhead

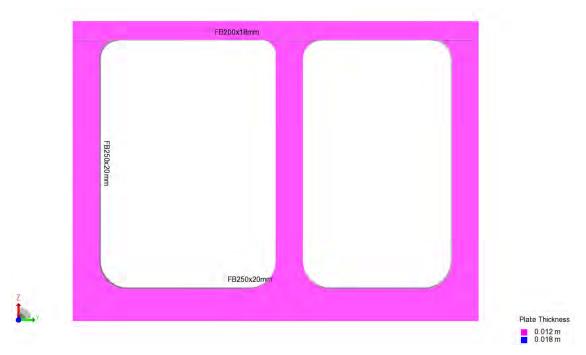



Figure 5-11 Material thicknesses [m] and section names, transverse web-frame type 1

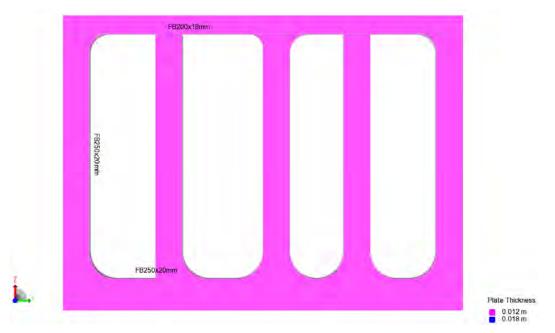



Figure 5-12 Material thicknesses [m] and section names, transverse web-frame type 2

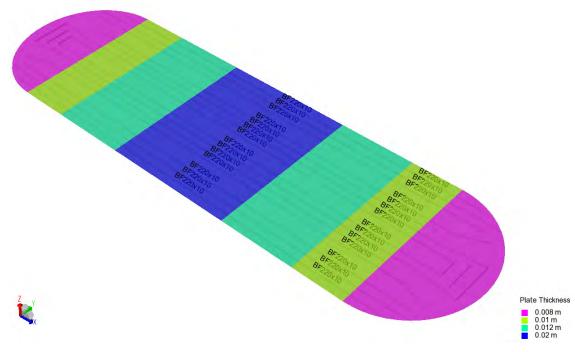



Figure 5-13 Material thicknesses [m] and section names, pontoon top plate

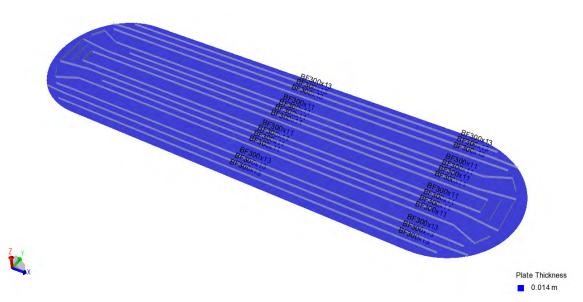



Figure 5-14 Material thicknesses [m] and section names, pontoon bottom plate

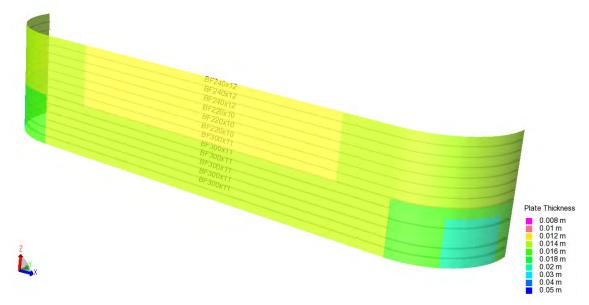
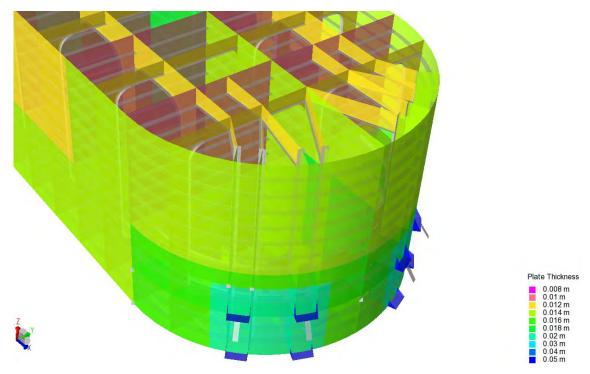
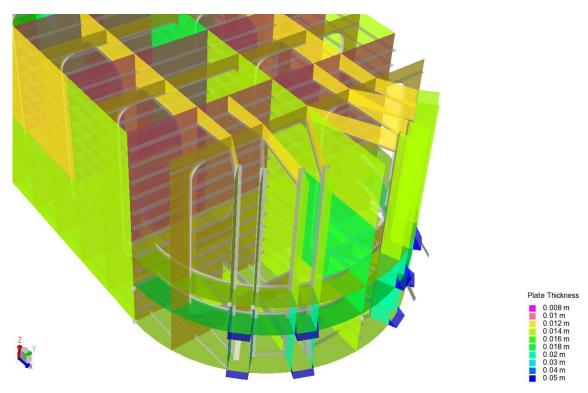





Figure 5-15 Material thicknesses [m] and section names, pontoon side shell



*Figure 5-16 Material thicknesses [m] and section names, pontoon end with fairlead supporting structure* 



*Figure 5-17 Material thicknesses [m] and section names, pontoon end with fairlead supporting structure* 

### 5.5 Results

Note that the steel quality has been changed from S355 to S420 after the analysis presented below was performed. Hence; the allowable stresses are somewhat higher compared to upper limit in the stress plots shown. In addition, the results presented in Table 5-1 and Table 5-2 will be conservative, the pontoons buckling capacity will be increased after increasing the yield strength.

Note that the thickness of the outer shell was changed after changed after the analyses were performed; the plate joint at elevation 5100mm was moved 600mm down. This was done to limit number of plate joints in the splash zone. The thickness change is assumed to have minimal effect on the results taken the stress levels presented in the following into account.

In addition the tank plan has been changed; the longitudinal bulkheads located 4000mm from centre line has been made watertight. The plate thickness of the bulkheads is similar as shown in Figure 5-8, i.e. 12mm/14mm. The centre line bulkhead is made non-watertight by introducing manholes. These changes are not assumed to have any negative effect on the structural strength of the pontoon. The pontoon will be more robust against collisions from striking vessels hitting the side of the pontoon with a small angle.

#### 5.5.1 Yield assessment

The yield assessment is based on scan of maximum von Mises membrane stresses for the ULS and ALS conditions respectively. Allowable stress limits are set according to the relevant limit state as follows:

- ULS:  $\sigma_{Allowable}$  = 355/1.1 MPa = 322 MPa for steel quality S355

- ULS:  $\sigma_{Allowable}$  = 550/1.1 MPa = 500 MPa for steel quality SDSS

- ALS:  $\sigma_{Allowable}$  = 355/1.0 MPa = 355 MPa for steel quality S355

- ALS:  $\sigma_{Allowable}$  = 550/1.0 MPa = 550 MPa for steel quality SDSS

The yield assessment performed for the "pontoon supporting mooring lines" shows that the proposed structure scantling has sufficient strength. The results are shown in Figure 5-18 through Figure 5-37.

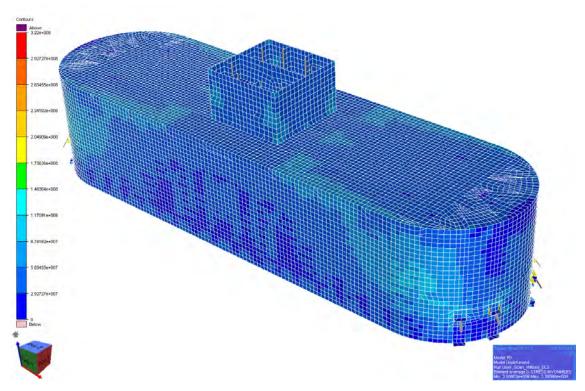



Figure 5-18 von Mises stresses for ULS load combinations [N/m<sup>2</sup>]

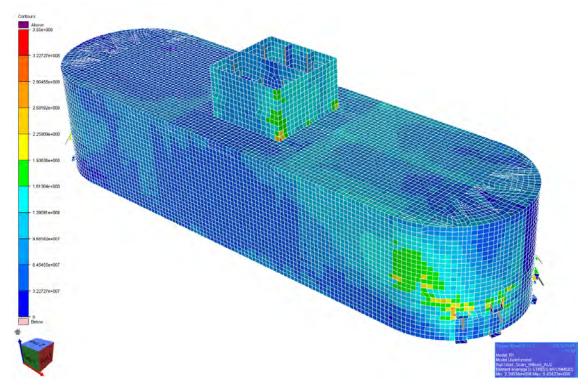



Figure 5-19 von Mises stresses for ALS load combinations  $[N/m^2]$ 

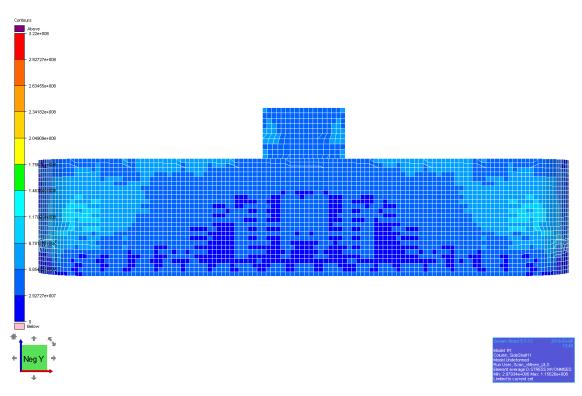
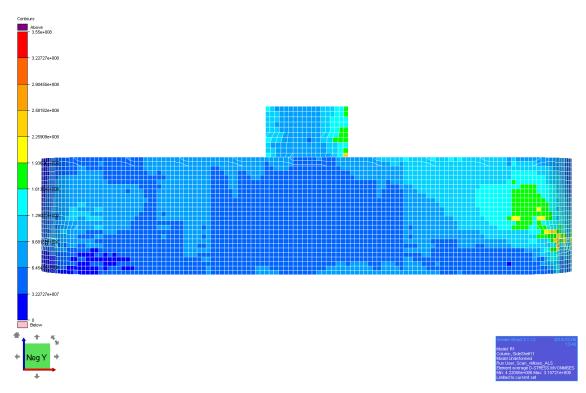




Figure 5-20 von Mises stresses for ULS load combinations [N/m<sup>2</sup>] outer side shell



*Figure 5-21 von Mises stresses for ALS load combinations* [*N*/*m*<sup>2</sup>] *outer side shell* 

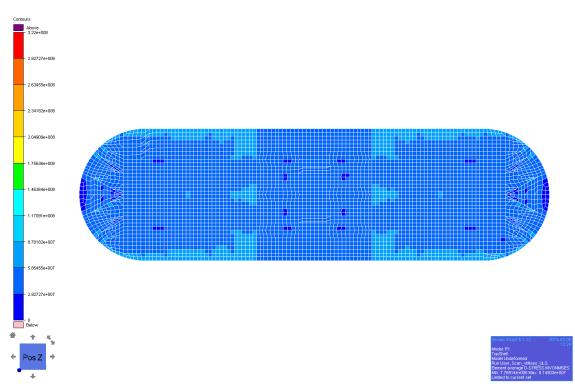
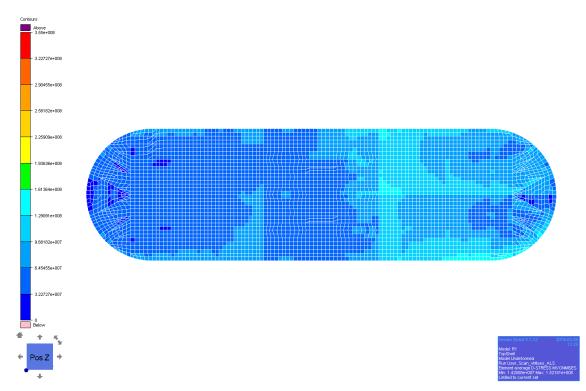
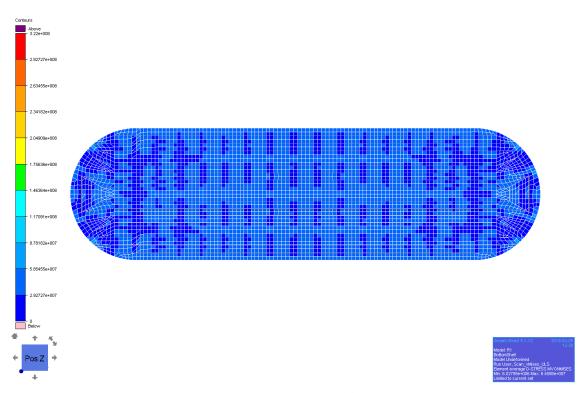
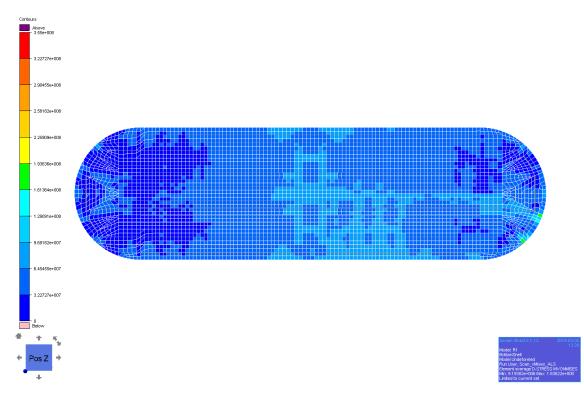
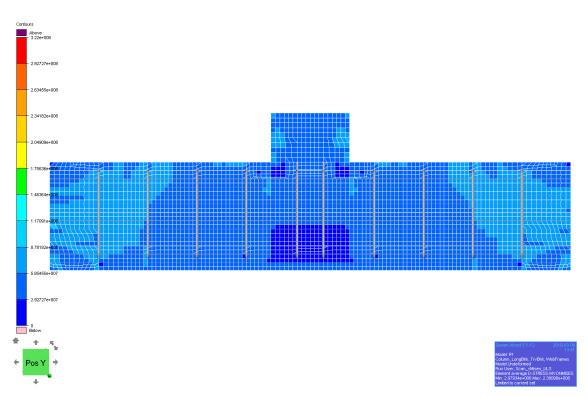



Figure 5-22 von Mises stresses for ULS load combinations  $[N/m^2]$  outer top shell



Figure 5-23 von Mises stresses for ALS load combinations  $[N/m^2]$  outer top shell



*Figure 5-24 von Mises stresses for ULS load combinations* [*N/m<sup>2</sup>*] *outer bottom shell* 



*Figure 5-25 von Mises stresses for ALS load combinations* [*N*/*m*<sup>2</sup>] *outer bottom shell* 



*Figure 5-26 von Mises stresses for ULS load combinations* [*N/m<sup>2</sup>*] *centreline bulkhead* 

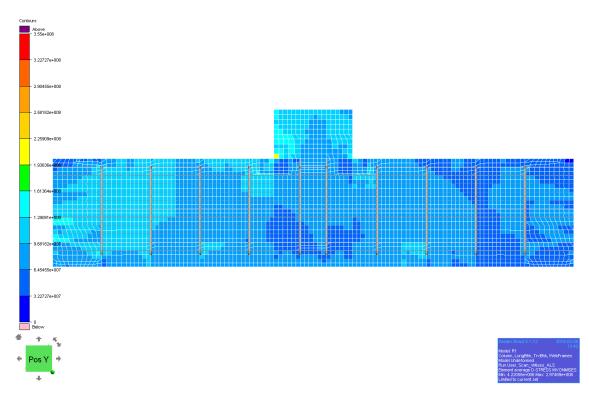
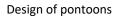




Figure 5-27 von Mises stresses for ALS load combinations  $[N/m^2]$  centreline bulkhead



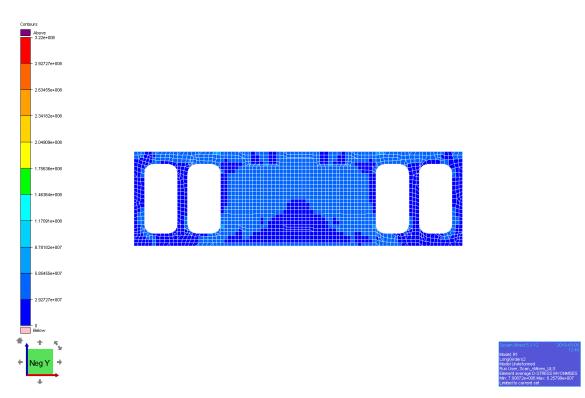



Figure 5-28 von Mises stresses for ULS load combinations [N/m<sup>2</sup>] bulkhead 4.0 m of centreline

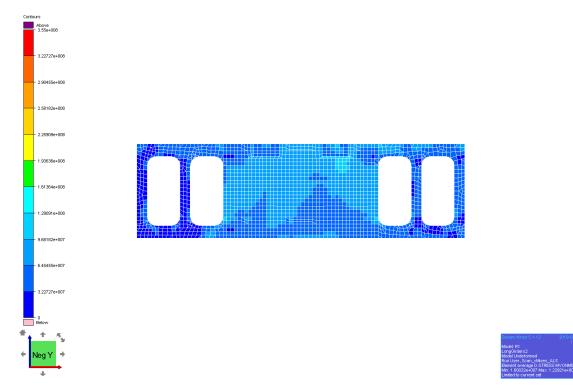



Figure 5-29 von Mises stresses for ALS load combinations [N/m<sup>2</sup>] bulkhead 4.0 m of centreline

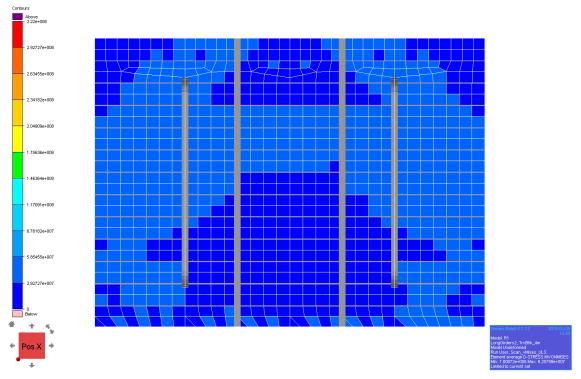



Figure 5-30 von Mises stresses for ULS load combinations [N/m<sup>2</sup>] for transverse bulkhead supporting column

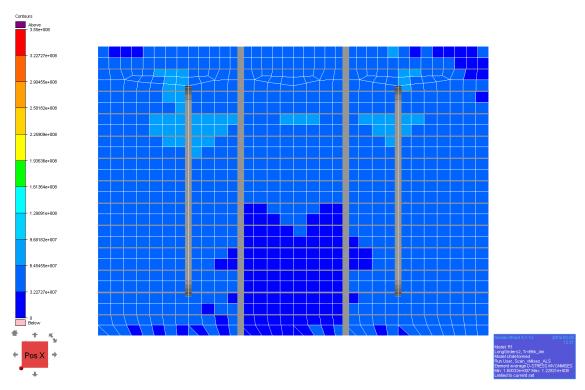



Figure 5-31 von Mises stresses for ALS load combinations  $[N/m^2]$  for transverse bulkhead supporting column

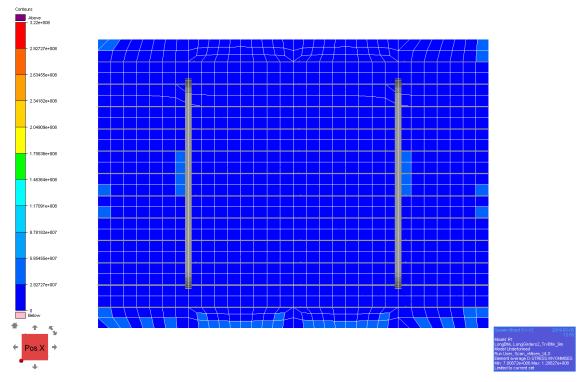



Figure 5-32 von Mises stresses for ULS load combinations  $[N/m^2]$  for a typical transverse bulkhead

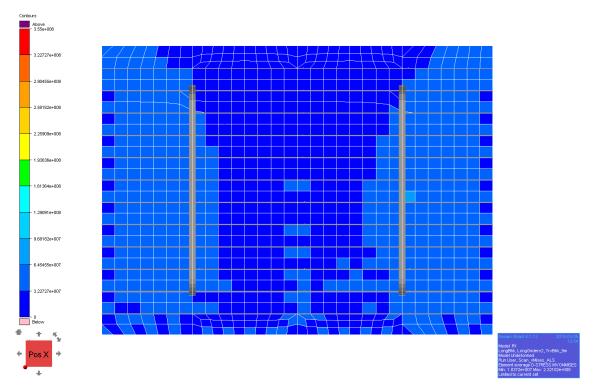



Figure 5-33 von Mises stresses for ALS load combinations  $[N/m^2]$  for a typical transverse bulkhead